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ABSTRACT
In this paper, we propose a hidden Markov model based approach
to capture the effects of core articulatory changes that occur in the
speech production mechanism. The changes that are integralto
the production of a given sound unit, and must be exercised byall
speakers for producing that sound, are considered asevents. In this
approach, the events are interpreted from a suitable subsetof the
state sequences of a hidden Markov model. An event is associated
with a probability value, and a label to represent the significance
and the nature of the event, respectively. Using this approach, a
given sound unit can be represented as a sequence of events. The
consistency of the sequence of events across different speakers is
demonstrated by performing digit recognition experiments. It is to
be noted that the objective of these experimental studies isnot to
develop a recognition system, but to provide an event-basedinter-
pretation for the speech signal through a subset of state sequences
of the hidden Markov model.

Keywords
Event, hidden Markov model, state transition sequence, event prob-
ability sequence, isolated digit recognition.

1. INTRODUCTION
Speech can be considered as a sequence of events, where an

event can be interpreted as change in some characteristics of the
speech production reflected in the speech signal. The eventsoc-
curring in the speech production process can be viewed at various
levels such as signal level, production level, acoustic level, phonetic
level, sound unit level, suprasegmental level, speaker level and lan-
guage level. In this work, we propose a hidden Markov model
based approach to detect the commonly occurring events across the
speakers, at production and acoustic levels, while uttering a given
sound unit.

At production level, speech may be characterized in terms of
production features such as voicing, aspiration, frication and burst.
Onset of any of these features and change from one feature to the
other may be treated as events at the production level. The char-
acteristics of the vocal tract (acoustic) system depends onposition-
ing of various articulators, which in turn decides the type of speech
sound produced. The changes in the positioning of articulators may
be treated as events at the acoustic level. For instance, during the
production of bilabial sounds, opening of lips from initialclosure is
an event. Though some of these events are speaker-specific, there
exist certain core events that should occur commonly acrossspeak-
ers while producing a given sound unit. For example, during the
production of consonant-vowel/ba/ one has to necessarily close

lips. At the perception level also, human beings do not convert a
speech signal continuously into subwords or words as automatic
speech recognition systems attempt to do. Instead, human beings
seem to detect acoustic and auditory evidences, weigh them and
combine them to form cognitive hypothesis, and then validate the
hypothesis until consistent decisions are reached. This process has
been successfully demonstrated in spectrogram reading by experts
trained in acoustic-phonetics [1]. Hence, speech production and
perception mechanisms of human beings function mainly on cer-
tain important events that are present in the speech signal.Based
on these two aspects, the efforts for development of an automatic
speech recognition system have resulted in two different directions
of speech research.

Most of the speech recognition systems concentrate on recog-
nizing what a human being actually perceives from a speech sig-
nal. Since the human perception mechanism is less understood,
the research in this area is mainly concerned about buildingstatis-
tical models for the subword units like phoneme or syllable,and
then using syntactic and semantic constraints to recognizewords
and sentences. In spite of reasonable success, these methods are
often criticized for having little relation to the actual human way
of speech production/perception [2]. On the other hand, themo-
tivation for structural representation of the speech comesfrom the
theory of articulatory phonology [3]. In this approach, thevocal
tract activity during speech production is decomposed intodiscrete,
recombinable atomic units. Compared to traditional approaches
based on phone models and syllable models, structural approach
is more concrete physiologically, and offers a compact means of
representing the speech signal [4]. A major drawback is thatthe
speech signal collected through a microphone alone is not enough
to detect these gestures. The present methods for direct articulatory
measurements are strongly dependent on X-ray techniques, such
as cineradiography of human head during speech production [5].
Accurate estimates of articulatory measurements may not bere-
quired for applications like speech recognition, because of the inter
speaker variations in the articulatory measurements. Instead, the
articulatory information expressed in terms of highly quantized ab-
stract classes (voicing, lip rounding, nasality, etc.) is widely used
in speech recognition systems.

