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Abstract
In this paper we propose features for automatic detection of
voice bar, which is an essential component of voiced stop con-
sonants, in continuous speech. The acoustic-phonetic and pro-
duction based knowledge such as, the presence of voicing, low
strength of excitation compared to other voiced phones and a
predominant low-frequency spectral energy, are mapped onto
a set of acoustic features that can be automatically extracted
from the signal. The usefulness of the proposed features in the
detection of voice bars is studied using a knowledge-based as
well as a neural network based approach. The performance of
the proposed features and approaches is studied on phones from
databases of two languages, namely English and Hindi.
Index Terms: voice bars, voiced stop-consonants, acoustic-
phonetic, residual-to-signal ratio, normalized error, zero-
frequency resonator, knowledge based approach, neural net-
work based approach.

1. Introduction
Voice bar refers to the voiced region of the acoustic waveform
corresponding to the phonation when the oral and nasal cavities
are completely closed. It is the acoustic manifestation of the
sound radiated through the pharyngeal wall. The voice bar is
the essential component of voiced stop consonant and it corre-
sponds to the silent event of voiceless stop consonant. The clo-
sure in the oral cavity takes place anywhere between the upper
lip and pharynx depending upon the type of the stop consonant.
Detection of voice bar from continuous speech not only helps
in identifying the voiced stop consonant concerned, but is also
useful for automatic segmentation and labeling of speech cor-
pora for speech synthesis as well. However, detection of voice
bar in continuous speech is considered as a difficult problem
due to the poor acoustic signal strength. Several studies made
on the classification of stop-consonants [1] assume that the seg-
mentation or detection of these stop-consonants is already done.
Accurate detection of stop-consonants in continuous speech is
essential in order to use these classification strategies.

The organization of the paper is as follows: In Section 2 the
acoustic features proposed for the detection of voice bars are
described. Section 3 describes the methods employed for de-
tection of voice bars in continuous speech. The dataset used for
the experiments and the performance of the voice bar detection
task are discussed in Section 4. Summary and conclusions are
given in Section 5.

2. Features for detection of voice bars
Many studies have been made in identifying the acoustic cues
for the segmentation and labeling of speech [2, 3, 4]. The main
issue with these studies is that the data used for analysing the

acoustic cues are from well-articulated isolated utterances of
the phonetic units. But in continuous speech, these acoustic
features are not properly manifested due to aspects like accent,
emotion and speaking rate of the speaker, along with the coar-
ticulation of neighbouring sounds depending on the context in
which the phone occurs. Also, accurate measurement of these
acoustic features from the speech signal is an important issue.
In this section, we propose a set of acoustic features for auto-
matically identifying regions of voice bar, in continuous speech.

2.1. Residual to signal ratio

The residual to signal ratio (RSR) or the normalized linear
prediction (LP) error is computed as, vrsr[n] = er[n]/es[n],
where er[n] = 1/N

PN/2

i=−N/2 r2[n + i] is the short term en-
ergy of the linear prediction residual signal obtained by inverse
filtering the speech signal. Similarly, es[n] is the short term en-
ergy of the speech signal. A 10th order short-term (20 ms frame
size and 10 ms frame shift) LP analysis is performed to compute
the residual signal. The inverse filtering removes most of the
signal energy from the voiced regions as compared to nonvoiced
(unvoiced and silence) regions of speech, which typically have
uncorrelated speech samples. This results in a low RSR value
in the voiced regions compared to nonvoiced regions, as can
be seen in Figure 1(b). Any channel related correlations are
removed by preemphasizing the speech signal before LP analy-
sis, using a simple difference operation. This feature primarily
helps identifying voiced regions from nonvoiced regions.

2.2. Low- to high-order residual energy ratio

The low- to high-order residual (LHR) energy ratio is computed
as, vlhr[n] = er1

[n]/er10
[n], where er1

[n] and er10
[n] are the

short-term energies of LP residual signals of order 1 and 10, re-
spectively. A 1st order LP inverse filtering removes most of the
signal energy from the voice bar regions which have a predom-
inantly low frequency content. At the same time, only a small
portion of the energy is removed from other voiced regions of
the speech signal. In comparison, a 10th order LP inverse fil-
tering removes as much energy in the voice bar regions, while
it removes a significant amount of energy from the other voiced
regions. This can be seen from the 1st and 10th order normal-
ized error signals shown in Figure 1(c). Hence a ratio of the
normalized errors, shown in Figure 1(d), can be used as a fea-
ture for discriminating voice bars from other voiced regions.

