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A Constraint Satisfaction Model for Recognition of
Stop Consonant–Vowel (SCV) Utterances

C. Chandra Sekhar and B. Yegnanarayana

Abstract—In this paper, we propose a model for recognition of
utterances of consonant–vowel (CV) units. The acoustic–phonetic
knowledge of the CV classes is incorporated in the form of con-
straints of a constraint satisfaction model. The model combines
evidence from multiple classifiers. The significant feature of this
model is that discrimination of the CV units could be enhanced by
a combination of even weak evidence derived from the features.
The evidence is obtained from multilayer feedforward neural net-
works trained for subgroups of CV classes. The evidence is en-
hanced using a set of feedback subnetworks in the constraint satis-
faction model. The weights for the connections in the feedback sub-
networks are derived using acoustic-phonetic knowledge and the
performance statistics of the trained networks. The performance of
the proposed model is demonstrated for recognition of utterances
of a large number (80) of stop consonant-vowel units for the Indian
language Hindi.

Index Terms—Consonant–vowel units, constraint satisfaction
model, neural networks, speech recognition.

I. INTRODUCTION

I N THIS PAPER, we propose a constraint satisfaction neural
network model for recognition of consonant–vowel (CV)

units of speech. CV units occur frequently in normal speech
and recognition of these units is crucial for development of any
speech recognition system. Moreover, they are also natural units
of speech production in the sense that, typically most syllables
are of CV type [1]. Human beings are able to extract the rele-
vant parameters or features from the speech signal and recognize
them effortlessly most of the time [2]. The remarkable charac-
teristic is that they are able to do this in a speaker independent
manner even in adverse environmental conditions. This ability
of humans may be attributed to the knowledge they have ac-
quired about the sound units, besides the sophisticated auditory
processing and neural classification mechanism. While devel-
oping a speech recognition system, this knowledge factor must
be kept in mind.

Among the CV units that occur in a text of the Indian lan-
guage Hindi, about 45% of the units belong to the category of
stop consonant–vowel (SCV) units [3]. In this paper, we propose
a new approach for developing a recognition system for SCV
units. It takes into account the constraints at various levels:

1) language level:legal sound units, relative frequency of
occurrence;

2) acoustic-phonetic level:speech production features [4];
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3) signal level:parameters from the speech signal;
4) dynamic constraints:discrimination among units within

a group.

Some of the knowledge at various levels can be represented
through a constraint satisfaction model [5]–[7].

The next section describes the overall approach used for de-
veloping the neural network model for SCV recognition. Sec-
tion III deals with the preparation of speech data of SCV units
for this study. It also describes preprocessing and parametric
extraction stages. Section IV presents the modular networks
for classification of SCV units using different grouping criteria
based on speech production. A constraint satisfaction model
is developed incorporating the acoustic–phonetic knowledge as
weak constraints. The model is described in detail in Section V.
Section VI describes the operation of the constraint satisfaction
model. The results of recognition of SCV units uttered in isola-
tion are given in Section VII.

II. PROPOSEDAPPROACH FORRECOGNITION OFSCV UNITS

Speech data for these studies consists of SCV units of a typ-
ical Indian language. The SCV units for the language Hindi [8]
are organized along three broad categories, namely, the manner
of articulation (MOA) of the consonant, the place of articulation
(POA) of the consonant and the vowel. There are four manners
of articulation: unvoiced unaspirated (UVUA), unvoiced aspi-
rated (UVA), voiced unaspirated (VUA), and voiced aspirated
(VA). There are four places of articulation for Hindi stop con-
sonants: velar, alveolar, dental, and bilabial. The five vowel cat-
egories used in our studies are: /a/, /i/, /u/, /e/, and /o/. Combi-
nations of all MOAs, POAs, and vowel categories for forming
SCV units result in 80 different SCV classes.

