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Abstract
In this paper, we propose a method for detection of glottal clo-
sure instants (GCI) in the voiced regions of speech signals.
The method is based on periodicity of significant excitations
of the vocal tract system. The key idea is the computation of
coherent covariance sequence, which overcomes the effect of
dynamic range of the excitation source signal, while preserv-
ing the locations of significant excitations. The Hilbert enve-
lope of linear prediction residual is used as an estimate of the
source of excitation of the vocal tract system. Performance of
the proposed method is evaluated in terms of the deviation be-
tween true GCIs and hypothesized GCIs, using clean speech
and degraded speech signals. The signal-to-noise ratio (SNR)
of speech signals in the vicinity of GCIs has significant bear-
ing on the performance of the proposed method. The proposed
method is accurate and robust for detection of GCIs, even in the
presence of degradations.
Index Terms: glottal closure instants, excitation source, peri-
odicity, coherent covariance sequence

1. Introduction
Voiced speech is produced by exciting a time-varying vocal
tract system with a sequence of impulse-like excitations. The
impulse-like excitation is due to the closure of glottis during the
vibration of vocal folds. The time instant at which the closure is
achieved (called glottal closure instant or GCI) is an important
feature for analysis of speech signals. Detection of GCIs en-
ables the identification of region of closed glottis within a pitch
period. Analysis of short segments of speech signals over such
regions helps in accurate estimation of vocal tract parameters
such as formants [1], and also in the extraction of characteris-
tics of voice source. In text-to-speech synthesis, accurate detec-
tion of GCIs is necessary for prosodic manipulation of speech
sounds [2]. Moreover, speech signal in the vicinity of GCIs
has relatively high signal-to-noise ratio (SNR), due to impulse-
like excitation and damped sinusoid-like impulse response of
the vocal tract system. These regions of high SNR are likely to
preserve features specific to sound and speaker, even under the
influence of degradations. Hence, methods for robust detection
of GCIs in speech signals are necessary.

Some of the methods proposed for the detection of GCI as-
sume a linear source-system model for the production of speech
signal. These methods identify GCI with the time instant of
strongest excitation which will be around the region with least
predictability [3, 4, 5]. Normally, linear prediction (LP) resid-
ual is used as an estimate of source of excitation [5]. Another
class of methods for detection of GCIs is based on the properties
of minimum phase signals and group delay functions. In [6],
the average slope of the unwrapped phase spectrum of speech
signal is computed as a function of time, and the positive zero

crossings of the phase slope function are hypothesized as the
instants of glottal closure. In [7], the phase spectrum is com-
puted from the LP residual instead of speech signal to reduce
the effects of truncation. Robustness of the group delay based
methods against noise and distortion is studied in [8]. In [9],
properties of the phase slope function are used to hypothesize
candidates for GCI, which are validated using a dynamic pro-
gramming approach. Energy-weighted group delay is proposed
as a measure for the detection of GCIs in [10].

In this paper, we propose a method for detection of instants
of glottal closure using the periodicity of significant excitations
in speech signals. In Section 2, we describe the representation
of excitation source in terms of the Hilbert envelope of the linear
prediction residual. The section describes the proposed method
for detection of GCI, and also the issues involved in the choice
of parameters used in the method. Section 3 discusses the ex-
periments conducted for evaluating the performance of the pro-
posed method, and the results of these studies. Conclusions are
given in Section 4.

2. Proposed method for detection of GCI
We first describe a method to extract the significant excitations
in speech signal. Then, an algorithm for determining the time
instants of these excitations is proposed.

