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ABSTRACT forced-alignment and iterative estimation of the paramsete

In this paper we present our argument that context informan the models. It is easy to see that the grapheme "c” has

tion could be used in early stages i.e., during the defingion MOre than one pronunciation such ascat andchurch and

mapping of the words into sequence of graphemes. We sholus the models built for graphemes are likely to be gross and
that the early tagged contextual graphemes play a significaﬁmb'guous' To resolve the ambiguity, context informatm®n i

role in improving the performance of grapheme based speecfped in the form of previous and next graphemiaier stages
synthesis and speech recognition systems. to build context-dependent models in speech recognition al

_ gorithms and to cluster the units using context information
Index Terms— Grapheme, Speech Synthesis, SpeecRpeech synthesis [5].

Recognition, Contextual Graphemes, Minority Languages Such grapheme-based systems have been proposed before
for both synthesis [2] and recognition [3]. These technigue
1. INTRODUCTION have shown promise but even in languages where the rela-

tionship between the orthography and the phonetics arfg fair
Pronunciation dictionaries define the mapping between thgansparent, there are still complexities that make thgse s
words and basic sounds of a language and thus play a viems not quite as good as a pronunciation based on phones. It
tal role in building speech synthesis and speech recognitiois that difference between simplistic grapheme basedmgste
systems. Fig. 1 shows the schematic dependence of prand rich phonetic systems that we wish to reduce.
nunciation and linguistic knowledge for building speeck-sy |n this paper we present our argument that context infor-
tems. However, there exist many languages where such lifnation could be used in early stages i.e., during the definiti
gUiStiC resources aren’t available to build SpeeCh SymheSOf mapp|ng of the words into sequence of graphemes_ We
and speech recognition systems. For languages which dorshow that the early tagged contextual graphemes play a sig-
have such pronunciation dictionaries, one way to obtai thinjficant role in improving the performance of grapheme based

resource is using the language expert(s) and generate-the gpeech synthesis and speech recognition systems.
source manually. Compilation of such resources in the re-

quired format and size takes time as well as requires large

capital investment [1]. In some situations, it is even diffi- 2. MOTIVATION TO USE EARLY TAGGED

cult to find an expert in the language area to manually create CONTEXTUAL GRAPHEMES

the required information. Languages for which linguisge r

sources are scarce or not available are referred to as myinoriTypically speech recognition and speech synthesis systems

languages. have pronunciation dictionaries to handle standard wonds a
To build speech synthesis and speech recognition sys: grapheme-to-phoneme model to handle new words such

tems in minority languages, techniques starting from basi@s proper nouns etc. To model the grapheme-to-phoneme

grapheme based approaches to extraction of linguistic inelationship, a grapheme and its 2-level context (previdus

formation with the aid of acoustic data have been develgraphemes and next 2 graphemes) is used to build Classi-

oped [2] [3] [4]. In grapheme based speech recognition anfication and Regression Trees (CART) in supervised mode

speech synthesis systems, grapheme is used as basic unit &mgbredict the corresponding phone. Given a grapheme se-

thus the pronunciation of a word is mapped to sequence afuence CART exploits the context information present in the

graphemes. For example, words such as “cat” and “churchgrapheme sequence and predicts the corresponding sequence

are mapped to sequence of graphemes “c a t” and “c h af phones which are then aligned with the acoustic data to

r ¢ h” respectively. Such mapping is used to build Hid-build phone level models.

den Markov Models (HMM) models for each grapheme by It could be observed that one could remove the CART



Orthography decoder and trigrapheme decoder on RMS voice and mea-
sured error rate in terms of deletions, insertions simitar t
Pronunciation word error rate used in speech recognition systems.

