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ABSTRACT

Recognizing human faces, invariant to illumination
and facial expressions is a difficult task. This pa-
per proposes a method of face recognition using
eigen analysis on edginess-based representation of
the face. One dimensional processing of images is
used to extract the edginess of the face. Experi-
mental results show that the edginess-based repre-
sentation performs better than other edge and gray
level based representations under variation in illu-
mination and facial expressions. This paper also
discusses the effect of enhancing suitable edginess
values and elimination of first few eigenvectors on
the recognition performance.

1 Introduction

Automatic recognition of human faces is one of the
challenging problems in human-computer interac-
tion [1]-[4]. Number of methods has been used
in the literature such as geometry of facial fea-
tures [5], neural networks [1], template matching
[2], Karhunen-Loeve transform [3], Principal Com-
ponent Analysis(PCA) or eigenface [4], Fisherface
[6], eigenedges [7], eigenhills [8]. Some of these
methods are sensitive to variation in illumination
or facial expressions. The eigenhill approach cre-
ates an artificial edginess of the face. The method
proposed in this paper uses actual edginess infor-
mation of the face for face recognition. The method
of obtaining edginess and eigenedginess of a face are
discussed in Sections 2 and 3, respectively. Perfor-
mance of face recognition using transformed edgi-
ness image, effect of first few eigenvectors and vari-
ations in facial expressions are discussed in Sections
4, 5 and 6, respectively.

2 Edginess of face

To extract the edginess image of a face, computa-
tionally efficient method of one dimensional(1-D)
processing of images proposed in [9] is used. In
this method, the image is smoothed using a 1-D
Gaussian filter along the horizontal (or vertical)
scan lines to reduce noise. A differential opera-
tor (first derivative of 1-D Gaussian function) is
then used in the orthogonal direction, i.e., along
the vertical (or horizontal) scan lines to detect the
edges. This method differs from the traditional
approaches based on 2-D operators in the sense
that smoothing is done along one direction and the
differential operator is applied along the orthogonal
direction. The traditional 2-D operators smooth
the image in all directions, thus resulting in smear-
ing of the edge information.

The smoothing filter is a 1-D Gaussian filter, and
the differential operator is the first order derivative
of the 1-D Gaussian function. The 1-D Gaussian
filter is given by
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where o9 is the standard deviation of the Gaussian
function. The smoothing filter and differential op-
erator are shown in Fig.1. The values of o1 and o9
decides the spatial extent of these 1-D filters. In
this study, the values of o1 and o9 are chosen to be
0.3 and 0.6 respectively, although these values are
not critical.
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Figure 1: (a) Gaussian function in the horizontal di-
rection (smoothing filter) and (b) first derivative of
Gaussian function in the vertical direction (differen-
tial operator).

The response of the 1-D Gaussian filter applied
along a particular scan line of an image in one di-
rection (say, along the horizontal scan line y, of
pixels) can be expressed as

h(xayr) = i(xayr) * g("I") (3)

where * denotes the 1-D convolution operator, g(x)
represents the 1-D Gaussian filter, i(z,y,) repre-
sents the r'* row of the image i, and h(z,y,) is the
corresponding filter response. The response is com-
puted for all rows in the image to obtain h(z,y).
For the 1-D Gaussian filter output h(z,y), obtained
using (3) for all the rows, the differential opera-
tor is applied along each column z. to extract the
edges oriented along the horizontal lines of the pix-
els. The result is given by

f(ze,y) = h(ze,y) * c(y) (4)

where ¢(y) is 1-D differential operator ,and h(z.,y)
denotes the ¢"* column in the 1-D Gaussian fil-
tered image h(z,y). The resulting image f(z,y),
obtained by applying (4) for all columns, produces
the horizontal components of edginess (strength of
an edge) in the image. Similarly, the vertical com-
ponents of edginess are derived by applying the 1-D
smoothing operator along all the vertical scan lines
of the image and further processing with the 1-D
differential operator along the horizontal scan lines
of pixels. Finally, the partial edge information ob-
tained in both the horizontal and vertical directions
are added to extract the edginess map of the origi-
nal image.

Fig.2 shows a gray level image, binary edge im-
age and edginess image of a face. It is obvious
that the edginess image carries more information

which is missing in the binary edge image. The
edginess of a pixel in an image is identical to the
magnitude of the gradient of the gray level func-
tion, which corresponds to the amount of change
across the edge. Hence capturing directly the grad-
ual variation present in a facial image is better and
accurate than constructing the edginess image ar-
tificially from the edge image of the face.

Grey level image

Edge image

Edginess image
Figure 2: Different representations of facial image.

