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ABSTRACT

In this paper, we propose a hidden Markov model based approac
to capture the effects of core articulatory changes thatioiecthe
speech production mechanism. The changes that are integral
the production of a given sound unit, and must be exerciseallby
speakers for producing that sound, are considereasts In this
approach, the events are interpreted from a suitable salfsbe
state sequences of a hidden Markov model. An event is assdcia
with a probability value, and a label to represent the sigaifce
and the nature of the event, respectively. Using this amproa
given sound unit can be represented as a sequence of evémas. T
consistency of the sequence of events across differenkepes
demonstrated by performing digit recognition experimeittss to

be noted that the objective of these experimental studiestiso
develop a recognition system, but to provide an event-baged
pretation for the speech signal through a subset of stateesegs

of the hidden Markov model.
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lips. At the perception level also, human beings do not cdrae
speech signal continuously into subwords or words as automa
speech recognition systems attempt to do. Instead, humagsbe
seem to detect acoustic and auditory evidences, weigh timein a
combine them to form cognitive hypothesis, and then vatidae
hypothesis until consistent decisions are reached. Thisess has
been successfully demonstrated in spectrogram readinggsrts
trained in acoustic-phonetics [1]. Hence, speech prodociind
perception mechanisms of human beings function mainly on ce
tain important events that are present in the speech sifgaded
on these two aspects, the efforts for development of an attom
speech recognition system have resulted in two differenetctions

of speech research.

Most of the speech recognition systems concentrate on fecog
nizing what a human being actually perceives from a speegh si
nal. Since the human perception mechanism is less unddrstoo
the research in this area is mainly concerned about builstiatis-
tical models for the subword units like phoneme or syllalaled
then using syntactic and semantic constraints to recogmares
and sentences. In spite of reasonable success, these metieod
often criticized for having little relation to the actual han way
of speech production/perception [2]. On the other hand,ntloe
tivation for structural representation of the speech cofrms the
theory of articulatory phonology [3]. In this approach, thecal
tract activity during speech production is decomposeddigorete,

Speech can be considered as a sequence of events, where af¢combinable atomic units. Compared to traditional apgnea

event can be interpreted as change in some characteri$ttbe o
speech production reflected in the speech signal. The ewvents
curring in the speech production process can be viewed atugr
levels such as signal level, production level, acoustiellgghonetic
level, sound unit level, suprasegmental level, speaket lawd lan-
guage level. In this work, we propose a hidden Markov model
based approach to detect the commonly occurring eventssatire
speakers, at production and acoustic levels, while utiesigiven
sound unit.

At production level, speech may be characterized in terms of
production features such as voicing, aspiration, fricatiad burst.
Onset of any of these features and change from one featuheto t
other may be treated as events at the production level. Tae ch
acteristics of the vocal tract (acoustic) system dependgsosition-
ing of various articulators, which in turn decides the typemeech
sound produced. The changes in the positioning of artiotgahay
be treated as events at the acoustic level. For instancegdine
production of bilabial sounds, opening of lips from initchbsure is
an event. Though some of these events are speaker-spdwfie, t
exist certain core events that should occur commonly agpsak-
ers while producing a given sound unit. For example, durhey t
production of consonant-vowghba/ one has to necessarily close

based on phone models and syllable models, structural agipro
is more concrete physiologically, and offers a compact rmesn
representing the speech signal [4]. A major drawback is timat
speech signal collected through a microphone alone is ratgin
to detect these gestures. The present methods for dirextlatory
measurements are strongly dependent on X-ray techniqueh, s
as cineradiography of human head during speech producspn [
Accurate estimates of articulatory measurements may natbe
quired for applications like speech recognition, becadskeinter
speaker variations in the articulatory measurements.e&astthe
articulatory information expressed in terms of highly qtized ab-
stract classes (voicing, lip rounding, nasality, etc.) idedy used
in speech recognition systems.

Several approaches have been proposed to bridge the gap be-
tween acoustic and articulatory modeling techniques irctmgext
of speech recognition. A statistical approach to autonmsech
recognition using the atomic speech units constructed fooer-
lapping articulatory features is proposed in [6]. The oapging
articulatory feature model aims at constructing a multigirsional
hidden Markov model (HMM), whose states can be made to di-
rectly correspond to the symbolically coded, phonolodycabn-
trastive articulatory structure responsible for genegtacoustic



observations from the states [2]. In [7], Kirchhooff et @lemon- incorporates all the possiblg” state sequences, whereas the com-
strated a system based on artificial neural networks to agim  putation of Pnax(O/X) considers only the optimal state sequence
gross articulatory features (voicing, lip rounding, plased man- (one amongNT possibilities). It is always more meaningful to
ner of articulation) from acoustic features. In this papee, pro- consider a subset of thegé” state sequences (suboptimal state
pose a method to explore a suitable subset of state sequehces sequences), and observe any commonality among them [9% Thi
HMM that may bring out some characteristics of events relabe paper attempts to explore any (hidden) sequence of evattenty

the speech production process. This paper is organizedlas$o be present in the sequence of states, and not directly frersaim-

