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Abstract - In this paper we demonstrate the usefulness of -

ezcitation source information for text-dependent speaker veri-
fication. The nature of vibration of vocal folds may be unique
for a given speaker. This can be studied by considering vowels,
since the ezcitation in this case is only due to glottal vibration.
Linear prediction (LP) residual contains mostly source infor-
mation. We propose autoassociative neural network models
for capturing speaker-specific source information present in
the LP residual. Speaker models are built for each vowel to
study the extent of speaker information in each vowel. Us-
ing this knowledge an online speaker verification system is
developed. This study demonsirates that ercitation source in-
deed contains significant speaker information, which can be
ezploited for speaker recognition tasks.

I. Introduction

Speaker verification involves accepting or rejecting the
claim of a speaker [1-4]. Speech signal carries informa-
tion related to not only the message to be conveyed, but
also about speaker, language, emotional status of the
speaker, environment and so on. In a speaker recognition
task the speech signal is processed to extract the speaker-
specific information. Speech is the result of exciting a
time-varying vocal tract system with time-varying excita-
tion. The interplay/coupling between the source and sys-
tem for producing speech is likely to have unique speaker
characteristics. Since it is not known how to characterize
this coupling, an alternative approach is to extract the
features characterizing source and system separately, and
use them for speaker recognition task.

Most of the existing speaker recognition systems use
spectral features, which characterizes the vocal tract
system of the given speaker [5-9]. It is interesting to
note that human beings recognize speakers mostly from
the source characteristics such as glottal vibrations, and
prosodic features such as intonation and duration [10,11].
Due to variability and also due to difficulty involved in
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extracting these features, not much effort has gone in
using these features for speaker recognition. In this pa-
per we explore the usefulness of the source of excitation
for speaker verification. We use autoassociative neural
network models for capturing the source information.

The sources of excitation in speech are plosive, frica-
tive and glottal vibration. Plosive excitation is due to
the total closure and sudden release of the vocal tract
system, and it results in the production of stop conso-
nants. Fricative excitation is due to narrow constriction
some where along the length of vocal tract system, which
results in the production of fricative sounds. Glottal vi-
bration produces voiced sounds like vowels, nasals and
semivowels. Glottal vibration is the major excitation of
speech, as more than 70% of the speech is voiced. More-
over, if voicing is replaced by random noise excitation to
produce whispered type of speech, one notices that most
of the speaker’s identity is lost. Thus it appears that sig-
nificant speaker-specific information may be present in
the nature of vibration of the vocal folds. Among the
voiced sounds, speaker information may be significant in
the case of vowels. Hence we consider the source infor-
mation for the case of five vowels /a/, [i/, [fuf, [ef and
/o/ in this study.

This paper is organized as follows: In Section II we
discuss the significance of source of excitation for speaker
recognition. The extraction of speaker-specific source in-
formation using autoassociative neural network models is
described in Section III. Section IV discusses the extent
of speaker information in different vowels, by conducting
speaker recognition experiments for each of the vowels.
An online speaker verification system using the source
features is described in Section V. Some conclusions form
this study, as well as some issues to be addressed further,
are discussed in the last section.
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II. Significance of Source of Excitation for
Speaker Recognition

The first step in using the source information for
speaker recognition studies is to separate the source of
excitation from the speech signal. This can be done con-
veniently by using linear prediction (LP) analysis [12].
In the linear prediction analysis of speech, each sample
is predicted as a linear weighted sum of the past p sam-
ples, where p represents the order for prediction.

If s(n) is the present sample, then it is predicted by
the past p samples as,

14
§n) == axs(n— k) (1)
k=1

The difference between the actual and predicted sample
value is termed as prediction error or residual, which is
given by

e(n) = s(n) — é(n) = s(n) + Zp:aks(n —k) (2)

k=1

The linear prediction coefficients {ax} are determined
by minimizing the mean squared error over an analysis
frame.

It has been shown that the LP order used for extract-
ing the residual plays a crucial role on the performance
of speaker recognition systems [13,14]. The study shows
that the optimal range of the LP order for speaker recog-
nition is in the range 8-16 for speech signal sampled at 8
kHz [13,14].

The five vowels considered in the present study may be
grouped into three categories depending on the position
of tongue hump as, front vowels (/i/), middle vowels (/a/
and /e/) and back vowels (/u/ and /o/). The vowels are
also classified depending on the lip rounding as rounded
(/u/ and /o/) or unrounded (/a/, /i/ and /e/). Even
though the source of excitation is glottal vibration in all
the cases, the characteristics of the excitation source will
be different for different vowels due to the position of
tongue hump and lips. This can be seen in Figure 1,
where segments of LP residuals for the five vowels are
given for a speaker. As can be seen in the figure, the
excitation in case of vowels /u/ and /o/ are not as sharp
as for the other vowels. Perceptually also speaker charac-
teristics seem to be manifested well for unrounded vowels
compared to rounded vowels. Thus the extent of speaker
information manifested in the excitation source may be
different for different vowels. This is also confirmed by
the experimental studies to be discussed later.

