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Abstract 
In this paper, we describe a prototype speaker identification 
system using auto-associative neural network (AANN) and 
formant features. Our experiments demonstrate that formants 
extracted from difference spectrum perform significantly better 
than formants extracted from normal spectrum for the task of 
speaker identification. We also demonstrate that formants from 
difference spectrum provide comparable speaker identification 
performance with that of features such as weighted linear 
predictive Cepstral coefficients and Mel-Frequency Cepstral 
coefficients. Finally, we combine the results of formant based 
system and linear predictive Cepstral coefficients based system 
to achieve 100% identification performance. 
Index Terms:  Formant extraction, difference spectrum, 
speaker identification, autoassociative neural network models 

1. Introduction 
 
An open set speaker identification system attributes the identity 
of a test sample to one of the registered speakers or declares that 
it does not belong to any of the registered speakers.  In order to 
build a speaker identification system, we investigated the use of 
auto associative neural network (AANN) models and 
experimented with several features including formants extracted 
from a normal spectrum as well as from the difference spectrum 
(ref. to Sec 4 for details).  On a database of 50 speakers our 
experiments showed that formants extracted from difference 
spectrum perform significantly better than the formants from 
normal spectrum. Our experiments also demonstrated that the 
performance of formants based identification system is 
comparable to that of weighted linear predictive Cepstral 
coefficients (WLPCC). Moreover, the combining of results from 
formant based identification system and WLPCC based system 
provided 100% identification.   
 
This paper is organized as follows: Section 2 describes the 
AANN models and their distribution capturing ability. Section 3 
discusses the development of speaker identification system 
using AANN models and the base line results using WLPCC 
and Mel-frequency Cepstral Coefficients (MFCC). Section 4 
describes the difference spectrum and extraction of formants. 

Section 4.2 discusses the results using formants and compares 
its performance with that of WLPCC and MFCC.                                                

2. Auto Associative Neural Networks 
AANN models are feed forward neural networks performing 
identity mapping of the input space [1][2]. The network 
architecture of these models may have more than one hidden 
layer [3]. The input layer and the output layer have same 
number of processing units. One of the hidden layers known as 
the bottleneck layer or dimension compression layer has smaller 
dimension than the input layer. These networks can be trained 
using algorithms such as back propagation to reconstruct the 
input data at the output layer. The units of the dimension 
compression hidden layer represent the significant features of 
the input data like in the case of principal component analysis. 
This characteristic of AANN model is exploited extensively for 
linear and nonlinear dimension compression of the input data 
[3][4]. Studies reported in [5][6][7] have demonstrated that the 
AANN models can also be used as nonparametric models to 
capture the distribution of the input data.  It has also been 
demonstrated in [5][6][7] that speaker models could be built 
using AANN for the task of speaker verification. In this paper, 
we exploit the distribution capturing ability of AANN models to 
build a speaker identification system. 

3. AANN Based Speaker Identification 
In this work, we have developed a speaker identification system 
using a database of 50 speakers. These are an arbitrary set of 50 
speakers belonging to different ethnic groups speaking different 
languages and different sections of society. Each speaker has an 
AANN model, and our speaker identification system has three 
phases: (1) Speaker Enrollment (2) Speaker Training and (3) 
Speaker Testing (Identification) 

3.1. Enrollment Phase 

During enrollment, the speaker reads an arbitrary text of any 
language for about three minutes. Speech signal is recorded in 
laboratory environment using the recorder facilities provided by 
the computer system. The recorded signal is sampled at 16000 
Hz.  The three minutes of recorded speech in split into one 
training wave file of length 84 sec and two testing wave files 
each of length 48 sec. 



3.2. Training Phase 

During training an AANN model is built for each speaker. The 
structure of the AANN model used is given by 
17L39N10N39N17L in the case of WLPCC and 
13L39N10N39N13L in the case of MFCC, where L denotes 
linear and N denotes non linear units. The integer value denotes 
the number of layers in that particular area. The output 
generated by the training phase consists of weight files 
corresponding to all the synaptic connections between neurons 
of adjacent layers. 

3.3. Testing Phase 

During testing the hypothesis is that if the test wave-file from a 
speaker is given to an AANN model of the same speaker then 
the error would be less compared to the error generated in the 
case when the AANN model and test wave-files do not belong 
to same speaker. 
 
The testing process could be explained as a sequence of below 
steps. 

• Let X(i) denote the set of input vectors of the 
test-wave file, where i is the index of the feature 
vector, and M(k) is the AANN model of speaker 
k. 

• For each speaker k in the database  
• Give X as input to AANN model M(k) and 

obtain output vectors say Y(k). 

• Compute the average Euclidean distance ED(k) 
between X and Y(k).   

• Let   = j, where j is the index 

of the speaker model giving the minimum Euclidean.  

})({argmin kED
k

• If j also happens to be the actual speaker of the 
test wave-file, then it can be said that the correct 
speaker has been identified. 