3 Eigenedginess

Consider a set of P sample images IZ ., p = 1,
2, ..., P, with resolution rxc. The pixels in the
image are vectorized into a N-dimensional vector
Xp, p=1,2, ..., P, where N =r x c. The vectors
obtained in this manner from all the P sample
images can be denoted as X = {x1,x92,...... ,Xp}.
For a given set of N-dimensional vector representa-
tion of faces, principal component analysis (PCA)
can be used to find the subspace whose basis
vectors correspond to the directions of maximum
variance in the original space. Let W represent
the linear transformation that maps the original
N-dimension space onto a M-dimension feature
subspace, where M << N. This yields a set of
projection vectors, ypeRM, where y, = WTxp,
p = 1,...,P. The columns of W are the M
eigenvectors e; corresponding to the first M
eigenvalues obtained by solving the eigen equation,
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is the covariance matrix, A; is the eigenvalue as-
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Reduced dimension representation of the edgi-
ness image of a face is determined using the
PCA technique. Eigenvectors of the covariance
matrix of the edginess images are referred as
eigenedginess. Images of 40 individuals were used
for experimental studies, with three face samples
for each individual with different illumination
conditions. The face images from the database



were manually cropped and scaled to a fixed size
of 35x35, to exhibit only the features of the face
necessary for recognition. Only one image per in-
dividual, obtained with natural lighting condition,
is used in the training set. The test set consists of
two images per individual, one illuminated from
the left and the other from the right side. The
recognition performance of eigenface, eigenedge,
eigenhill and eigenedginess are shown in Table 1.
It shows that the performance of eigenedginess is
significantly better compared to the other three
methods. From these results, it appears that
edginess-based representation is more robust to
variation in illumination than the other three
representations of face.

Category Faces recognized
(out of 80)
Eigenface 14
Eigenedge 24
Eigenhill 21
Eigenedginess o6

Table 1: Results of eigen analysis.

4 Transformed edginess

The discriminatory information for faces is mostly
present in the gradual variation in a face, which is
reflected in the low edginess values of the face. The
transformation function as shown in Fig.3 is used
to deemphasize high values of edginess and at the
same time preserve the low edginess values. The
shape of the function can be determined from the
histogram of the edginess images. This transforma-
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Figure 3: Transformation function used to enhance
suitable edginess values.

tion function can be viewed as a combination of 3

parts, where the transformation of the edginess val-
ues less than z1 is of sigmoidal type, edginess values
between z; and z9 is of linear type, and edginess
values greater than z9 is again of sigmoidal type.
This is expressed as
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where 0 < e < 1 is the normalized edginess value,
A1 and Ay are the slope parameters, #; and 6y are
the positional parameters, and m and ¢ are param-
eters for the linear part. These parameters can
be derived by imposing the conditions: 7'(0)=ys,
T(z1)=y1, T(z2)=y2 and T'(1)=y4. Given z1, x2,
Y1, Y2, Y3 and y4, the parameters of T'(e) are given
as:
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Experimental results show that this kind of trans-
formation function provides improvement in the
recognition performance while using fewer princi-
pal components or eigenvectors.

5 Effect of the first few eigenvectors

Pentland et al [10] have shown that the perfor-
mance of face recognition improves when the first
three eigenvectors are ignored. This is because the
first three eigenvectors seem to represent variation
due to illumination. The performance of face recog-
nition on different representations after eliminating
the first few eigenvectors are given in Table 2. This
study is performed on 80 faces with variation in illu-
mination. The results show that the performance of
eigenedginess is significantly better than the other
representations.



Eigen vectors | Eigen | Eigen | Eigen | Eigen
eliminated face | edge hill | edginess
0 14 24 21 56
1 29 26 23 56
2 30 25 20 66
3 27 24 17 62
4 26 21 19 57
5 28 23 15 o6

Table 2: Results of eigen analysis on different repre-
sentations by eliminating first few eigenvectors.

6 Recognition performance due to varia-
tion in facial expressions

In this study, a separate set of faces of 100 indi-
viduals taken from the standard FERET database
is considered for evaluating the recognition per-
formance on various representations. The subset
of these faces having normal facial expressions are
used for training and the remaining faces having
variation in facial expressions are used for testing.
The recognition performance on different represen-
tations are shown in Table 3. It can be observed
that the performance of the eigenedginess is bet-
ter than eigenhill and eigenedge, and is comparable
with that of the eigenface.

Category %
Eigenedginess | 93

Eigenhill 7
Eigenedge 47
Eigenface 94

Table 3: Results of eigen analysis on a dataset having
variation only in facial expression.

7 Summary

In this paper, the concept of edginess of an image
is introduced for the purpose of face recognition,
which is invariant to illumination and facial ex-
pressions. Experimental results show that edginess-
based representation for face recognition performs
significantly better than eigenface, eigenedge and
eigenhill representations.  Performance of face
recognition using transformed edginess image and
the effect of first few eigen vectors are also dis-
cussed.
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