
ABSTRACT 

A new technique for design of digital filters is 

presented in this paper. The technique consists of 

splitting the given tog magnitude response into two parts, 
one corresponding to the response of the numerator 

polynomial of the filter transfer function and the other 

part to the response of the denominator polynomial. The 
inverse of each of these polynomials is considered as an 

all—pole filter and the response of the all-pole filter is 
approximated by a small number of autoregressive 
coefficients. The autoregressive coefficients obtained for 
the numerator polynomial represent the zero part of the 
final filter and the coefficients obtained for the 
denominator polynomial represent the pole part of the 
final filter. With equal number of poles and zeros, the 
overall filter response can be made nearly equiripple in 
the passband and stopband. The amplitude of the ripple 
can be traded with the width of the transition band. The 
ripple characterstics can be controlled by appropriately 
choosing the number of poles and zeros of the filter. 

INTRODUCTION 

A digital filter that contains poles and zeros is termed 
as an autoregressive and moving average (ARMA) digital 
filter. This paper is concerned with the design of ARMA 

digital filters to realize a given log magnitude frequency 
response. The basic idea in the design is to split the 
given response into two componeht responses, each of 
which can be approximated by a small number of 
parameters. The reason for the success of lhis method is 
that one of the component responses is close to an 

all-pole spectrum and the other omponent response is 
close to an all-zero spectrum. Snce the inverse of an 

all-zero spectrum is an all-pole spectrum, it is possible to 
represent each of the component responses by a small 
number of parameters through lutoregressive modelling 
[1). The splitting of the gIven rsponse into an all-pole 
and an all-zero spectra is accomhshed using a pole-zero 
decomposition technique [2], whIch is based on the 
properties of the negative derivative of minimum phase 
spectra [3). 

It is generally true that a given magnitude spectrum 
can be realized by a digital filter of a much lower order 
when the filter contains both poles and zeros than when 
the filter is purely all-pole or all-zero. A lowir order 
digital filter will be of lesser complexity In terms of 
number of multiplications and additions required in Its 
implementation. Our method of design results In an ARMA 

digital filter that is of low order and stable. In addition, 
the filter has several useful characteristics. The ripple 
chracteristics can be controlled by a suitable choice of 
the number of coefficients used to represent the 
component spectra. The ampiltude of the ripple can be 
traded with the width of the transition band. Since all the 
poles and zeros of the filter lie within the unit circle in 
the z-plane, the inverse filter will have the complement 
response and will be stable. 

The emphasis in this paper is on the presentation of 
the new design technique. Issues such as the filter 
performance relative to other techniques and the 
limitations of the method are not considered here. 
Throughout the paper the notation (M1,M2) denotes an 
ARMA digital filter with Ml pole and M2 zeros. 

DESIGN PROCEDURE 

Pete-zero Decomposition 

The key idea in this paper is splitting the given log 
magnitude frequency response into two parts, one 
corresponding nearly to an all-pole filter spectrum and 
the other to an all—zero filter spectrum. This splitting is 
called pole-zero decomposition, which is based on the 
properties of the negative derivative of phase spectra 
(NDPS) of minimum phase polynomials. 

A linear digital filter 14(z) can be repreented as a ratio 
of two polynomials as follows: 

14(z)—GN(z)/D(z) (') 
where 

Ml 
N(z) — 1 + Z_a(lc) z,k krl 

-k 0(z)—i. 
and 0 is a gain term. 

The roots of the numerator polynomial are called zeros 
and the roots of the denominator polynomial are called 
poles. The oWective in filter design is to determine the 
coefficients (. (k)) and (a (K)) such that the 
magnitude-squared frequency response of 14(z) matches 
the given magnitude rospcrnse as closely as possible. in 
this paper we refer to f) as zero part and 0(z) as pole 
part of the digital filter. 
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A polynomial pa said to be mi.mum phas. if al its • COpUe the pole spectrtm P(w) and the zero 
roots lie within the unit circle in the a—plane. II alt the 

jcC 1k)) end {c(k)) respectively as 
?5rCs end poles of lz) II. within the unit circle in the oows: 
z-plane, then the filter is called a mimmum phase tiller. 
Using the properties of the negative derivatme of In Ptw) — c(0)/2 e 2 . c(k) cos kw 
minimum phase filters (2) ii is possible to separate the 
significant contributions of poles and zeros in the and 
ccmbined NOPS response of a pole-zero tslter by 
considering the positive and negative portions In Z(w) c(0)/2 + 2 _c(k) cos kw. 

respectively. Note that c(k) c(tc) — c(lc and hence P(w) 2(w) 
S(w). Filter Design 

6. Find the autocorrelation coefficients R(k) and R(I) 
Given a magnitude-squared frequency response S(w), from P(w) and if 2(w) respectively using the relations 

the objective in filter design is to determine the no 

parameters of a linear system model H(z) as given in (1) P(w) R4(0) + 2 . R (Ic) cos kw 
such that 

and t * 
l-l(w)lH(z)t(zH 1S(w). 