A brief overview of the traditional HMM based approaches and  ples of the speech signal.

method to detect the events from the state sequences of HMM is 2 lori inth f
presented in Sec. 2. Isolated digit recognition experimeuin- .1 Exploring eventsin the sequence of states

ducted to evaluate the consistency of the events obtainetheby As described earlier, we assume the speech productiongsoce

proposed method are reported in Sec. 3. In Sec. 4, an effizEnt to stay in somewhat stable states and make gradual trarsiie-

of detecting the events using the partial observation sezpies de- tween these stable states. Our main goal is to capture theenat

scribed. The scope of the work and some of the possible éatens  and the time instants of these transitions, which we cathasts

are discussed in Sec. 5. The key idea in capturing the events is that, the gross nafute
event sequences obtained for a given word is expected tortlaisi
across speakers, though there may be some missing anduspurio

2. EBVENT DETECTI ON USI NG HM M. events. We define a variabig (i, j) as follow:

The speech production mechanism is guided by an inherent sys o _ _ ) '
tem which constrains the articulatory movements duringpttee n;(4,5) = Pq—p =1, Gr—pt1 =14,...,q¢ =1, qe41 = J,
duction of sound units. As a result, we cannot produce a given Gt+2 =Jy- s Qep+1 = 5/O, A) 1)

sound unit with an arbitrary sequence of articulatory poss.
There exist some core sequence of articulatory movemevest®
that should commonly occur across speakers while pronagresi
given sound unit. We cannot observe these events in the sampl
of speech signals because the fluctuations in the raw data iak
difficult to interpret any change as an event. At the featexell n(4,7) = ocu—p(i)al;bi(or—pr1)bi(0i—pt2) ...
too, where a feature vector is derived from a block of samplés
difficult to distinguish between events and nonevents.rmédion

Here, thep in the superscript refers to consideratiorpaddditional
frames before and after the transition. We refemptas support
given for the stable state before and after the occurrentreavent
at timet. The termn? (¢, j) can be written as

bi(0¢)aijbj(0t+1)bj(0t+2) . ..

present in the speech signal is mainly due to the sequencarés bj(0ttp+1)af;Be+p+1(7)/P(O/A) @

rather than due to any particular frame in isolation. Altbbuthe wherea and 3 are the forward and backward variables respec-

spectral content of the speech signal may include freqeengp tively [8]. We define one more variabi€, similar to that of Viterbi

to several thousand Hertz, the articulatory configurattbe gocal maximization in HMM, as

tract shape, velum, tongue, lip movements etc.) may notrgode » b o

dramatic changes more than ten times per second on the avdirag et (k1) = Hax (@,7), i # 7, @)

is reasonable to assume that there exist stable states apé¢ieeh

production process, and gradual transitions occur betwkese where

stable states. Under these conditions, the HMM is a betigiceh (k,1) = argmaxny (4,7), i J. (4)

to capture the unknown (hidden) state sequence from thenaase !

sequence of feature vectors. Here, ef (k, 1) represents the probability with which there can be
The HMM can be considered as a Markov model in which the transition between the stable statets /, with a support op frames

observation is a probabilistic function of the state [8].€THMM for the stable states, at the time instantWe call ef'(k, 1) as the

can be described by the parameter set= (II, A, B), wherell event probability. A large value oé_f indicates the presence of

defines the initial state probability\ = [a;], denotes the prob- ~ an event, and the correspondif¥g !) indicates the state transition

ability of making a transition from statéto statej, B defines responsible for the event. The nature of the event is spedije

the distribution of feature vectors in each state. The patam  (k,[), and the intensity of the event is specified by the value]of
set A can be estimated using Baum-Welch algorithm [8]. Once  During the speech production process, gradual transitieosr
the parameters of the HMM are evaluated using the trainittg,da  between the stable articulatory positions. Hence we cagwuect
the likelihood P(O/)) with which a test observation sequence any abrupt changes in the speech signal. Instead, the chémae