2.1. Representation of excitation source

Linear prediction (LP) residual can be used as an estimate of the
source of excitation. Linear prediction analysis [11] of voiced
sounds results in multiple peaks of either polarity in the LP
residual, around the instants of glottal closure. This is because
the resulting digital inverse filter does not exactly compensate
the phase of the vocal tract system. The difficulty in the de-
tection of significant excitations from the LP residual, arising
out of peaks of either polarity, can be resolved by deriving the
Hilbert envelope of the LP residual [5]. The Hilbert envelope
emphasizes abrupt positive-to-negative and negative-to-positive
excursions in the LP residual. This approach is more accurate in
preserving significant excitations, compared to the computation
of the residual energy in a short interval of time. The Hilbert
envelope x[n] of the LP residual r[n] is given by

x[n] =
√

r2[n] + r2

H [n], (1)

where rH [n] denotes the Hilbert transform of r[n].
The emphasis of significant excitations in the Hilbert en-

velope relative to LP residual is shown in Fig. 1. It has been
shown that the locations of the significant excitations, as ob-
served from the Hilbert envelope of the LP residual, are close
to GCIs [5]. While the significant excitations are prominent in
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Figure 1: Emphasis of significant excitations. (a) Waveform of a
segment of voiced speech, (b) its linear prediction (LP) residual,
(c) Hilbert transform of LP residual and (d) Hilbert envelope of
LP residual. The LP residual was derived from 10th order LP
analysis.

the Hilbert envelope, automatic detection of their locations is a
nontrivial task.

2.2. Computation of coherent covariance sequence

Periodicity of significant excitations can be exploited to derive
a signal which is invariant to the dynamic range of the Hilbert
envelope. This is described below. Let us consider a segment
of the Hilbert envelope of the LP residual, of length N samples,
starting at time index n. The mean of the samples in the segment
is removed from each sample. Such a sequence is denoted as
X = {x[n], x[n + 1], . . . , x[n + N − 1]}. Let a vector xn,k of
dimension L be defined as

xn,k = [x[n + k] . . . x[n + k + L − 1]]T, (2)

where 0 ≤ k ≤ N − L and T denotes the transpose operator.
Thus, contiguous subsequences of length L within the sequence
X can be viewed as vectors. For the sequence X , the covariance
sequence (vector) is defined as

Φn = [φ[n; 0] φ[n; 1] . . . φ[n; N − L]]T, where

φ[n; k] =
xn,0

T
xn,k

||xn,0||||xn,k||
, 0 ≤ k ≤ N − L. (3)

When the sequence X is periodic, peaks in the covariance se-
quence Φn occur at an interval which is equal to the interval
between the peaks in X . However, the peaks in Φn are not
aligned with those in X , as shown in Fig. 2(b). Hence, another
covariance sequence, denoted by Ψn, is computed using the
sequences Φn and X as follows:

Ψn = [ψ[n; 0] ψ[n; 1] . . . ψ[n; N − L]]T, where

ψ[n; k] =
Φn

T
xn,k

||Φn||||xn,k||
, 0 ≤ k ≤ N − L. (4)

For the innerproduct in (4), the dimensions of Φn and xn,k

should be same, i.e., N−L = L−1. We have chosen N = 239
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Figure 2: (a) A sequence X of Hilbert envelope signal, (b) co-
variance sequence Φn computed from the samples of X , and
(c) coherent covariance sequence Ψn computed from X and
Φn. The peaks in (c) are aligned with those in (a). Φn and Ψn

have durations of 15 ms only.

and L = 120, corresponding to 30 ms and 15 ms, respectively,
at a sampling frequency of 8 kHz. Fig. 2(c) shows the sequence
Ψn in which the significant peaks of Φn are aligned with those
of X . Hence we call Ψn as coherent covariance sequence.
The sequence Ψn can be updated over successive segments of
speech, as shown in Fig. 3(c).