Normally each of the SCV classes has unique production
characteristics and when uttered in isolation these produc-
tion characteristics are well reflected in the resulting speech
signal. However, due to closeness of the shapes of the vocal
tract for some of these classes, it is difficult to extract the
discriminant features by processing the speech signal alone.
The acoustic–phonetic knowledge of the SCV units suggests
that these units can be grouped into different subgroups, so
that a modular network can be developed for the classifier.
Each module is designed to classify the units in that subgroup
having fewer units. The advantage is that the complexity of the
classifier will be reduced. However, for these modular networks
to be successful, one needs to know the subgroup identity of
a given SCV unit from the input speech. Table I gives the
grouping of the 80 SCV units of Hindi into different subgroups
based on three different criteria, namely, manner of articulation
(MOA), place of articulation (POA), and vowel (V). We refer
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TABLE I
LIST OFSCV CLASSES AND THESUBGROUPSBASED ONDIFFERENTGROUPING

CRITERIA FOR EACH CLASS

to each type of SCV unit as a class. Hence, the problem is to
develop a classifier for these 80 SCV classes.

An SCV unit occurs in a different combination of other units
in a subgroup for each grouping criteria. The classifier devel-
oped for each subgroup captures discriminating features of the
units in the subgroup. Thus, the output for an SCV unit from the
classifiers based on the three grouping criterion can be viewed
as evidence from three different classifiers.

The objective of this paper is to propose a constraint satis-
faction (CS) model [5]–[7] that takes the outputs of the three
classifiers as input and combines it with the production knowl-
edge of the SCV units incorporated in the model as constraints.
A CS model is a feedback neural network in which each node
represents a hypothesis and the weights connecting the nodes
represent the constraints. A global “goodness of fit” function
is defined in terms of the activation state of the nodes and the
weights of the network. The advantage of such a network rep-
resentation is that, when the network relaxes to a stable equi-
librium state, the resulting state represents a situation when the
constraints are satisfied to maximum extent. Such a result will
be obtained even though the constraints are weak due to partial
knowledge of the domain specification and also due to poor rep-
resentation of the information in the parametric form.

The proposed system thus consists of two stages. The first
stage has three modular networks corresponding to the three dif-

ferent grouping criteria. The modular network for each grouping
criterion in turn consists of multilayer feedforward neural net-
works (MLFFNNs) for different subgroups. The second stage of
the proposed system consists of feedback neural network mod-
ules. The outputs of the MLFFNNs in the first stage are used as
evidence to the corresponding feedback subnetwork in which
the feedback connections are provided using the knowledge of
speech production for the SCV units. It is interesting to note
that the values of the weights on the connecting links in the
feedback subnetworks are not unique. That is why the knowl-
edge represented by these weights is termed as “weak.” It is the
combined effect of the entire feedback network that reinforces
even the weak evidence both from the external input (outputs of
MLFFNNs) as well as the knowledge of the production incor-
porated in the model.

The evidence from all the three feedback subnetworks is fur-
ther reinforced by combining them through another feedback
subnetwork which uses the concept of instance pool as in the
interactive activation and competition (IAC) model [7]. All the
four feedback subnetwork modules have feedback connections
among the nodes within the module and they also have bidi-
rectional connections to the nodes in the instance pool feedback
subnetwork. The block diagram of the proposed system for SCV
recognition is shown in Fig. 1.

III. PREPROCESSING ANDREPRESENTATION OFSPEECHDATA

We consider speech data corresponding to isolated utterances
of the SCV units. For each SCV unit, 12 repetitions of iso-
lated utterances of the unit are collected for each of three male
speakers. Out of these, four for each unit and speaker are used
as the training set 1 and four others for each unit and speaker
are used as the training set 2. All the speech data is collected in
a laboratory environment using a sampling frequency of 10 kHz
and 16 bits per sample.