O = (01,09,...,0r) is obtained from a given model is com- occur in the speech signal are continuum in nature. Henceywe h
puted as either sum or maximum over all possible state seggen ~ Pothesize an event at every frame in the speech signal, ahcbés
This is given below: the probability of the event! and the nature of the eve(t, () that
indicates transition from statle to statel. Therefore, at a higher
e Sum over all the possible state sequences, level of abstraction, a given speech signal is represenitdam
event probability sequences and a state transition sequehice
P(O/A)= > P(qig2...qr0102...01/)) event probability value is used to decide presence or absgfithe
q192...9T event.
) ) In this method of event detection, we have assumed an ergodic
e Maximum over all the possible state sequences, HMM, where the transition from present state to any state-is a

lowed with a nonzero probability. Though the ergodic HMM is
popular among text-independent speaker recognition esy{dio],

it is not commonly used in speech recognition studies. The er
At a gross level, the computation O /\) and Pnax(O/)) cor- godic HMM is used in text-independent speaker recognitien b

responds to the two extreme cases. The computatid®(a¥/\) cause each state is expected to capture a broad phonetipigate

Pnax(O/A) = max P(qig2...9r0102...07/X)
q2...9T7

q1



and any phonetic category can follow any other dependinghen t
sentence uttered. On the other hand in speech recognitierethe
models are typically built on subword units like syllablegmeme,
whose signal properties change over time, the left-rightiehds
more suitable since the state index increments with the {Bhe
However, the ergodic model is more suitable for the propasent
detection method for the following reasons. If a left to tigiodel
is used instead, the state transition probabilities| for j < ¢ are
zero, and the only possible transition from state to state; + 1.
Hence, the state transition sequence obtained consistsiytie
adjacent transition&i, ¢ + 1) irrespective of the sound unit, which
may be inadequate to capture the salient events in the spéech
ance.

3. EXPERIMENTAL EVALUATION OF
EVENT-BASED ANALY SIS

The Tl isolated digit database was used to evaluate thesonsi
tency among the events obtained across different speagets f
given word. The vocabulary consists of 11 words, namely,lihe
digits and “oh”. In the experimental studies, we have caergd
only the 10 digits and omitted “oh”. In the present studies have
used the utterances from only the male speakers in the daaba
There are 111 male speakers, divided into training set (Balsws)
and test set (56 speakers). Each person spoke 20 utterances,
sisting of 2 tokens from each of the 10 digits in isolationefiéfore,
the training set consists 110 repetitions per digit and éiséng set
consists of 112 repetitions per digit. All the digit uttecas were
sampled at 8 kHz. The first 8 MFCCs other than the zeroth value
(average of log-spectral values) and their derivativesuesmed as
features to represent the information in the speech sighdlve
state ergodic HMM with two mixtures per state is used to model
the sequence of feature vectors extracted from the spegohlsi
One HMM is trained for each digit using the examples of thgitdi

Once the HMM is trained, for every digit utterance in therimg
set, the Event Probability Sequence (EPS) and the Statsificemn
Sequence (STS) are obtained as explained in Sec. 2. Theofalue
is arrived at empirically after some preliminary experirtarstud-
ies. A small value op may produce several spurious peaks. On
the other hand, gsis increased, fewer probabilities are used in the
summation of (2), and hence the results may become unreliabl
value ofp = 7 is used throughout the remaining part of experimen-
tal studies. The event sequences obtained for the traitiagpaces
are used as reference during testing phase. The EPSs antiSke S
for the digitone uttered by five speakers, when tested against the
HMM developed for the digibne are shown in Fig. 1. The STSs
are consistent across the five utterances spoken by diffspeak-
ers, except for a few missing and spurious transitions. TR8%E
for the digitsone two, threg four andfive uttered by same speaker,
when tested against the HMM developed for dayig are shown in
Fig. 2. The STS obtained for the digiheis different from the STS
obtained for the other digits. Therefore, the STS is a repredive
of a digit, and hence can be used for digit recognition.

3.1 Matchingthe sequence of statetransitions

In this study, Levenshtein distance [11] was used as a measur
of similarity between two event sequences. LevenshteitaDée
(LD) or edit distance between two strings is defined as mimimu
number of point mutations needed to transform one stringnto a
other string, where a point mutation can be either insertitate-
tion or substitution. Digit recognition experiments wemnducted
using the LD as measure of similarity between the referemck a
test STSs. The testing process of event based digit redogrist
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Figure 1: Event probability sequence for the digite uttered

by five speakers, when tested against model for digit The
probability value is plotted on logarithmic scale. The statan-
sition (k — 1) responsible for the event is also indicated. The
vertical lines indicate the span of a particular state triis.

shown in the form of block diagram in Fig. 3. The STS obtained
for the test utterance is matched against each of the refe!®msS.
The accumulated score over all the reference utterancese$ to
make the decision. Thie-best recognition performance of the LD
based transition sequence matching for isolated digitgeition is
given in Table 1. It has been observed thate was recognized as
eitherone, three or five in 50% of the cases, aritbo was recog-
nized ascero in 25% of the cases. From Table 1, it can be seen that
though the 1-best recognition performance is only 86%, thest
performance is 96%, showing that there is a consistency grtien
STSs that are obtained across different speakers.