4. TRIGRAPHEME BASED SPEECH SYNTHESIS
SYSTEM

linguistic guestions

g For experiments in synthesis, unit selection voices ar# bui

i using the FESTVOX framework [7]. Two separate voices cor-
units (5 (j (5 5 bo) Y responding to unigrapheme and trigrapheme based units are
o el e W e e W w & n wd e built to study the modeling ability by both. These are com-

E pared against the baseline phone based unit selection voice
Segmentation of the database in terms of graphemes and
trigraphemes is automatically done using the EHMM la-
beller [8] in FESTVOX. For the grapheme based system,
dictionary representation of each word is in terms of its
Fig. 1. Dependence on pronunciation and linguistic knowl-graphemes, e.g. “# ¢ a t #” for the word “cat”. For the tri-
edge for speech processing. grgpheme_ system, the context is also tagged t_o the represen-
tation, as in “#ca cat at#” for “cat”. The acoustic models are
trained using the iterative Expectation Maximization (EM)
model from the process described above and allow contextigorithm. Analyzing the likelihood with increasing itera
tagged graphemes to align with the acoustic data. This lead®ns of training, it is noted that trigrapheme models cogee
to tagging of the graphemes with the context information infaster and have a higher likelihood than their grapheme-coun
the early stageas opposed to exploiting the context informa- terparts. This confirms that the context information helps
tion in later stages as done in typical grapheme based speerhprove the precision of the otherwise gross acoustic rele-
recognition and speech synthesis systems. vance of graphemes. Similarly, phone based models converge
Early tagging of context information to the graphemesfaster and have a higher likelihood than the trigrapheme
would effectively define the mapping of words “cat” and models. After the training is complete, the utterances are
“church” as “#ca cat at#” and "#ch chu hur urc uch ch#”. segmented in terms of the units. Figure 2 shows sample
Here # denotes beginning or ending of the word. Note thasegmentations of the phrase “Robbery, bribery, fraud” gisin
the early tagging of contextual graphemes is different frongrapheme, trigrapheme and phone units respectively.
context-dependent modeling of graphemes in later stages of After segmentation, the units are further clustered using
speech recognition and speech synthesis. The later sthgesocontext information for use during synthesis. In the uni-
context dependent modeling could still be applied to thesgrapheme and trigrapheme systems, the clustering for-build
early tagged graphemes. ing the units is done with a context of size 2. This implies
that for the unigrapheme based synthesizer, two neigh@porin
unigraphemes on either side are given as the context. The
trigrapheme system uses the two neighboring trigraphemes

For all experiments reported in this paper, we have used RMEfTectively, 3 unigraphemes on either side) as the context
voice from ARCTIC database [6]. The database consistd N€ splitting at the intermediate nodes is done on the basis
of 1128 utterances spoken by a US English male speake?! r@w entropy. This is in contrast to the conventional ap-
To validate the early tagging of context information to theProach of using higher level linguistic questions to captur
grapheme, we have restricted ourselves to 1-level contexfi® context. Thus the approaches presented in this paper
i.e., use of the immediate left and immediate right graphemB&2r Minimal assumptions on knowledge of the language and
to tag the current grapheme. Thus we refer to this 1-level€Nce are rapidly portable across languages.

context grapheme as trigrapheme in this work. A grapheme

3. DATABASE AND EXPERIMENTAL SETUP

with O-level context is referred to as unigrapheme. In otder Table 1. Number of units in each task
validate the potential of trigrapheme units, we have cotetlic : i
experiments in both speech synthesis and speech recagnitio |_Synthesizer-Typg #Units |
and compare the performance of trigraphemes, unigraphemes Phone 40

and phones. In speech synthesis we have built unit selection Unigrapheme 27

voices and conducted perceptual study to evaluate the per- Trigrapheme 2984

formance of trigrapheme, unigrapheme and phone units. In
speech recognition, we have built a phone decoder, grapheme To evaluate the performance of these synthesizers, a set
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Fig. 2. Segmentations for the phrase “Robbery, bribery, fraudigisnigrapheme, trigrapheme and phone units.