The computation of coherent covariance sequence using
unit normalized vectors helps in overcoming the dynamic range
of the Hilbert envelope. The resulting coherent covariance se-
quence is a smooth function which enables the detection of sig-
nificant peaks more easily than the sequence X . The effect of
spurious peaks in the Hilbert envelope is reduced, since these
spurious peaks do not contribute to the periodicity. The peaks
in the coherent covariance sequence are hypothesized as the
instants of glottal closure. Fig. 3 shows a segment of voiced
speech, where the locations of peaks in the coherent covari-
ance sequence (Fig. 3(c)) are in agreement with the true GCIs
obtained from the differential of the electroglottograph (EGG)
signal (Fig. 3(d)).

2.3. Choice of analysis parameters

A 10th order linear prediction analysis is performed on speech
segments of 10 ms duration, with an overlap of 5 ms between
successive segments. The Hilbert envelope of the LP residual
is weighted using the function derived by coherent addition of
segments of speech signal. This will emphasize the regions of
high SNR while reducing the effect of noise. The weighted
Hilbert envelope is then used for computation of the coherent
covariance sequence. The length N of the segment used for
computation of the coherent covariance sequence is chosen so
as to contain at least two complete pitch periods. The choice
of N corresponding to 30 ms is based on the assumption that
the maximum pitch period does not exceed 15 ms. For female
speakers, a window of 30 ms may contain several pitch periods.
This may lead to errors in the locations of the GCIs due to ex-
cessive averaging. Hence, a segment of smaller length may be
chosen for analysis of female voices. While updating the co-
herent covariance sequence, a shift of 5 ms is used to track the
changes in the gross envelope of the Hilbert envelope.
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Figure 3: (a) A segment of voiced speech, (b) Hilbert envelope
of LP residual, (c) coherent covariance sequence and (d) differ-
ential of EGG signal.

3. Experimental studies
3.1. Speech data

The accuracy of the GCIs hypothesized by the proposed method
is evaluated using speech signals and their corresponding EGG
signals from ARCTIC speech corpus [12]. Speech signals were
sampled at 8 kHz. The chosen set contains 300 sentences from
two male speakers and one female speaker. Only voiced re-
gions longer than five pitch cycles were considered through-
out the study, resulting in a total of 65094 true GCIs which
were detected using EGG signals. This set is called Set I. An-
other set, called Set II, is obtained by retaining only those GCIs
from Set I for which the short-term energy of the correspond-
ing speech signals is above a threshold. The performance of the
proposed method is evaluated for clean speech, and for speech
signals corrupted by additive white Gaussian noise to obtain sig-
nals with different levels of overall signal-to-noise ratio (SNR).
Also, speech signals were played through a loudspeaker, and the
signals were collected by placing microphones at distances of 3
ft, 4 ft, 5 ft and 6 ft. The recordings were done in a laboratory
environment, and the collected signals were time-synchronized
with the played signals. The objective in this case is to observe
the performance of the method in a practical case.

3.2. Performance measures

The method described in Section 2.2 is used to compute the
coherent covariance sequence, the peaks of which are hypoth-
esized as GCIs. For each true GCI, if the closest hypothesized
GCI lies within a time interval of 3 ms from the true GCI, then
the two are associated with each other. The true GCIs which
have not been associated with any hypothesized GCI are as-
signed to the set Sm of missing GCIs. Similarly, those hypoth-
esized GCIs which have not been associated with any true GCIs
are assigned to the set Sf of false alarms. Let Nt denote the
number of true GCIs. The missing rate ηm and the false alarm
rate ηf are given by

ηm =
|Sm|

Nt

and ηf =
|Sf |

Nt

, (5)

where |S| denotes the cardinality of set S. The error rates ηm

and ηf are dependent on the threshold that is applied on the
peaks of the coherent covariance sequence. The error rates ηm

and ηf are computed as functions of the threshold, and equal
error rate (EER) is achieved at a threshold when ηm and ηf are
equal.