2.3. Zero-frequency resonator signal strength

A zero-frequency resonator (ZFR) is a linear time-invariant all-
pole system with two real poles on the positive real axis of
the z-plane[5]. The proximity of the poles to the unit circle
determine the bandwidth of the resonator. The speech signal
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Figure 1: Acoustic features based on normalized error. (a) The
speech waveform for an utterance ”She had you...”. Manually
marked phoneme labels are given above the signal. The label
‘dcl’ around 0.4 sec corresponds to the voice bar region (clo-
sure region of the voiced stop consonant /d/). (b) The 10th or-
der RSR signal. (c) RSR signals for LP orders 1 (solid) and 10
(dashed). (d) Reciprocal of the LHR signal.

passed through a zero-frequency resonator predominantly con-
tains the low frequency content. The zero-frequency resonator
introduces a cumulative DC bias which is removed by subtract-
ing the local mean computed using a moving average window
of size 10 ms. The ZFR signal and its short-term (20 ms) energy
are shown in Figure 2. It can be seen that the ZFR signal energy
is a good evidence for discriminating voiced regions from the
nonvoiced.

2.4. ZFR signal to speech energy ratio

The zero-frequency resonator signal to speech energy ratio is
computed as vzsr[n] = ez[n]/es[n], where ez[n] and es[n] are
the short-term (20 ms) energies of the zero-frequency resonator
signal and the speech signal, respectively. The speech and
the ZFR signal are normalized to an overall root-mean-square
(RMS) value of unity, before the computation of short-term en-
ergies. The normalized speech and ZFR signals are shown in
Figures 2(a) and (b), respectively. It can be seen that the relative
amplitude of the voice bar region with respect to the adjacent
vowel regions is more in the ZFR signal as compared to that in
the speech signal. This is due to the fact that the ZFR allows
most of the energy in voice bar regions while allowing only a
part of the energy in other voiced regions. Hence the ZFR signal
to speech energy ratio is higher for voice bar regions compared
to other voiced regions, as can be seen in Figure 2(d).

2.5. Strength of excitation source signal

A 10th order LP residual signal which is void of most of the
vocal tract system characteristics is used as an estimate of the
excitation source signal. The envelop of the LP residual signal
is computed as the magnitude of the complex analytic signal ob-
tained by Hilbert transform of the residual signal. The residual
signal has large errors around the glottal closure instants (GCIs),
which appear as peaks in the Hilbert envelop signal. The am-
plitude of the Hilbert envelop signal at the peak locations cor-
respond to the rate at which the vocal folds close, and hence
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Figure 2: Acoustic features from the zero-frequency resonator
signal. (a) The speech signal, (b) ZFR signal, (c) short-term
energies of the ZFR (solid) and speech (dashed) signals, and
(d) ZFR signal to speech energy ratio.
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Figure 3: Excitation strength based feature. (a) Speech signal,
(b) LP residual of order 10, (c) Hilbert envelop of the residual
signal, (d) Glottal closure instants, and (e) strength of excitation
source.

is taken as a measure of the strength of the excitation source
signal. The peaks in the envelop signal are located by picking
the positive to negative zero-crossings of the short-term (10 ms)
phase slope function[6]. The speech, residual and Hilbert en-
velop signals along with the GCIs and the excitation strength
are shown in Figure 3. The strength of excitation for voice bars
is typically low compared to other voiced sounds, and hence
is a useful feature to discriminate voice bars from other voiced
sounds in continuous speech.