Speech data for each unit is processed as follows: The point
at which the consonant ends and the vowel begins in an SCV
unit is defined as the vowel onset point (VOP). The VOP for
each SCV unit is identified using the method given in [9]. We
consider 60 ms of data before and 140 ms of data after the VOP
for analysis. The 200 ms segment of speech data is analyzed
frame by frame, with each frame of duration 20 ms and with
a frame shift of 5 ms. Each frame of data is represented using
12 weighted cepstral coefficients derived from eight linear pre-
diction coefficients [10]. The number of cepstral coefficients
is larger than the order of the linear prediction (LP) analysis.
This will help representing the linear prediction spectrum better.
The cepstral coefficient vectors of adjacent frames are averaged.
Thus, each SCV unit is represented by parame-
ters. It should be noted that parametric representation is crucial
in the sense that we must ensure minimum loss of information
in order to obtain good discrimination among SCV classes. LP
derived cepstral coefficients were found to be suitable parame-
ters for speech recognition studies [10]. We have also conducted
a separate study to evaluate different parametric representations
for classification of the place of articulation of the consonant
in the SCV units based on the transition region (of 30 ms after
the VOP in an SCV unit) [11]. Table II shows the results of this
study. The improved performance for the weighted LP cepstral
coefficients over the mel-scale cepstral coefficients can be at-
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Fig. 1. Block diagram of the proposed system for recognition of SCV units.

tributed to the fact that LP coefficients preserve the formant tran-
sitions better than the mel-scale spectral or cepstral parameters.

In the next section, we discuss the development of feature
extraction for SCV units using trained neural networks.

IV. NEURAL NETWORKS AS NONLINEAR

FEATURE EXTRACTORS

We develop a MLFFNN, which, after training, is interpreted
as a nonlinear filter. The filter is designed in such a way that it
provides discrimination among the classes within the subgroup
used for training the network. One such network is used for

each subgroup consisting of 16 or 20 classes depending on the
grouping criterion used for organizing the SCV units. The list
of 80 SCV units and the subgroups based on different grouping
criteria are given in Table I. For example, the class /ka/ belongs
to UVUA subgroup based on MOA, “velar” subgroup based on
POA and “/a/” subgroup based on vowel.

It may be noted that if we train the neural network using sam-
ples for one class only, i.e., a single output unit network, then
the resulting network does not capture the discrimination char-
acteristics with respect to other classes. On the other hand, if
the number of classes is large and the classes are close, it may
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TABLE II
PERFORMANCECOMPARISON OFDIFFERENTPARAMETRIC REPRESENTATIONS

FOR CLASSIFICATION OF THEPLACE OF ARTICULATION OF THE CONSONANT IN

SCV UNITS USING THE TRANSITION REGION

Fig. 2. Illustration of the effect of grouping a class with different subsets of
classes on the decision surfaces formed. The three classes with intermediate
level of shading only are used for grouping with the class of interest (dark
shading).

be difficult to capture the discrimination by a single network.
Therefore, a modular network derived by grouping the units into
subgroups is a compromise among the conflicting requirements
[12].

The shape of the decision surface formed for a class by an
MLFFNN depends on the classes in a subgroup. This behavior
is illustrated in Fig. 2 for an arbitrary two-dimensional (2-D)
pattern space. In this figure the regions for 10 different classes
are shown. The region for the class under consideration is shown
in dark shade. When this class is grouped with sets of three other
classes (shown by intermediate level shading) only, then the de-
cision surfaces formed for the class may vary as illustrated for
four cases in Fig. 2. Therefore the performance of MLFFNNs on
the test data of a class can vary for different grouping criteria.

The structure of the MLFFNN used in these studies consists
of 240 nodes in the input layer, 70 nodes in the first hidden layer,
and 50 nodes in the second hidden layer [3]. The results of the
trained MLFFNNs as classifiers for each of the SCV classes
in their subgroups is given in Table III. Each entry in the table

TABLE III
CLASSIFICATION PERFORMANCE OFMLFFNNS BASED ON DIFFERENT

GROUPINGCRITERIA (MOA: MANNER OF ARTICULATION, POA: PLACE OF

ARTICULATION, V: VOWEL) FORTEST DATA OF EACH SCV CLASS

shows the percentage of the total number of test patterns of an
SCV class that are correctly classified by the MLFFNN. It can
be noted from Table III that the MLFFNNs of the three grouping
criteria do not give the same performance for many classes.