3.3. Results and discussion

The error rates, and histograms of deviation between the cor-
rectly detected GCIs and the corresponding true GCIs are shown
in Fig. 4. The deviation between the true GCIs and the hypoth-
esized GCIs is primarily due to two reasons: (a) The locations
of peaks in the Hilbert envelope of LP residual are not exactly
same as the locations of GCIs. (b) Due to the averaging involved
in the computation of coherent covariance sequence, the loca-
tions of hypothesized peaks are not exactly the same as those
of the peaks in Hilbert envelope. Regions of weak voicing con-
tribute to missing GCI, while secondary excitations have been
observed as the main source of false alarms. For signals col-
lected at a distance, the deviation is greater compared to that
in signals corrupted by additive noise, may be due to the effect
of reverberation and low SNR. In contrast, the instants of ex-
citation are still preserved in the signals corrupted by additive
noise. Hence, the spread of deviation around the mean value is
lesser in the case of additive noise (Fig. 4(b)), compared to that
in signals collected at different distances (Figs. 4(f), (h), (j) and
(l)). The histograms also indicate that as the distance increases,
the spread of the deviation increases too. Tables 1 and 2 list
the performance of GCI detection for speech signals collected
at different distances, and for speech signals corrupted by ad-
ditive noise, respectively. In both the cases, EER and deviation
are smaller for Set II than for Set I. This highlights the impor-
tance of SNR associated with the GCIs. Weak voiced sounds
with low SNR in the vicinity of GCI may be missed even in
clean speech, due to poor estimation of the source of excitation
from the LP residual. In contrast, voiced regions with signifi-
cant SNR near GCIs are detected, even when the speech signal
is collected at a distance or is corrupted by additive noise. The
EER and deviation do not increase appreciably over the range
of SNR (0-20 dB), or distance (3-6 ft). Thus, the SNR of speech
signal in the vicinity of GCIs, in conjunction with the period-
icity of significant excitations, lends robustness to the proposed
method.

4. Conclusion

In this paper, the characteristics of source of excitation of the
vocal tract are exploited for detection of the glottal closure in-
stants in voiced speech. The computation of coherent covari-
ance sequence is proposed, which is more amenable to detection
of peaks due to significant excitations than the Hilbert envelope
of LP residual. Experimental results indicate that the proposed
method is robust and accurate, even when speech signal is cor-
rupted by degradations. The coherent covariance sequence can
be processed further to derive a weighting function, which se-
lectively emphasizes the regions of speech signals in the vicinity
of significant excitations. Such an emphasis can be useful for
(a) enhancement of speech for human listening, and (b) extrac-
tion of robust parameters from degraded speech.
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Table 1: Performance of the proposed method for detection of
GCI, for speech signals collected at different distances.

Distance (ft) EER (%) Deviation (ms)
Set I Set II Set I Set II

6 12.8 10.4 1.35 1.09
5 10.1 8.3 1.22 1.04
4 9.1 7.4 1.10 0.93
3 8.8 7.2 1.16 0.98
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Figure 4: Evaluation of GCI detection. (a) False alarm rate
(solid curve) and missing rate (dashed curve) as functions of
threshold and (b) normalized histogram of deviation between
true and correctly hypothesized GCIs, for clean speech signals.
The plots (c) and (d) correspond to speech signals with an over-
all SNR of 0 dB. Plots (e) and (f) correspond to speech signals
collected at a distance of 3 ft, while (g), (h) correspond to 4 ft,
(i), (j) to 5 ft and (k),(l) correspond to 6 ft. The evaluation was
performed on Set II. Note the change in the vertical scale of the
histogram in (b) and in the rest of the histograms.

Table 2: Performance of the proposed method for detection of
GCI, for speech signals with different levels of overall SNR.

SNR (dB) EER (%) Deviation (ms)
Set I Set II Set I Set II

0 10.4 9.8 0.59 0.56
5 8.5 7.9 0.53 0.49
10 7.7 7.1 0.48 0.44
15 7.2 6.6 0.45 0.40
20 6.9 6.1 0.41 0.35

Clean speech 3.5 3.1 0.35 0.28
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