Several approaches have been proposed to bridge the gap be-
tween acoustic and articulatory modeling techniques in thecontext
of speech recognition. A statistical approach to automaticspeech
recognition using the atomic speech units constructed fromover-
lapping articulatory features is proposed in [6]. The overlapping
articulatory feature model aims at constructing a multidimensional
hidden Markov model (HMM), whose states can be made to di-
rectly correspond to the symbolically coded, phonologically con-
trastive articulatory structure responsible for generating acoustic



observations from the states [2]. In [7], Kirchhooff et al.,demon-
strated a system based on artificial neural networks to estimate
gross articulatory features (voicing, lip rounding, placeand man-
ner of articulation) from acoustic features. In this paper,we pro-
pose a method to explore a suitable subset of state sequencesof
HMM that may bring out some characteristics of events related to
the speech production process. This paper is organized as follows.
A brief overview of the traditional HMM based approaches anda
method to detect the events from the state sequences of HMM is
presented in Sec. 2. Isolated digit recognition experiments con-
ducted to evaluate the consistency of the events obtained bythe
proposed method are reported in Sec. 3. In Sec. 4, an efficientway
of detecting the events using the partial observation sequence is de-
scribed. The scope of the work and some of the possible extensions
are discussed in Sec. 5.

2. EVENT DETECTION USING HMM
The speech production mechanism is guided by an inherent sys-

tem which constrains the articulatory movements during thepro-
duction of sound units. As a result, we cannot produce a given
sound unit with an arbitrary sequence of articulatory positions.
There exist some core sequence of articulatory movements (events)
that should commonly occur across speakers while pronouncing a
given sound unit. We cannot observe these events in the samples
of speech signals because the fluctuations in the raw data make it
difficult to interpret any change as an event. At the feature level
too, where a feature vector is derived from a block of samples, it is
difficult to distinguish between events and nonevents. Information
present in the speech signal is mainly due to the sequence of frames
rather than due to any particular frame in isolation. Although, the
spectral content of the speech signal may include frequencies up
to several thousand Hertz, the articulatory configuration (the vocal
tract shape, velum, tongue, lip movements etc.) may not undergo
dramatic changes more than ten times per second on the average. It
is reasonable to assume that there exist stable states in thespeech
production process, and gradual transitions occur betweenthese
stable states. Under these conditions, the HMM is a better choice
to capture the unknown (hidden) state sequence from the observed
sequence of feature vectors.

The HMM can be considered as a Markov model in which the
observation is a probabilistic function of the state [8]. The HMM
can be described by the parameter setλ = (Π,A, B), whereΠ
defines the initial state probability,A = [aij ], denotes the prob-
ability of making a transition from statei to statej, B defines
the distribution of feature vectors in each state. The parameter
set λ can be estimated using Baum-Welch algorithm [8]. Once
the parameters of the HMM are evaluated using the training data,
the likelihood P (O/λ) with which a test observation sequence
O = (o1,o2, . . . ,oT ) is obtained from a given modelλ is com-
puted as either sum or maximum over all possible state sequences.
This is given below:

• Sum over all the possible state sequences,

P (O/λ) =
X

q1q2...qT

P (q1q2 . . . qT o1o2 . . .oT /λ)

• Maximum over all the possible state sequences,

Pmax(O/λ) = max
q1q2...qT

P (q1q2 . . . qT o1o2 . . . oT /λ)

At a gross level, the computation ofP (O/λ) andPmax(O/λ) cor-
responds to the two extreme cases. The computation ofP (O/λ)

incorporates all the possibleNT state sequences, whereas the com-
putation ofPmax(O/λ) considers only the optimal state sequence
(one amongNT possibilities). It is always more meaningful to
consider a subset of theseNT state sequences (suboptimal state
sequences), and observe any commonality among them [9]. This
paper attempts to explore any (hidden) sequence of events that may
be present in the sequence of states, and not directly from the sam-
ples of the speech signal.