3.4. Baseline System Results 

To build the baseline system, feature vectors were derived from 
the speech signal using a frame size of 10 ms and a frame shift 
of 5 ms. A 12th linear prediction was performed on the speech 
signal to derive 17 Cepstral coefficients which were linearly 
weighted to form 17-dimensional WLPCC.  On each frame 
Mel-frequency filters were also employed to obtain 13 
dimensional MFCC features. The performance of the speaker 
identification system on a subset of 25 speakers with 50 test-
samples (25 speakers x 2 test-samples) and  on the full set of 50 
speakers with 100 test-samples (50 speakers x 2 test-samples) 
using MFCC and WLPCC is shown in Table 1.  Experiments 
were conducted on the subset of 25 speakers to tune the 
structure of AANN model specifically in the case of formants. 
 
 
  
 
                                                            
                                                            

Table 1: Base Line System performance with WLPCC and 
MFCC features

Exp 
No 

Featur
e 

Speakers 
Identified 
out of 50 

Perfo
rman

ce 
(%) 

AANN Structure 

1 MFCC 41/50 82 13L39N10N39N13L 

2 WLPC
C 48/50 96 17L39N10N39N17L 

3 MFCC 57/100 57 13L39N10N39N13L 

4 WLPC
C 97/100 97 17L39N10N39N17L 

 
It can be observed from Table 1 that Weighted LPCC performs 
better than MFCC on this small set of speakers. In order to 
investigate the formants as features for speaker identification 
and compare their performance with that of WLPCC and MFCC 
we conducted a series of experiments which are described in the 
following sections.  
 

4. Extraction of Formants 
Formants are the resonances of the vocal tract and are identified 
with the peaks in short-time Fourier transform. These peaks can 
be extracted either from the smoothed Fast Fourier Transform 
(FFT) or from the Linear Prediction (LP) spectrum [9]. In model 
based techniques such as LP, the number of peaks that could be 
present in the spectrum is dictated by the order of the linear 
prediction [10]. A lower order (4-6) linear prediction models the 
spectrum with the dominant peaks, whereas, a higher order (10-
16) would approximate most of the peaks and is a better 
representation of the spectrum.  
 
 
Typically a peak picking algorithm is employed to pick peaks 
from a higher order LP spectrum (referred to as normal 
spectrum here). In [8], it is proposed that the difference 
spectrum could be used for better estimation of formants. In this 
paper we use the formants extracted from difference spectrum 
for the task of speaker identification. 

4.1. Formants from Difference Spectrum 

 
In LP analysis of speech, an all pole model is assumed for the 
system producing the signal s(n). The power spectrum of the 
sampled signal is modeled in an optimal manner by an all pole 
model spectrum. Let us assume that the model spectrum 
corresponds to a transfer function  given by )(zH
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p  is the number of poles in the model 

spectrum, and G is the gain factor. The model spectrum 

is given by)(' zP 2)()(' zHzP = . Let  and )(' zP



)('' zP represent the all-pole spectrums of obtained for 
two different orders 

)(ns
qp,  of LP analysis respectively. Let 

represent the difference spectrum of and 

 and is given by  
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The difference spectrum  in the logarithm domain is the 

log ratio of  and . When 

)(zQ
)('' zP )(' zP qp <   then  

represents the lower order LP spectrum and   

represents the higher order LP spectrum of . If  

 then the difference spectrum is negative 
and it de-emphasizes the regions which are lower values 
in  and the corresponding regions are higher values 

in . If    then the difference spectrum 

is positive and these regions of  get boosted up in the 
difference spectrum.   
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Fig. 1(a) shows a short speech segment s(n) and Fig. 1(b) shows 
the spectrum of s(n) computed using FFT. Fig. 2(a) shows the 
6th and 14th order LP spectrums of s(n) and Fig. 2(b) shows 
their difference spectrum. It can be observed that the peaks of 
14th order LP spectrum are boosted in the difference spectrum. 
   
Another interesting thing to observe is the difference spectrum 
of 14th and 13th order LP spectrums. Fig. 3(a) shows the 13th 
and 14th order LP spectrums of s(n) and Fig. 3(b) shows their 
difference spectrum. The peaks are better emphasized in the 
difference spectrum obtained from 14th and 13th order LP 
difference spectrum. It also picks up the peak at 4400 Hz, which 
is not dominantly represented in the 14th order LP spectrum.  
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    (a)                                              (b) 

Figure 1: (a) Speech segment s(n) (b) FFT of s(n) 
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  (a)                                              (b) 
Figure 2: (a) 6th and 14th order LP spectrum of a signal s(n) 
(b) Difference Spectrum of 14th and 6th order LP spectrums. 
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(a)                                           (b) 
Figure 3: (a) 13th and 14th order LP spectrum of a signal s(n) 
(b) Difference Spectrum of 14th and 13th order LP 
spectrums. 
 