The excitation source characteristics are also different
among different speakers. This is illustrated in Figure
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Fig. 1. LP residuals for the same speaker for segments of five
different vowels.

2, where the LP residuals for segments of vowel /a/ are
shown for five different speakers. As shown in the figure,
the rate of vibration of the vocal folds and the strength
of excitation are different for different speakers. In the
next section we discuss methods to capture the speaker-
specific source information from the LP residual.

III. AANN models for Capturing Source
Information

Since LP analysis extracts the second order statisti-
cal features through the autocorrelation matrix, the LP
residual does not contain any significant second order
statistics corresponding to the vocal tract system. But
the source characteristics are present in the LP residual.
We conjecture that the source features may be present
in the higher order statistics in the residual signal. Since
it is not clear what specific set of parameters are to be
extracted to represent the source information, and also
since the extraction of such an information may involve
nonlinear processing, we propose neural network models
to capture the source information from the residual [15].

Autoassociative neural network models are feedfor-
ward neural networks performing an identity mapping of
the input space [16]. AANN models were shown to cap-
ture the source features [17]. For capturing the speaker-
specific source information present in the LP residual sig-
nal, a five layer AANN model with the structure shown
in Figure 3 is used. The structure of the network used
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Fig. 2. LP residuals for the segments of the same vowel /a/
for five different speakers.

in our study is 40L 48N 12N 48N 40L, where L refers to
linear units and N to nonlinear units. A tanhz is used
for the nonlinear activation function. The performance
of the network does not depend critically on the structure
of the network [18].

=~ LP Residual —=
=—LP Residual —

Compression
Layer

Input Layer Output Layer

Fig. 3. Structure of AANN Model used for capturing speaker-
specific source information

IV. Speaker Recognition Studies using Vowels

To study the effectiveness of the speaker-specific source
information for each of the vowels, we conducted recogni-
tion experiments separately for each vowel. The data for
the recognition experiments is collected from 20 coopera-
tive speakers. For building speaker models, we collected
vowels of duration 1-3 sec. The speech signal is collected
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by a microphone in the laboratory environment. The
signal is sampled at 8 kHz, and is stored as 16 bit in-
tegers. LP residual is extracted from the speech signal
using a 12t order LP analysis, and the residual is nor-
malized to unit magnitude before feeding it to the AANN
models. Residual samples are given in blocks of 40 sam-
ples with every sample shift. The speaker models are
trained for 60 epochs using backpropagation learning al-
gorithm [15]. The training error curves for all the five
vowels of a speaker are given in Figure 4. The low train-
ing error values for vowels /a/, /i/ and /e/ shows that
speaker-specific information may be represented better
in these cases. Higher training error values for vowels
Ju/ and /o/ may be attributed to poor representation of
speaker-specific information. One model is built for each
vowel for each speaker.

Training Error
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Fig. 4. Training error curves for the five vowels /a/, /i/, /u/,
/e/, and fo/ for a speaker.

During verification, a test utterance of typically 0.5
sec duration is used. The LP residual is computed us-
ing a 12t* order LP analysis, and is normalized to unit
magnitude for each block of 40 samples. The blocks are
presented with one sample shift to all the models. The
output of each model is compared with its input to com-
pute the squared error for each block. The error (E;)
for the i** block is transformed into a confidence value
using C; = ezp(—AE;), where the constant A = 1. The
frame confidences for a segment of all the vowels, for both
the genuine as well as an impostor speaker are shown in
Figure 5 to Figure 9. As shown in the figures, the confi-
dence values for genuine speakers in case of vowels /a/,
/i/ and /e/ have high discrimination compared to the
confidences of the impostors. The average confidence for
the genuine speaker is around 0.6, whereas that for the
impostor speaker it is around 0.5. For /u/ and /o/, the
discrimination between the confidences of genuine and
impostor speakers is very low. As shown in the figure,
the average confidences for both the cases are around
0.5. The average of all the frame confidences for a given
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test utterance is given by C = (1/N) Ef;l C;, where N
is number of blocks in the test utterance. The average
confidence value is used to evaluate the performance of Vowel /w/
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Fig. 5. For a segment of vowel /a/, (a) Normalized LP resid-
ual, (b) Frame confidences for genuine speaker, and (c)
Frame confidences for an impostor speaker.
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Fig. 8. For a segment of vowel /e/, (a) Normalized LP resid-
ual, (b) Frame confidences for genuine speaker, and (c)

Fig. 6. For a segment of vowel /i/, (a) Normalized LP resid- Frame confidences for an impostor speaker.

ual, (b) Frame confidences for genuine speaker, and (c)
Frame confidences for an impostor speaker.
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Fig. 9. For a segment of vowel /o/, (a) Normalized LP resid-
ual, (b) Frame confidences for genuine speaker, and (c)
Frame confidences for an impostor speaker.