2.1 Exploring events in the sequence of states
As described earlier, we assume the speech production process

to stay in somewhat stable states and make gradual transitions be-
tween these stable states. Our main goal is to capture the nature
and the time instants of these transitions, which we call asevents.
The key idea in capturing the events is that, the gross natureof the
event sequences obtained for a given word is expected to be similar
across speakers, though there may be some missing and spurious
events. We define a variableηp

t (i, j) as follow:

ηp
t (i, j) = P (qt−p = i, qt−p+1 = i, . . . , qt = i, qt+1 = j,

qt+2 = j, . . . , qt+p+1 = j/O, λ) (1)

Here, thep in the superscript refers to consideration ofp additional
frames before and after the transition. We refer top as support
given for the stable state before and after the occurrence ofthe event
at timet. The termηp

t (i, j) can be written as

ηp
t (i, j) = αt−p(i)a

p

iibi(ot−p+1)bi(ot−p+2) . . .

bi(ot)aijbj(ot+1)bj(ot+2) . . .

bj(ot+p+1)a
p

jjβt+p+1(j)/P (O/λ) (2)

whereα and β are the forward and backward variables respec-
tively [8]. We define one more variableep

t , similar to that of Viterbi
maximization in HMM, as

ep
t (k, l) = max

i,j
ηp

t (i, j), i 6= j, (3)

where

(k, l) = arg max
i,j

ηp
t (i, j), i 6= j. (4)

Here,ep
t (k, l) represents the probability with which there can be

transition between the stable statesk to l, with a support ofp frames
for the stable states, at the time instantt. We callep

t (k, l) as the
event probability. A large value ofep

t indicates the presence of
an event, and the corresponding(k, l) indicates the state transition
responsible for the event. The nature of the event is specified by
(k, l), and the intensity of the event is specified by the value ofep

t .
During the speech production process, gradual transitionsoccur

between the stable articulatory positions. Hence we cannotexpect
any abrupt changes in the speech signal. Instead, the changes that
occur in the speech signal are continuum in nature. Hence we hy-
pothesize an event at every frame in the speech signal, and evaluate
the probability of the eventep

t and the nature of the event(k, l) that
indicates transition from statek to statel. Therefore, at a higher
level of abstraction, a given speech signal is represented with an
event probability sequences and a state transition sequence. The
event probability value is used to decide presence or absence of the
event.

In this method of event detection, we have assumed an ergodic
HMM, where the transition from present state to any state is al-
lowed with a nonzero probability. Though the ergodic HMM is
popular among text-independent speaker recognition studies [10],
it is not commonly used in speech recognition studies. The er-
godic HMM is used in text-independent speaker recognition be-
cause each state is expected to capture a broad phonetic category,



and any phonetic category can follow any other depending on the
sentence uttered. On the other hand in speech recognition where the
models are typically built on subword units like syllable/phoneme,
whose signal properties change over time, the left-right model is
more suitable since the state index increments with the time[8].
However, the ergodic model is more suitable for the proposedevent
detection method for the following reasons. If a left to right model
is used instead, the state transition probabilities[aij ] for j < i are
zero, and the only possible transition from statei is to statei + 1.
Hence, the state transition sequence obtained consists of only the
adjacent transitions(i, i + 1) irrespective of the sound unit, which
may be inadequate to capture the salient events in the speechutter-
ance.

3. EXPERIMENTAL EVALUATION OF
EVENT-BASED ANALYSIS

The TI isolated digit database was used to evaluate the consis-
tency among the events obtained across different speakers for a
given word. The vocabulary consists of 11 words, namely, the10
digits and “oh”. In the experimental studies, we have considered
only the 10 digits and omitted “oh”. In the present studies, we have
used the utterances from only the male speakers in the database.
There are 111 male speakers, divided into training set (55 speakers)
and test set (56 speakers). Each person spoke 20 utterances,con-
sisting of 2 tokens from each of the 10 digits in isolation. Therefore,
the training set consists 110 repetitions per digit and the testing set
consists of 112 repetitions per digit. All the digit utterances were
sampled at 8 kHz. The first 8 MFCCs other than the zeroth value
(average of log-spectral values) and their derivatives areused as
features to represent the information in the speech signal.A five
state ergodic HMM with two mixtures per state is used to model
the sequence of feature vectors extracted from the speech signal.
One HMM is trained for each digit using the examples of that digit.