The MLFFNN trained for classes in a subgroup can be viewed
as a set of class dependent filters, where the filter characteris-
tics for a class are designed to discriminate that class against the
other classes in that subgroup. Thus, there are 16 or 20 filters in
each subgroup and 80 filters for each grouping criterion. It may
be noted that each SCV class occurs with a different subset of
SCV classes for each of the three groupings. We can also inter-
pret the network as a filter set tailored to the classes in a sub-
group. This is like Gabor filters used for texture classification
where the filters are tailored to the characteristics of the texture
classes under consideration [13]. The characteristics to be op-
timized in the case of Gabor filters are resolution, orientation,
and spatial frequency.
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Normally, the trained MLFFNNs can be used directly as clas-
sifiers for the subgroups of classes. However, the filter interpre-
tation provides greater flexibility and robustness in the develop-
ment of a classifier for all the SCV classes. Once the MLFFNNs
are trained, then they are used as nonlinear filters. The outputs of
the filters for each subgroup for a given training pattern are used
to form a feature vector. The distribution of the feature vectors is
obtained for each class from the training set 2. The distribution
is represented in terms of a mean vector and a variance param-
eter derived from the feature vectors for the class.

The outputs of the sets of filters designed in this section
are given as input to the feedback subnetworks of the con-
straint satisfaction model. The next section will describe the
feedback subnetworks and explain the method of determining
the weights for the connections in the feedback subnetworks.
These weights represent the constraints and they are derived
using the acoustic-phonetic knowledge and the performance
statistics of the MLFFNNs.

V. FEEDBACK SUBNETWORKS FOR

DIFFERENTGROUPINGCRITERIA

We first build three different feedback subnetworks, one for
each of the three grouping criteria. Since the SCV classes within
a subgroup have been designed to compete among themselves
during training of the MLFFNN for that subgroup, we provide
excitatory connections between the nodes corresponding to the
classes within a subgroup. All the connections across the sub-
groups are made inhibitory. The weights for the excitatory and
inhibitory connections have been derived from the confusion
matrices obtained from the classification performance of the
MLFFNNs.

The confusion matrices for different manners of articula-
tion, places of articulation and vowels are given in Table IV.
The rounded values in the parentheses are interpreted as
(symmetric) similarity measures. For example, the similarity
between UVUA and UVA is indicated as 0.03 which is the
rounded value of the average of the two entries for UVUA and
UVA in the confusion matrix, i.e., ((3.1 2.5)/2)/100.

The similarity measures are used to determine the weights for
the excitatory and inhibitory connections in the feedback sub-
networks. An excitatory connection is provided between nodes
of two SCV classes within a subgroup if they differ in only MOA
or POA or vowel characteristic. The weight of an excitatory con-
nection is equal to the similarity measure between the differing
production features of the two classes. For example, in grouping
based on MOA, the class /ka/ belongs to the UVUA subgroup.
Of the 20 classes present in this subgroup (/ka/, /t.a/, /ta/, /pa/,
/ki/, /t.i/, /ti/, /pi/, /ku/, /t.u/, /tu/, /pu/, /ke/, /t.e/, /te/, /pe/, /ko/, /t.o/,
/to/, and /po/), an excitatory connection is provided between /ka/
and each of the following seven classes only: /t.a, /ta, /pa/, /ki/,
/ku/, /ke/, and /ko/. The remaining 12 classes in this subgroup
differ with /ka/ in both POA and vowel and hence no connec-
tion is provided between the nodes of /ka/ and these 12 classes.
The weight for the excitatory connection between /ka/ and /ku/
is 0.02, which is the similarity measure between the vowels /a/
and /u/ as given in Table IV(c).

An inhibitory connection is provided between nodes of the
classes in different subgroups only if the two classes differ ei-

TABLE IV
CONFUSIONMATRICES FORDIFFERENTMANNERS OFARTICULATION, PLACES

OF ARTICULATION AND VOWELS. THE VALUES IN THE PARENTHESES

ARE INTERPRETED ASSIMILARITY MEASURESDERIVED FROM

THE CONFUSIONMATRIX

ther in MOA or POA or vowel only. For the earlier example of
class /ka/ in the grouping based on MOA, an inhibitory connec-
tion is provided between /ka/ in the UVUA subgroup and each
of the following classes: /kha/ in UVA, /ga/ in VUA and /gha/
in the VA subgroup. All the other classes in the UVA, VUA,
and VA subgroups differ with /ka/ not only in MOA but also
in POA or/and vowel. The weight for an inhibitory connection
is inversely proportional to the similarity measure between the
differing production features of the two classes. If the similarity
measure is (in the range 0.0 to 1.0), then the inhibitory weight

is assigned as follows:

(1)

If is less than 0.01, then the corresponding inhibitory
weight is assigned as 1.0. The weights of the connections
for the class /ka/ in the feedback subnetworks for different
grouping criteria are given in Table V.