0-7803-7278-6/02/$10.00 ©2002 IEEE 1255

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on August 26, 2009 at 03:16 from IEEE Xplore. Restrictions apply.



To evaluate the performance we conducted 50 genuine
trials and 50 impostor trials for each of the vowels. The
performance is expressed in terms of False Acceptance
(FA) and False Rejection (FR), and are expressed in per-
centage. The result of the testing for all the vowels is
given in Table I. The high false rejection in case of vow-
els /u/ and /o/ indicates the poor presence of speaker-
specific information in these vowels. Even though the FR
in other cases is considerably high, treating the output of
speaker verification system for each vowel as independent
evidence, and combining all these evidences, improves
the performance significantly. This feature is exploited
in building an online speaker verification system, which
is explained in the next section.

TABLE I
PERFORMANCE OF SPEAKER VERIFICATION SYSTEM USING
EACH OF THE FIVE VOWELS. FALSE ACCEPTANCE AND FALSE
REJECTION ARE EXPRESSED IN PERCENTAGE OUT OF TOTAL
50 TRIALS CONDUCTED FOR EACH CASE.

Vowel | FA FR
in% |in%
fa/ 2 40
/i 4 36
[uf 0 62
/e/ 2 18
Jo/ 4 60

V. Online Speaker Verification System using
source Features

Utterance /a/ SR System

/a/

Utterance /i/ SR System
i/

Utterance /uw/ SR System Combined Result
h Decision

Utterance /e/ SR System
re/

Utterance /o/ SR System

/o/

Fig. 10. Block diagram of online speaker verification system.

The block diagram of the proposed online speaker ver-

0-7803-7278-6/02/$10.00 ©2002 IEEE

ification system is shown in Figure 10. As shown in the
figure, the system uses speaker recognition systems builg
for each vowel, followed by a decision logic for combin-
ing the evidences from each of these systems, to come up
with a decision for accepting or rejecting the claim of a
speaker.

The online speaker verification system consists of two
phases: (1) Enrollment phase and (2) verification phase.
During enrollment, the speaker utters five vowels /a/,
/i/, v/, /el and Jof in isolation. The speakers are in-
structed to speak these vowels for a duration of about
1-3 sec as naturally as possible. One model is generated
for each vowel and hence we have five models for each
speaker. The time taken to train one model is approxi-
mately 15 minutes (on Pentium III processor with Linux
6.0). During verification, the claimant has to speak each
of the five vowels for about 0.5 sec. The test utterance
of each vowel is given to all the enrolled speaker models
of the same vowel. The average confidence values for all
the vowels and their ranks are used to come up with the
decision to accept or reject the claim of speaker.

The logic for combining the evidences from different
verification systems is as follows:

The claimant model is accepted as genuine, if for the five
vowel test utterances, any of the following conditions are
satisfied, otherwise it is rejected.

o The claimant model has the majority compared to
all other models

o The claimant model comes as Rankl in exactly two
cases and another speaker also comes as Rankl in
two other cases, but the average confidence for all
the five vowels of claimant speaker is more than the
average confidence of the other speaker

Performance of the online speaker verification system
is evaluated for 20 cooperative speakers in terms of False
Acceptance (FA) and False Rejection (FR). In this eval-
uation, we have considered 19 models of other speakers
as background models for computing the ranks.

TABLE II
PERFORMANCE OF ONLINE SPEAKER VERIFICATION SYSTEM.
Claimant | No. of | FA FR
Tests | in % | in %
Genuine 50 - 10
Impostor 50 0 -

Table II shows the performance of the online speaker
verification system. Comparing the results in Table I and
Table II, we can infer that by suitably combining the
evidence from different vowels, we can come up with a
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decision for accepting or rejecting with minimum FA and
FR values. Table II also demonstrates the usefulness of
source information for speaker verification. The results
also demonstrate that the AANN models have indeed
captured the speaker-specific source information present
in the LP residual.

VI. Conclusions

In this paper our objective is to demonstrate the feasi-
bility of using source information for speaker recognition
task. The recognition studies shows that source of ex-
citation contains significant speaker-specific information.
One more important, point to be noted is that, these mod-
els do not require large amount of data as in the case of
systems based on spectral features.

For any online system it is necessary to reduce the time
for enrollment and verification. At present, for testing a
given claimant model, we are considering the confidences
values of all the frames. It is possible to evolve a frame
selection criterion, which may improve the performance
significantly.
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