of 15 sentences were synthesized. These 15 sentences w
randomly chosen from Gutenberg text; however they aren
part of the ARCTIC dataset. Seven subjects were asked

r . .
; a%le 2. Average ratings of test sentences from different syn-
t151esizers. The survey is taken by 7 subjects

listen to the sentences synthesized by phone, unigrapheme s No T Phoneme Grapheme| Trigrapheme
and trigrapheme based synthesis systems and were asked 1 371 257 586
to score each sentence between 0 and 5 (O-worst and 5- ) 379 543 379
best). The average scores of test sentences from different 3 3.86 529 336
synthesizers are shown in Table 2. It could be observed the ) 571 571 329
trigrapheme based speech synthesizer performs significant 5 359 571 150
better than unigrapheme based system. The scores obtained 6 336 557 300
by trigrapheme based speech synthesis system are close to = 2'93 3'71 3'79
phone based speech system which shows that early tagging 5 4'07 2.86 3'71
of contextual information plays a significant role in buiidi - - -
speech synthesis systems. 190 ggg 2%;.1 gg;
11 4.07 2.57 3.00
5. TRIGRAPHEME BASED SPEECH RECOGNITION 12 3.86 303 371
. 13 3.79 2.29 3.21
State-of-the-art speech recognizers use context-depende 14 379 314 336
phoner_ne_s as the acoustic mpdeling units. _The context (_jepen- 15 3:14 3:14 3:64
dence is incorporated at the time of state tying during tnain Average 350 579 345

where phone states belonging to ‘similar’ context sharé the
parameters. The similarity is determined by a set of lingiiis
guestions that decide on which states to cluster togetings. T

dependence on existing knowledge from the language maké#it. An advantage of forcing context in this way is more
it Suboptima' to use techniques across |anguagesl Thigis thiscriminative modeling at the IeVeI Of the Units even befor
rationale behind investigations for other easily avaigabbd-  the application of conventional clustering routines fontext
eling units. Attempts in the use of grapheme as a modelinfisambiguation. Although, it may be argued that the tech-
unit for speech recognition have been reported in phonetigique is likely to face a data sparsity problem, it seems from
or par“a”y phonetic |anguages_ Most research on graphen‘@]f preliminary results that it is essential to d|Samb|gu:hE
based recognition has focused on improving clustering t@therwise gross grapheme units.
disambiguate various letter contexts during training. His t In order to evaluate the effectiveness of trigraphemes for
paper, we explore another dimension of introducing context speech recognition we built a trigrapheme decoder and com-
The success of the trigrapheme units in speech synthegigmred the performance with that of unigrapheme and phone
(Sec. 4) has motivated us to evaluate them for applicabilitglecoder. In these recognition experiments, each unit ierep
in recognition. In this work, we introduce context informa- sented by a 3 state context independent HMM with 2 Gaus-
tion for graphemes early on, at the choice of the modelingians per state. Speaker specific acoustic models were built



on the RMS voice of ARCTIC dataset. effectiveness in building speech synthesis and speeclg+eco
In all the three cases, Viterbi algorithm is used to decodaition systems. From the perceptual evaluation tests, we ha

through the search space of units. It has been well noted thabserved that performance of trigrapheme based synthesize

decoding through an exhaustive search space is highly-erraseem to be close to that of phone based synthesis system.

prone. The size of the space differs in the three systems withrom the error rates computed for the phone based and tri-

respect to the number of acoustic units each has and thélengirapheme recognizers, it is also evident that early taggfng

of the utterance to be decoded. Since trigrapheme units agraphemes perform better than phone recognizer. While the

higher in number the decoding took more time than the phoneoncept of early tagging seems to be a simple trick in bugdin

decoder or unigrapheme decoder. Due to the large number speech synthesis and speech recognition systems, it seems t

classes in trigraphemes we expected more confusion amomgld promise in building speech systems, specifically in the

the units and was informally observed to be so in the decodechse of minority languages.

sequences of trigraphemes in the initial experiments. More

over, we have used the same amount of limited data to train 7. ACKNOWLEDGEMENT
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