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ABSTRACT

A new technique for design of digital filters s
presented in this paper. The technique consists of
splitting the given log magnitude response into two parts,
one corresponding to the response of the numerator
polynomial of the filter transfer function and the other
part to the response of the denominator polynomial. The
inverse of each of these polynomials is considered as an
all-pole filter and the response of the all-pole filter is
approximated by a small number of autoregressive
coefficients. The autoregressive coefficients obtained for
the numerator polynomial represent the zero part of the
final filter and the coefficients obtained for the
denominator polynomial represent the pole part of the
tinal filter. With equal number of poles and zeros, the
overall filter response can be made nearly equiripple in
the passband and stopband. The amplitude of the rippie
can be traded with the width of the transition band. The
ripple characterstics can be controlied by appropriately
choosing the number of poles and zeros of the filter.

INTRODUCTION

A digital filter that contains poles and zeros is termed
as an autoregressive and moving average (ARMA) digital
filter. This paper is concerned with the design of ARMA
digital filters to realize a given log magnitude frequency
response. The basic idea in the design is to split the
given response into two componeht responses, each of
which can be approximated by a small number of
parameters. The reason for the sugcess of this method is
that one of the component responses is close to an
all-pole spectrum and the other ¢omponent response is
close to an ali-zero spectrum. S?nce the inverse of an

 all-zero spectrum is an all-pole spectrum, it is possible to
represent each of the component responses by a small
number of parameters through autoregressive modelling
[1] The splitting of the given résponse into an ail-pole
and an all-zero spectra is accomplished using a pole-zero
decomposition technique [2], which is based on the
properties of the negative derivative of minimum phase
spectra [3)

It is generally true thet a given magnitude spectrum
can be realized by a digital filter of a much lower order
when the filter contains both poles and zeros than when
the filter is purely all-poie or sil-zero. A lower order
digital filter will be of lesser complexity in terms of
number of multiplications and additions required in its
implementation. Our method of design results in sn ARMA
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digital filter that is of low order and stable. In addition,
the filter has several useful characteristics. The ripple
chracteristics can be controlled by a suitable choice of
the number of coefficients used to represent the
component spectra. The ampiltude of the ripple can be
traded with the width of the transition band. Since all the
poles and zeros of the filter lie within the unit circle in
the z-plane, the inverse filter will have the complement
response and will be stable,

The emphasis in this paper is on the presentation of
the new design technique. Issues such as the filter
performance relative to other techniques and the
limitations of the method are not considered here.
Throughout the paper the notation {M1,M2) denotes an
ARMA digital filter with M1 pole and M2 zeros.

' DESIGN PROCEDURE

Pele=zero Decomposition
|
The key idea in this paper is splitting the given log
magnitude frequency response into two parts, one
corresponding nearly to an all-pole filter spectrum and
the other to an all-zero filter spectrum. This splitting is
called pole-zero decomposition, which is based on the
properties of the negative derivative of phase spectra
(NDPS) of minimum phase polynomials,

A linear digital fllter H(2) can be repre;sented as a ratlo
of two polynomials as tollows:

Hz) = G N2) / D(2) Mm
where
Nz) =1+ Z_a ®) 3"

Dz) =1+ ﬁa(k)z,
and G is 8 gain term.

The roots of the numerastor polynomial are called zeros
snd the roots of the denominator polynomial are called
poles. The objective in filter design is to determine the
coefficients {8~ (k)] and {a* (k)] such that the
magnitude-squared frequency response of Hz) matches
the given magnitude response as closely as possible. In
this paper we refer to N(z) as zero part and D{2) as pole
part of the digital filter. |
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A polynomial is ssid to be minimum phass if & its
roots lie within the unil circle in the z-plane. If all the
zevos and poles of H(2) lie within the unit circle in the
z-plane, then the filter is called a minimum phase filler.
Using the properties of the negalive derivative of
minimum phase fillers {2} il is possible to separate the
significant contributions of poles and zeros in the
combined NOPS response of a pole-zero filter by
considering the positive and negalive porlions
respectively.

Filter Design

Given a magnitude-squared frequency response S(w),
the objective in filter design is to determine the
parameters of a linear system modei H(z) as given in (1)
such that

2 x
1 Hiw) | = | H(z) H (2} 1 o= S{w).