It is conjectured that difference operation on  )('' zP and 

)(' zP  in log domain results in removing the varying slope 
(damping effect due to glottal roll off)  thus emphasizing the 
peaks of   )('' zP as observed in Fig. 2(b) and Fig. 3(b).  Such 
an emphasis would aid peak picking algorithms to locate the 
formants easily.  

4.2. Speaker Identification using Formants 

Let F_DS denote formants extracted from difference spectrum 
and F_S denote formants extracted from normal spectrum. The 
front end of the base line system was modified to extract F_S 
and F_DS from the speech signal. Variance normalization was 
performed on these features, and speaker models were built by 
changing the structure of the AANN. The performance of 
speaker identification system for F_S and F_DS is as shown in 
Table 2. The “#” column in Table 2 indicates that the number of 
formants that were extracted for each frame. It was found that 6 
or 8 formants performed better than that of 4 formants for 
speaker identification. This observation matches with the 
intuition that the higher formants carry speaker information. 
Use of higher formants denotes more details about vocal tract 
shape which are needed for the task of speaker identification. 
From experiments 4,5 and 6,7 and 8,9 in Table 2, it can be 
observed that F_DS performs significantly better than that of 
F_S for speaker identification. These results provide empirical 
evidence that useful features could be extracted from F_DS. 
From Table 1 and Table 2, it could also be observed that an 
identification performance of 92% was achieved by F_DS in 
comparison with 97% by WLPCC.   



 
Table 2:  Speaker Identification System performance using 
formants. Experiments 8 and 9 were performed on 50 speakers’ 
database, while the rest of them were performed on a subset of 
25 speakers. 

Formants Exp 
No. # Type 

Speak
ers 

Identif
ied  

Perfo
rman
ce 
(%) 

AANN Structure 

1 4 F_S 2/50 04 4L39N4N39N4L 
2 4 F_DS 6/50 12 4L39N4N39N4L 
3 4 F_DS 21/50 42 4L39N2N39N4L 
4 6 F_S 06/50 12 6L39N4N39N6L 
5 6 F_DS 46/50 92 6L39N4N39N6L 
6 8 F_S 07/50 14 8L39N4N39N8L 
7 8 F_DS 46/50 92 8L39N4N39N8L 
8 6 F_S 07/100 07 6L39N4N39N6L 
9 6 F_DS 92/100 92 6L39N4N39N6L 

 
It was also found that a set of speakers (say X) were not 
identified by WLPCC based speaker identification system, but 
were identified by F_DS based speaker identification system. 
These speaker models performed better in F_DS feature domain 
than in WLPCC feature domain. An identification performance 
of 100% was achieved when we used F_DS based AANN 
models for the speakers belonging to set X, and WLPCC based 
AANN models for the rest of the speakers during identification.  
 
In order to investigate further on the role of higher formants for 
the task of speaker identification, we considered only the last 
four formants out of six formants extracted from the speech 
signal. The performance of speaker identification system 
obtained using the last four formants is as shown in Table 3. 
The lower performance of this identification system in 
comparison with 92% obtained for experiment 5 in Table 2 
indicates that the first two formants do carry significant 
information about the speaker and are important for the task of 
identifying the speaker.  
 
Table 3: Performance of speaker identification system using 
last four of six formants. The number of dimension 
compression units in the AANN structure is being changed in 
these two experiments. 
 

Formants Type 

Speak
ers 

Identif
ied  

Perf
orma
nce 
in % 

AANN Structure 

last 4  
out of 6 F_DS 24/50 48 4L39N3N 39N4L 

Last 4 
out of 6 F_DS 29/50 58  4L39N2N39N4L 

5. Conclusions 
In this paper, we have discussed the prototype system built for 
the task of speaker identification. This system uses distribution 
capturing ability of AANN models for the task of speaker 
identification. While the deployable system has to be tuned to 
telephone or clean speech for a much larger dataset, our 

motivation of building the prototype system of 50 speakers 
database of microphone speech was to experiment with different 
features, and tune the neural network architecture to the possible 
extent.  
 
The experiments using formant features indicated that the 
formants extracted from difference spectrum performed 
significantly better than that of formants extracted from normal 
spectrum for the task of speaker identification. These results 
provided empirical evidence that useful features could be 
extracted from difference spectrum, and the formants extracted 
from difference spectrum are better estimated than that of from 
normal spectrum. It was also shown that the performance of 
formants from difference spectrum was comparable to that of 
weighted linear prediction Cepstral coefficients. Combining 
evidences from formant based system and linear predictive 
coefficients based system provided 100% identification results 
on a dataset of 50 speakers. Our future work lies in using these 
formants for robust speaker identification on telephone speech 
on a much larger corpus. We are also working to develop the 
open set speaker identification by adapting some of the 
verification techniques.  
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