1/2(w) R (0) + 2 R(k) cos kw. 
Let V(w) be the Fourier transform of the minimum lc i 

phase correspondent for S(w), Then 7. Solve for the autoregressive coefficients {aftc)} and 
a (Ic)) from R (k) and tP (Ic)) respectively using 

I V(w) — S(w). Levinson's algorithm for solving the autocorrelation 
normal equations [1]. 

The steps In the design are as follows: 
8. Compute the approximate pole spectrum P(w) from 

1. Find the cepstral coefficients {c(lc)) of SIw) using the (a(k)} and the approximate zero spectrum Z(w) from 
relation 

00 

In V(w) In S(w) c(0) + 2 '. c(Ic) cos kw A Xhe overall filter response is given by H(w) 
P(w) 2(w). 

2. Compute the NDPS $(w) fromc(k)using the relation 
10. The filter H(z) is given by (1). The values of .41 

9(w) L Ic c(lc) cos kw and M2 determine the order of the titter. 
$1 

3. Split 9,(w) into positive and negative portions. DESIGN EXAMPLES 

0,(w) 
— [0(w)ç+ [O(w)], A lowpass filter with the following specifications is 

where considered for illustrating the above design procedure. 

[O,(w)]— (w) for O/w) >0, Let S(l) S(w) . 1 0)1) . . 5Il. 
— 0 , for (w) < 0 A — amplitude, and M number of transition samples. 

and Specification: 

[O,(w))— 6(w) , for 
01,(w) 

0 , tn[S(l)J — In (A) , I 0,1..99 

0 , for O,(w) 
>0 . (j-(l-99)/(M+1 In(A), I 100,101_..100+M 

4. Find he cepstral coefficients {c(k)) and {c(k)) from I 100+M+1,100+M+2,...256 

[6,(w)] and [O,(w)respectiveIy using the Fourier 
In [S(l)J — In [S(512-l)] I 257,258,511. series expansions, 

00 

[(w)f— + ic c(iccos In the above:specification the value of A determines 
the level of stopband rejection. For example, if A"lOOO, 

and then the stopbnd rejection level is 30 dB. The value of 
M determines the number of transition samples. The case 

-C + Ic c(k) cos kw of M=0 correspbnds to no sample in the transition band. 
The filter design was carried out using 512 point FF1 for 

where C is the average value, which does not computing Fourier transforms. 
contribute to the shape of the spectrum. 
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Fig. 1 iltu.tr.*is the p,inciple of the pceos fiNs, 
design. Fig. la shows the log magnitude respons of the 
desired owpass filter for A.1000, M.5. Thø NOPS Of the 
filter is shown in Fig. lb. The positive and negative 
portions of the NOt'S are separated and the 
corresponding spettrs ace computed. The resulting pole 
and zero spectra are shown in Fig. Ic. If these log 

spectra are added, we get the desired filter response 
exactly as shown in Fig. Id, On the other hand, if th, pole 
spectrum and the inverse of the zero spectrum are 

approximated by autoregressive models, each with 8 
coeflicents, the overall response of the resulting filter is 
as shown In Fig. le. in this case the peak to peak 
mplitude of the ripple is less than 81. in passband and 

stopband. 

That the amplitude of the ripple can be traded with 
either the width of the transition band or the complexity 
(order) of the filter, is illustrated in Fig. 2. The filter 
responses for four different orders of the fitter and 

three different transition widths are given in the figure. 
For a (16,16) filter for example, the ripple amplitude 
reduces from 111. for M—1 to 41 for M11. This trade-off 
characteristic of the ripple amplitude with transition 

width makes this design somewhat superior to the 
statistical design of ARMA digital filters reported in [4]. 

The effect of varying the number of of zeros keeping 
the number of poles fixed is shown in Fig. 3. The 

passband characteristics are not significantty at tetted by 
changing the number of zero coefficients. Similarly, we 
observed that the stopband characteristics are not 

significantly affected by changing the number of pole 
coefficients. This will provide the flexibilty to design a 

filter with any desired passband and stopband 
characteristics. 

Finally the design of a bancfpass filter is illustrated in 
FIg. 4. This shows that any arbitrary filter characteristics 

can be realized using the technique presented in this 

paper. 

We tev• shown that pole-zero decomposition 
tsctviiqu. provides an effective method for desgning 
ARMA thgital filters. The complexity of the filter can be 
traded with the width of the transition band. By varying the numb.r of poies and zeros independently any desired 
pasiband and stopband charateristics can be achieved. 
Since the roots of the resulting numerator and 
denominator polynomials lie within the unit dde in the 
z-plane, the filter and its inverse both are gauranteed to 
be stable. Therefore, if 14(z) represents a lowpass filter 
then l/H(z) represnets a high pass filter. Similar 
reasoning applies f or bandpass and and band elimination 
filters also. 
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Fig. 4. Design of bandpass filter with a transition width of 5 samples 

282 

30 dB 

30 dB 

5 

0 dE 

30 

dB 

ARMA (16,16) 

0 1.0 0 

pole 
jSpectrum 

zero pec rum 

Normalized frequency 
(b) NDPS of (a) 

1 .0 

0 
0 

00 

00 0 

1.00 

(c) Co.nponent 
spectra 

(c) Sum of 
component Spectra 

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on August 26, 2009 at 01:43 from IEEE Xplore.  Restrictions apply. 