Let V(w) be the Founer transform of the minimum
phase correspondent for S(w). Then

1
| Viw) | = S(w).
The steps in the design are as follows:
1. Find the cepstral coefficients {c(k)} of S(w) using the
relation
2 co
in }V(w) |7 = In S(w) = c(0) +2 2 c(k) cos kw .
K=
2. Compute the NDPS Sé(w) fromc(k)jusing the relation
00
S;(w) = ¥ keclk) cos kw
K= 1
3. Split §)(w) into positive and negative portions.
¢ l + ¢ d
8,w) = (8w ]+ [6,m],
where
+ 1
[Sé(w)] - Q:(w) , for §fw) >0,
=0, forQw)<0,
and
- 1
[8,w)] = 6,w) , for 8w <0,
=0, for e'(w) >0.
4. Find the cepstral coefficients {c'(k)} and {c (k)] from

[ev(w)] and [9 (w) ] respectively using the Fourier
series expansions,

[ev<w)]-c+ Zuc*(k)cos kw
K=}
and
'( )]_ C+ ig_k (k) cos kw
= =~ C ,
[evw k=i

where C is the average value, which does not
contribute to the shape of the spectrum,
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5. Compule the pole spectrum P(w) and the zero
spectrum w) frem |t (K)} end {c(k)} respectively as
follows:

(2]
in Plw) = c(0)/2 + 2 3 ¢'(h) cos kw

Wl
and
fo &1
tn Z{w) = c(0)f2 + 2 }:,c'(k) cos kw.
Note that ¢ (k) ¢ ¢ (k) - c(k) and hernce P(w) Uw) =
S(w).

6. Find the autocorrelation coefficients R' (k) and R (K)
from P{w) and 1 /Z(w) respectively using the relations

% & &
P{w) = R(0) + 2 3 R(k)cos kw
K=t
and

- L S
1/Z{w) = R(0) + 2 5 R{k)cos kw.
K=t
7. Solve for the autoregressive coefficients {a'{k)} and
{a~ () from (RT(K)} and {R™(K)} respeclively using
Levinson’s algorithm for solving the aulocorrelation
normal equations [11

8. Compute the approximate pole spectrum P(w) from

{a (k)} and the approximate zero spectrum Z(w) from (a (K)}

~ 9. The overall filter response is given by | H(w) |L=
Plw) Ziw).

10. The fulter H(z) is given by (1). The values of Ml
and M2 determine the order of the filter.

DESIGN EXAMPLES

A lowpass filter with the following specifications is
considered for illustrating the above design procedure.
- -0.1,...,51.
Lot S = SW) |\ _yr /gy + LFON
A = amplitude, and M = number of transition samples.

Specification:

In[S(] = In (A), | =0,1,.99
= {1-0-99)/(M+1}]] In(A), 1 = 100,101,..100+M
=0, 1 = 100+M+1,1004M+2,..256

In[s] -

In the above:specification the value of A determines
the ievel of stopband rejection. For example, if A=1000,
then the stopband rejection level is 30 dB. The vaiue of
M determines the number of transition samples. The case
of M=0 corresponds to no sample in the transition band.
The filter design was carried out using 512 point FFT for
computing Fourier transforms.

in [S(812-)] 1= 257,258,.511.
2
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Fig. 1 illustreles the principle of the proposed filler
design. Fig. 1a shows the log magnilude response of the
desired lowpass filler for A=1000, M=5. The NDPS of the
filter is shown in Fig. l1b. Tha positive and negative
portions of fhe NOPS are separaled and lhe
corresponding spectrs are computed. The resuiting pole
and zero specira are shown in Fig. lc. If these log
specira are added, we get the desired filter response
exactly as shown in Fig. 1d. On the other hand, if the pole
spectrum and the inverse of the zero spectrum are
approximated by autoregressive models, each with 8
coefficients, the overall response of the resuiting filter is
as shown in Fig. le. In this case the peak lo peak
amplitude of the ripple is less than 87 in passband and
stopband.

That the amplitude of the ripple can be traded with
either the width of the transition band or the complexity
(order) of the filter, is illustrated in Fig. 2. The filter
responses for four different orders of the filter and
three different transition widths are given in the figure.
For a (16,16) filter for example, the ripple amplitude
reduces from 117 for M=1 to 47 for M=11. This trade-of{
characteristic of the ripple amplitude with transition
width makes this design somewhat superior to the
statistical design of ARMA digital filters reported in [4]

The effect of varying the number of of zeros keeping
the number of poles fixed is shown in Fig. 3. The
passband characteristics are not significantly affected by
changing the number of zero coefficients. Similarly, we
observed that the stopband characteristics are not
significantly affected by changing the number of pole
coefficients. This will provide the flexibilly to design a
filter with any desired passband and stopband
characferistics.

Finally the design of a bandpass filter is illustrated in
Fig. 8. This shows that any arbitrary filter characteristics
can be realized using the technique presented in this
paper.
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CONCLUSIONS

We have shown that pole-zero decomposition
technigue provides an effective method for desgning
ARMA digital filters. The complexity of the fitter can be
treded with the width of the transition band. By varying
the number of poles and zeros independently any desired
passband and stopband charaleristics can be achieved.
Since the roots of the resulting numerator and
denominator polynomials lie within the unit cicle in the
z-plane, the fiiter and its inverse both are gauranteed to
be stable. Therefore, if H(z) represents a lowpass filter
then 1/H(z) represnets a high pass filter. Similar

rgasoning applies for bandpass and and band elimination
filters aiso,
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Fig. 1. Design of lowpass filter with a transition width of 5 samples.
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Fig. 4. Design of bandpass filter with a transition width of 5 samples
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