Once the HMM is trained, for every digit utterance in the training
set, the Event Probability Sequence (EPS) and the State Transition
Sequence (STS) are obtained as explained in Sec. 2. The valueof p
is arrived at empirically after some preliminary experimental stud-
ies. A small value ofp may produce several spurious peaks. On
the other hand, asp is increased, fewer probabilities are used in the
summation of (2), and hence the results may become unreliable. A
value ofp = 7 is used throughout the remaining part of experimen-
tal studies. The event sequences obtained for the training utterances
are used as reference during testing phase. The EPSs and the STSs
for the digit oneuttered by five speakers, when tested against the
HMM developed for the digitone, are shown in Fig. 1. The STSs
are consistent across the five utterances spoken by different speak-
ers, except for a few missing and spurious transitions. The EPSs
for the digitsone, two, three, four andfiveuttered by same speaker,
when tested against the HMM developed for digitone, are shown in
Fig. 2. The STS obtained for the digitoneis different from the STS
obtained for the other digits. Therefore, the STS is a representative
of a digit, and hence can be used for digit recognition.

3.1 Matching the sequence of state transitions
In this study, Levenshtein distance [11] was used as a measure

of similarity between two event sequences. Levenshtein Distance
(LD) or edit distance between two strings is defined as minimum
number of point mutations needed to transform one string to an-
other string, where a point mutation can be either insertion, dele-
tion or substitution. Digit recognition experiments were conducted
using the LD as measure of similarity between the reference and
test STSs. The testing process of event based digit recognition is
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Figure 1: Event probability sequence for the digitone uttered
by five speakers, when tested against model for digitone. The
probability value is plotted on logarithmic scale. The state tran-
sition (k − l) responsible for the event is also indicated. The
vertical lines indicate the span of a particular state transition.

shown in the form of block diagram in Fig. 3. The STS obtained
for the test utterance is matched against each of the reference STS.
The accumulated score over all the reference utterances is used to
make the decision. Thek-best recognition performance of the LD
based transition sequence matching for isolated digit recognition is
given in Table 1. It has been observed thatnine was recognized as
eitherone, three or five in 50% of the cases, andtwo was recog-
nized aszero in 25% of the cases. From Table 1, it can be seen that
though the 1-best recognition performance is only 86%, the 2-best
performance is 96%, showing that there is a consistency among the
STSs that are obtained across different speakers.

Though the STSs are consistent among different utterances of
the same digit and inconsistent among utterances of different dig-
its, the values of the event probabilities are at the same level in both
the cases (see Fig. 1 and Fig. 2). Hence the EPSs do not provide
any complementary information to improve the performance of the
recognition system. This is because of our definition ofηp

t (i, j)
given by (2), where we divide the probability of having a transition
between two stable statesi andj at time instantt by P (O/λ), the
probability of the observation sequenceO given the modelλ. If the
test observation sequence is actually generated by the model, then
both the numerator and the denominator of (2) are high, resulting
in a value around one. If the test observation sequence is notgen-
erated by the model, then both the numerator and the denominator
are small, resulting again in a value around one. If the probability
of having a transition is not normalized byP (O/λ), the computa-
tion of ηp

t (i, j) depends on the length of the observation sequence.
To overcome this computational limitation, we propose an event
detection method based on the partial observation sequence.
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Figure 2: Event probability sequences for the digitsone, two,
three, four and five uttered by the same speaker, when tested
against model for digitone.
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Figure 3: Block diagram for testing process of event based
digit recognition

4. EXPLORING EVENTS IN PARTIAL OB-
SERVATION SEQUENCE

From the previous discussion on the event-based approach, it can
be understood that the events are localized in time. In otherwords,
an event occurring at a time instantt is mainly influenced by the
symbols in its immediate neighborhood rather than the symbols
away from it. Hence, it is better to explore the events withina
partial observation sequence rather than considering the entire ob-
servation sequence. In this approach, we computeηp

t (i, j) over
a partial sequence of2(p + r) frames, wherep is the number of
frames supporting the stable state, andr is the number of frames
allowed on either side of the stable states which can be emitted by
any state in the model. Henceηp

t (i, j) is modified as

ηpr
t (i, j) = P (q1, . . . , qr, qr+1 = i, . . . , qr+p = i,

qr+p+1 = j, . . . , qr+2p = j, qr+2p+1, . . . ,

q2(r+p),o1, o2, . . . ,o2(r+p)/λ) (5)