The connections in the feedback subnetwork for the grouping
criterion of POA are illustrated in Fig. 3. The excitatory con-
nections for the class /ka/ in the ‘Velar’ subgroup are shown in
Fig. 3(a) and the inhibitory connections for the class are shown
in Fig. 3(b).
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TABLE V
ILLUSTRATION OF WEIGHTS OFCONNECTIONS FORCLASS /KA/ IN THE

FEEDBACK SUBNETWORKS FORDIFFERENTGROUPINGCRITERIA

The main function of each feedback subnetwork is to enhance
the evidence available from the filters for the class of the input
utterance by giving positive contributions from the evidence for
the classes close to it in a subgroup and to reduce the evidence
for the classes which are in the other subgroups but are close to
it. The weights of the connections based on similarities among
classes help the feedback subnetwork to perform its function as
a constraint satisfaction network.

Each node in a feedback subnetwork is associated with a
mean vector and a variance parameter representing the
distribution of the feature vectors for the class of the node. We
assume a symmetric Gaussian distribution, which can be de-
scribed by the mean vector and the diagonal variance matrix.
The mean vector and the variance parameter are obtained from
the training set 2. A training pattern belonging to the class of
the unit is given as input to the MLFFNN for the subgroup con-
taining the class. The output of the MLFFNN is used to form a

Fig. 3. Connections for the class /ka/ in the POA feedback network. (a)
Excitatory connections for the class /ka/ in the “velar” subgroup. (b) The
inhibitory connections for the class /ka/.

feature vector. The dimension of the feature vector is the same
as the number of classes in the subgroup. Ifis the feature
vector obtained for theth training pattern and is the number
of training patterns for each class, then theth element of the
mean vector, , is computed as follows:

(2)

where is the th element of . The variance parameter is
computed from the mean vector and the feature vectors for the

training patterns as follows:

(3)

where is the dimension of the feature vectors.
The mean vector and the variance parameter describe a sym-

metric Gaussian distribution and they are computed for each of
the 80 SCV classes and for each of the three grouping criteria
during the second level of training. For the classification of an
SCV utterance, the pattern belonging to the utterance is given
as input to all the MLFFNNs. The outputs of the MLFFNNs are
given as input to the feedback subnetwork corresponding to that
grouping.
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Fig. 4. Constraint satisfaction model for classification of SCV utterances. The model consists of three feedback subnetworks for the three groupingcriteria and
an instance pool through which the three feedback subnetworks interact. Only connections for the class /ka/ are shown for illustration.

VI. CONSTRAINT SATISFACTION MODEL FOR

CLASSIFICATION OF SCVS

The three feedback subnetworks corresponding to the three
different grouping criteria interact with each other through a
pool of nodes in another feedback subnetwork, called instance
pool [14]. There are as many (80) nodes in the instance pool as
the total number of SCV classes. Each node in the instance pool
has a bidirectional excitatory connection with the corresponding
nodes in each of the feedback subnetworks. For example, the
node corresponding to the class /ka/ in the instance pool has
a bidirectional connection to the nodes corresponding to /ka/
in MOA, POA, and vowel feedback subnetworks, as shown in
Fig. 4. The nodes within the instance pool compete with each
other and hence are connected by a negative weight. Although
the choice of value of this weight is not critical, a value of0.2
was found suitable from experimental studies. The weight typ-
ically depends on how many of the other nodes in the instance
pool contribute to the activation of a given node and the extent of
their contribution, which depends on the output values of those
nodes. Normally, the sum of weights (both excitatory and in-
hibitory) from all active nodes should be nearly zero.