2.6. Dominant resonance frequency

The dominant resonance frequency (DRF) is measured by pick-
ing the largest peak in the numerator group-delay (NGD) spec-
trum [7]. The NGD spectrum is used as it resolves the spec-
tral peaks better than the magnitude spectrum, for short (less
than a pitch period) segments of speech [7]. For a given signal
x[n], the NGD is computed as τ (w) = (XR(w) ∗ YR(w) +
XI(w) ∗ YI(w)), where X(w) and Y (w) denote the discrete
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Figure 4: Acoustic features based on dominant resonance fre-
quency. (a) Speech signal, (b) short-term DRF, and (c) short-
term DRS.

time Fourier transform of x[n] and y[n] = nx[n]. The sub-
scripts R and I denote the real and imaginary parts of the com-
plex spectrum. The DRF computed for every 6 ms window
with 1 ms shift is shown in Figure 4(b). Due to the predom-
inantly low spectral energy in voice bars, the dominant reso-
nance frequency is low for voice bars compared to most of the
other voiced sounds.

2.7. Normalized dominant resonance strength

The strength of the dominant resonance frequency is measured
as the magnitude of the numerator group-delay spectrum at
the DRF. It is normalized by the strength of the second most
dominant peak in the NGD spectrum. The normalized dom-
inant resonance strength (DRS) is computed as vdrs = 20 ∗
log10(τn(f1)/τn(f2)), where τn(f) is the NGD, and f1 and
f2 are the first and second most dominant frequencies in the
NGD. The normalized DRS is higher for voice bars compared
to most of the other voiced sounds as can be seen in Figure 4(c).

3. Automatic detection of voice bars
Two different approaches - a knowledge based approach and a
neural network based approach - are explored to study the use-
fulness of the proposed features in the detection of voice bars
in continuous speech. The knowledge based approach (KBA)
gives a better insight into the speech production mechanism and
the acoustic signal. But the main problem with this approach is
the setting of thresholds. The neural network approach (NNA)
avoids this problem, but requires manually and accurately la-
beled data for training the neural network model.

3.1. Knowledge based approach

A hierarchical evidence-based classification strategy is em-
ployed using the empirical knowledge acquired by manual
analysis of the acoustic signal and the features. The algorithm
employed for the detection of voice bars is as follows:

1. The voiced-nonvoiced decision is arrived at using three
of the features described in Section 2, namely vrsr[n], the 10th

order RSR signal, vzsr[n], ZFR signal to speech energy ratio,
and vzfr[n], the zero frequency resonator signal strength. The

binary voiced-nonvoiced signal is computed as,

dvnv[n] =

8<
:

1 if (
yrsr[n]+yzsr[n]+yzfr[n]

3
) > 0.5

0 otherwise,

(1)

where yrsr[n] = 1− e(−10∗vrsr [n]), yzsr[n] = 1− e(−vzsr[n])

and yzfr[n] = 1− e(−10∗vzfr[n]).

2. The first level of evidence for discriminating voice bars
from other voiced sounds is obtained based on the ZFR signal
to speech energy ratio vzsr[n], the LHR energy ratio vlhr[n],
and the voicing decision dvnv[n] obtained in the previous step.
It is computed as,

dvb1 [n] =

8><
>:

1 if {(dvnv[n]) & (yzsr[n] > 0.99)
& (ylhr[n] < 0.99)}

0 otherwise,

(2)

where ylhr[n] = 1− e−10∗(vlhr [n]−2)).

3. The final decision on the locations of voice bars is made
by validating dvb1 using the excitation strength and dominant
resonance evidences, and is computed as,

dvb[n] =

8><
>:

1 if {(dvb1 [n]) & (ves[n]/vmes < 0.1)
& (vdrf [n] < 300) & (vdrs[n] > 25)}

0 otherwise.

(3)

The excitation strength ves[n] is required to be less than 10% of
the maximum excitation strength vmes computed over the entire
signal. The dominant resonance frequency should be less than
300 Hz and its strength should be at least 25 db more compared
to the next dominant frequency.

Figure 5 shows a portion of a speech utterance along with
the various evidence and decision plots. All the thresholds are
chosen empirically and in a conservative manner so as not to
miss a genuine voice bar even if a few false alarms are allowed.

3.2. Neural network based approach

A multilayered feedforward neural network (MLFFNN) classi-
fier is used to automatically learn the nonlinear decision surface
between the voice bars and the rest of the voiced sounds. A
four layered MLFFNN neural network model is used. It con-
sists of an input layer with as many linear nodes as the num-
ber of features, two hidden layers with nonlinear nodes and an
output layer with one nonlinear node for a two class classifica-
tion. The first hidden layer is used as an expansion layer which
helps in nonlinear transformation of the input feature vector into
a higher dimension space where the patterns are more linearly
separable. A second hidden layer provides for a gradual trans-
formation from a high dimension space to the one-dimension
space of the output layer. The activation function used for the
nonlinear nodes are tanh functions. Standard backpropagation
learning algorithm is used for training the neural network.