Though the STSs are consistent among different utterarfces o
the same digit and inconsistent among utterances of diffetig-
its, the values of the event probabilities are at the sanwd ie\ooth
the cases (see Fig. 1 and Fig. 2). Hence the EPSs do not provide
any complementary information to improve the performarnfahe
recognition system. This is because of our definitiomb(i, ;)
given by (2), where we divide the probability of having a s#ion
between two stable statésind; at time instant by P(O/)), the
probability of the observation sequen@egiven the modeA. If the
test observation sequence is actually generated by thelntbde
both the numerator and the denominator of (2) are high, tiegul
in a value around one. If the test observation sequence igarot
erated by the model, then both the numerator and the dentnina
are small, resulting again in a value around one. If the fiiba
of having a transition is not normalized B(O/)), the computa-
tion of n? (i, j) depends on the length of the observation sequence.
To overcome this computational limitation, we propose aangv
detection method based on the partial observation sequence
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Figure 2: Event probability sequences for the digitise two,
threg four and five uttered by the same speaker, when tested

against model for digitne.
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Figure 3: Block diagram for testing process of event based

digit recognition

4. EXPLORING EVENTSIN PARTIAL OB-

SERVATION SEQUENCE

From the previous discussion on the event-based apprdaem i
be understood that the events are localized in time. In atioeds,
an event occurring at a time instants mainly influenced by the
symbols in its immediate neighborhood rather than the sysnbo
away from it. Hence, it is better to explore the events within
partial observation sequence rather than consideringrttieeeb-
servation sequence. In this approach, we compyi(g, j) over
a partial sequence &f(p + r) frames, where is the number of
frames supporting the stable state, anid the number of frames
allowed on either side of the stable states which can be ety
any state in the model. Hengg (i, j) is modified as

77?7(17]) = P(qlv"'7q7‘7q’r+1:iy"'7q7‘+l7:i7
qr+p+1 = Jy-o- yr+2p = Js gr+2p+1,-- -,
q2(r+p)> 01,02, . . ., 02(7‘+p)/)‘) (5)

The value ofnp?" (i, 5) can be evaluated in a computationally ef-

ficient way by using the locally defined forward variable and
backward variable on the partial observation sequefe=
(01,02,...,090,4r)). Since a fixed number of observation sym-
bols is involved in the computation of thg” (i, 5), it does not
depend on the length of the observation symbol sequencee-Mor
over, since we are not dividing (O /) term in the computation

of nf"(i,4), a clear evidence can be observed, for genuine cases,
from the EPSs. Therefore, the EPS obtained from this cortipnta
can be used along with the STS to further improve the recogni-
tion performance. By allowing self transition in the comgign

of ef”, we can segment the speech signal into stable and transition
regions. Fig. 4 shows the EPSs computed from partial obgerva
sequences for digdneuttered by five speakers when tested against
the modelone The regions marked by self transitions 7) cor-
respond to the stable regions, and the regions marked byahe t
sition between two different states € j andi # j) correspond

to transition regions. The EPSs computed from partial olagiem
sequence for the digitsneg two, threg four andfive when tested
against the modebne are shown in Fig. 5. In Fig. 4, the event
probability values are high and the STSs are similar actos$wo
repetitions of the digibneby different speakers. Hence, the event
probability values can be used along with the STS for redagni
purpose.

—600;
—650

[ l_—1
—700- \
—750) ] ’\5

13— | 5- {3\4,
1 53 3= ath

—800
40
Frame index

N

—900
5-5

Event probability

QoL 1 10
o

10 20 30

—600;
—650
—700
—750
—800
—8501
*QOCb

2-3 -1
2-1 1-5

Event probability

10 30 40 50
Frame index

—600
—650
—700|
—750|
—800|
—850|
—900!

———a’;\_’\

™~

%
/

T
A
I
IN]

1-1

Event probability

2-2

10 20 30 60
Frame index

—600
—650
—700|
—750|
—800|
—850|
*QOCB

2-1

Event probability

1-5|

10 30 40 60

Frame index

_\_,_\
1-5

1-1 b

—600
—650
—700|
—750|
—800|
—850|
*QOCB

442

Event probability

=)

2-2

Frame index
Figure 4: Event probability sequences computed from partial
observation sequence for the digite uttered by five speakers
when tested against model for digite.

4.1 Event probability sequences for digit

recognition

Digit recognition studies are performed using the EPSsaf-tr
sition regions. Since we are interested in the events (dmages),
we have not considered the stable regions. With in a tramsig-
gion, we have considered only the point where the event jibitya
value is maximum. The product of the maximum event probigbili
values of all the transition regions in a digit is consideesdthe
confidence score. In this method of scoring, an average nécog
tion performance of 94% was obtained. Théest performance
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