The three feedback subnetworks and the instance pool sub-
network constitute the constraint satisfaction (CS) model re-
flecting the known speech production knowledge of the SCVs,
as well as the knowledge derived from the trained MLFFNNs for
different grouping criteria. The CS model developed for classi-
fication of SCVs is shown in Fig. 4. There are four feedback
subnetworks and all the connections in the network are bidirec-

tional. Note that only the excitatory connections (solid lines)
linking the nodes corresponding to /ka/ across all the four feed-
back subnetworks are shown in the figure. A few of the in-
hibitory connections (dashed lines) are shown in the instance
pool subnetwork. The connections within each subnetwork are
as shown in Fig. 3(a) and (b), where the connections in the feed-
back subnetwork for the POA grouping criterion are given.

The outputs of the MLFFNNs corresponding to different sub-
groups in Fig. 1 are used to compute the external evidence or
bias, which is used as external input to the constraint satisfaction
model. The external input for each of the nodes in the feedback
subnetworks is derived from the 16- or 20-dimensional feature
vector of the MLFFNN to which the unit belongs. For example,
the external input or bias to the node /ka/ in the POA feedback
subnetwork is computed using the 20-dimensional output fea-
ture vector ( ) of the MLFFNN5 in Fig. 1. A mean vectorand
a variance parameter are associated with each node in the
three feedback subnetworks. The mean vector is derived from
the training set 2 as discussed in Section V. The bias or external
input for a node in the feedback subnetworks is given by

(4)

where

(5)

and

(6)
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Here, is the dimension of the feature vector andand
are the th elements of the feature vectorand the mean vector

, respectively.
Each node in the CS model also computes the weighted sum

( ) of the inputs from the other nodes in the model. The net input
( ) to a node in the feedback subnetworks is given by

(7)

The constants and determine the relative importance
given to the external evidence () and to thea priori knowledge
in the form of constraints reflected in the weighted sum ()
from other nodes in the model. If the external evidence is
strong, such as for the case of features extracted from clean
speech, then the value of may be made large, closer to 1.0.
If the speech production knowledge is captured well in the
weights of feedback subnetworks, then the valuemay be
made large, closer to 1.0. While the choice of values for
and is not very critical, some experimentation is useful to
determine suitable values for them. We have chosen
and in our studies.

A sigmoid activation function was chosen for all the nodes in
the CS model. The output of a node using the sigmoid function
is given by

(8)

where is the slope of the sigmoid function and
is the threshold on the activation valueof the node. Larger

value of results in lesser ambiguity in the final output, but
the network may get stuck at some local minimum state of the
energy landscape of the feedback network. Here, the terms state
and energy refer to those of a Hopfield-type feedback network
[5], [15]. From our studies, we have found that was
adequate. The value of the thresholdis to be chosen in such a
way that the average value of ( is close to zero for all the
training data. The value of was found to be adequate
for our studies.

The constraint satisfaction model is initialized as follows:
When a new pattern is presented to the MLFFNNs, the feature
vectors ( ) for all the MLFFNNs are obtained. Note that for
each component of the feature vector there is a corresponding
node in the three feedback subnetworks. The values of the com-
ponents of the feature vectors are examined for the utterances
in the training set 2 to determine the average value of the fea-
ture vector component corresponding to the class of the input
data. The average value for all the classes gives an idea of the
value of the threshold (), which is used to initialize the outputs
of all the nodes in the three feedback subnetworks. The outputs
of the nodes for which the corresponding feature vector compo-
nent exceeds the threshold are initialized to1.0 and the outputs
of all other nodes in the three feedback subnetworks are initial-
ized to 0.0. A threshold value of was chosen in our
studies based on observation of feature vector components for
the training set 2. The bias for a node in the instance pool sub-
network is computed from the net input to the node, using the
initialized values for the outputs of the nodes in the three feed-
back subnetworks. The output of a node in the instance pool is
initialized to 1.0, if the net input to the node is greater than
0.0.