4. Experimental results
4.1. Datasets

The performance of the proposed approaches for detecting
voice bars in continuous speech is evaluated on datasets of two
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Figure 5: Features and evidence plots used in knowledge
based approach. (a) Speech signal, (b) spectrogram of the
speech signal along with manually marked phones, (c) yrsr[n],
(d) ylhr[n], (e) yzsr[n], (f) vzfr[n], (g) DRF, (h) DRS, (i) voic-
ing decision, and (j) the final voice bar decision.

different languages, namely English and Hindi. A subset of data
from the standard TIMIT database [8] is used for the studies on
English language phones. The data from one of the dialects
‘dr1’ is used for acquiring the knowledge as well as training the
neural network model. The data from another dialect ‘dr6’ is
used for testing. The dialect ‘dr1’ has 38 speakers (24 male and
14 female) each uttering ten short (3 to 4 seconds) sentences.
The dialect ‘dr6’ has 35 speakers (22 male and 13 female) each
uttering ten short (3 to 4 seconds) sentences. A small subset
of the Hindi speech database used in synthesis experiments de-
scribed in [9], is used to study the performance of the proposed
features on the phones of Hindi language. The data used is
about five minutes of manually marked, single female speaker
speech recorded in a quiet room at a sampling rate of 16 kHz.
There is no separate data used for knowledge acquisition or for
training. The performance is evaluated based on the knowledge
acquired or model trained using the data from dialect ‘dr1’ of
the TIMIT dataset.

4.2. Performance evaluation

The performance of the task of detecting voice bars in contin-
uous speech is evaluated in terms of the missed detection rate
and false alarm rates. The missed detection rate is computed as
Pm = Nm/Nvb ∗ 100%, where Nm is the number of missed
voice bars out of a total Nvb voice bars. The false alarm rate is
computed as Pf = Nf/Nnvb ∗ 100%, where Nf is the number
of nonvoice-bars that are detected as voice bars out of a total
number of Nnvb nonvoice-bars.

A voice bar is said to be detected correctly if at least 10 ms
of the closure period is detected. Similarly, any phone not hav-
ing a voice bar and with more than 10 ms of its region marked
as voice bar is counted as a false alarm. Table 1 gives the per-
formance of the two approaches for detecting voice bars in con-
tinuous speech. It is seen that the neural network based methods
perform better than the knowledge based methods, due to their
ability to automatically learn the thresholds. The network struc-
ture used is ‘7L-14N-5N-1N’, where L or N denote a linear or a
nonlinear layer, and the preceeding number specifies the num-

Table 1: Errors in detection of voice bars in continuous speech
Dataset Approach Pm (%) Pf (%)
TIMIT-dr1 KBA 13.9 11.8

NNA 11.3 9.1
TIMIT-dr6 KBA 14.8 13.1

NNA 11.9 10.5
HINDI KBA 9.2 10.3

NNA 7.4 7.9

ber of nodes in the layer. The network structure is determined
empirically. Most of the missed voice bars are due to poor ar-
ticulation of the voiced stop-consonants without any voicing in
the closure period. The manual labeling by human listeners is
mainly driven by what one expects to hear than what is actually
uttered. Most of the false alarms are due to nasals (/m/ and /n/)
and semivowels (liquids /l/ and /w/) which have a lot of similar-
ities to the voice bars in terms of the acoustic features used.

5. Summary and Conclusions
In this paper, the problem of identifying the locations of voice
bars in continuous speech was addressed. A set of acoustic fea-
tures were proposed and evaluated for their performance using
two different approaches - knowledge based and neural network
based. It was shown that good detection accuracies can be ob-
tained using both the methods. The identification of voice bar
regions in continuous speech provide for good anchor points for
further segmentation and labeling of speech. We are currently
working on using the proposed set of features to detect regions
of speech such as frication, burst, aspiration and vowel onset
points.
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