The value ofηpr
t (i, j) can be evaluated in a computationally ef-

ficient way by using the locally defined forward variable and
backward variable on the partial observation sequenceO =
(o1,o2, . . . ,o2(p+r)). Since a fixed number of observation sym-
bols is involved in the computation of theηpr

t (i, j), it does not
depend on the length of the observation symbol sequence. More-
over, since we are not dividing byP (O/λ) term in the computation
of ηpr

t (i, j), a clear evidence can be observed, for genuine cases,
from the EPSs. Therefore, the EPS obtained from this computation
can be used along with the STS to further improve the recogni-
tion performance. By allowing self transition in the computation
of epr

t , we can segment the speech signal into stable and transition
regions. Fig. 4 shows the EPSs computed from partial observation
sequences for digitoneuttered by five speakers when tested against
the modelone. The regions marked by self transitions (i − i) cor-
respond to the stable regions, and the regions marked by the tran-
sition between two different states (i − j and i 6= j) correspond
to transition regions. The EPSs computed from partial observation
sequence for the digitsone, two, three, four andfive when tested
against the modelone, are shown in Fig. 5. In Fig. 4, the event
probability values are high and the STSs are similar across the two
repetitions of the digitoneby different speakers. Hence, the event
probability values can be used along with the STS for recognition
purpose.
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Figure 4: Event probability sequences computed from partial
observation sequence for the digitone uttered by five speakers
when tested against model for digitone.

4.1 Event probability sequences for digit
recognition

Digit recognition studies are performed using the EPSs of tran-
sition regions. Since we are interested in the events (core changes),
we have not considered the stable regions. With in a transition re-
gion, we have considered only the point where the event probability
value is maximum. The product of the maximum event probability
values of all the transition regions in a digit is consideredas the
confidence score. In this method of scoring, an average recogni-
tion performance of 94% was obtained. Thek-best performance
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Figure 5: Event probability sequences computed from partial
observation sequence for the digitsone, two, three, four and
five when tested against model for digitone.

analysis based on the EPSs is given in the Table 1. In this case
it has been observed thatnine was recognized asfive in 19% of
the times, and was not confused withone. The recognition per-
formance can be improved by combining the evidences from EPSs
and the STSs.

The confidence scoresCs andCp obtained using the STSs and
the EPSs, respectively, are combined using a linear weighted sum,
given byCc = aCs + (1 − a)Cp. The parametera(< 1) governs
the weighting given the individual scores. Here, a value ofa = 0.5
is used to combine the evidences. Thek-best performance analy-
sis is given in the Table 1. By combining the evidences from the
STSs and the EPSs, an average performance of 97% was obtained,
which is significantly better than both of the individual systems.
This shows that the STS along with the EPS provide unique signa-
ture for a given sound unit.

Table 1: k-best performance digit recognition for state transi-
tion sequence (STS), event probability sequence (EPS) and com-
bined system.

STS EPS CombinedDigit
k=1 k=2 k=1 k=2 k=1 k=2

1 98 100 95 100 99 100
2 66 92 95 98 96 98
3 97 100 98 100 99 100
4 90 99 99 100 99 100
5 77 96 100 100 100 100
6 97 99 87 97 99 100
7 88 99 93 98 96 99
8 93 96 97 98 97 98
9 47 82 79 100 82 100
0 99 100 98 99 100 100

5. SUMMARY AND CONCLUSION
This paper describes a probabilistic approach to examine a sub-

set of the state sequences in the HMM to determine if they can be
interpreted in terms of sequence of some events. The intention is
to eventually relate these sequences of events to some key articula-
tory movements in the speech production process. The sequence
of events is detected by computing the probability of makinga
transition between two hidden states with a support ofp frames
on either side of the transition. Experimental results on isolated
digit recognition indicate that the event sequences (STS along with
the corresponding EPS) represent a given sound unit at a higher
level of abstraction. Since the event sequences appear to becon-
sistent across different speakers, it will be interesting to provide an
acoustic-phonetic or articulatory description of the events by ana-
lyzing speech signal in the regions around the events.
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