After initialization, the constraint satisfaction model is al-
lowed to relax until a stable state is reached for a given input
pattern. Deterministic relaxation method is used in this study
[13]. In this method, a node in the model is chosen at random
and its output is computed as shown in the (8). The state of the
model, represented by the outputs of all the nodes in the model,
is changed due to the update of output of any one node. All the
nodes in the CS model are considered, one at a time at random,
to complete one cycle of iteration. The state update is continued
for several cycles until there is no significant change in the state
of the model, i.e., in the outputs of all the nodes in the model.
Usually a stable state is reached within 10 to 15 cycles. At a
stable state of the model, the outputs of the nodes in the instance
pool are interpreted to determine the class of the input pattern.

If the feature vectors for an input pattern from the MLFFNNs
are considered as the evidence for the classes obtained using
different grouping criteria, then the outputs of the instance pool
nodes in the final stable state of the model can be considered as
the combined evidence for each class, after satisfying as many
constraints as possible. The class label of the node in the in-
stance pool with the largest output value is assigned to the input
pattern. Because of similarity among several SCV classes, we
consider the cases in which the correct class can be among the
classes corresponding to thelargest output values. In the next
section, we present the classification results of the CS model for
Case_1, Case_2, Case_3, and Case_4, corresponding to,
2, 3, and 4, respectively.

VII. RESULTS AND DISCUSSION

The classification performance of different recognition sys-
tems on the test data of 80 SCV classes is obtained for compar-
ison. The hidden Markov model (HMM) based system uses a
5-state, left-to-right, discrete HMM trained for each class. The
size of the codebook used is 256. The structure of the 80-class
multilayer feedforward network consists of 240 nodes in the
input layer, 120 nodes in the first hidden layer and 60 nodes
in the second hidden layer. Table VI gives the performance of
the HMM based system, the 80-class MLFFNN and the mod-
ular networks based on different grouping criteria. The perfor-
mance of a modular network is obtained by using the decision
rule on the outputs of the MLFFNNs in the network. The recog-
nition performance is also obtained by using the decision rule
on the combined evidence computed by adding the output for
each class from the MLFFNNs in the three modular networks.
The performance of all these systems is compared with that of
the constraint satisfaction model (CSM). The performance of
the CSM for Case_1 is as high as 65% indicating that the in-
stance pool node with the largest output value gives the class
of the input utterance correctly for 65% of the total number of
test utterances. The performance of the CSM increases to about
82% for the Case_4 of the decision criterion.

The explanation for the superior performance of the CSM is
the following: In the CSM, the outputs from the MLFFNNs of
each grouping criterion are processed by the feedback subnet-
work for that grouping. Similarities among classes are repre-
sented in the weights of the connections in the feedback subnet-
work. Evidence available from different groupings is combined
by letting the feedback subnetworks interact with one another
through the instance pool. Therefore, the CSM not only uses the
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TABLE VI
CLASSIFICATION PERFORMANCE OF THECSM AND THE OTHER SCV

RECOGNITION SYSTEMS ONTEST DATA OF 80 SCV CLASSES

knowledge about the similarities among classes but also com-
bines the evidence from multiple classifiers in performing the
classification. On the other hand, the postprocessor in a modular
network processes the outputs of the MLFFNNs in that network
to decide the class. The postprocessor simply assigns the class of
the largest output value without using the similarity information
available in other outputs. The modular networks for different
groupings operate independent of each other. Hence, the perfor-
mance of three modular networks is inferior to the CSM.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have proposed a new approach for devel-
oping a model for classification of utterances of 80 SCV classes.
In this approach we proposed a constraint satisfaction model to
represent the known constraints of the problem. Trained multi-
layer feedforward neural networks are used as nonlinear filters
to extract features. A second level of training is used to derive
the distribution of the feature vectors for each class. Since the
constraint satisfaction model satisfies a set of even weak con-
straints in the best possible manner, the results are good in most
of the cases.

Parametric representation that captures the crucial vocal tract
transition information may help in improving the classification
performance further. The parametric representation may also be
a limiting factor for realizing speaker-independent classification
of SCV utterances. Our studies demonstrate that the constraint
satisfaction model can be used to enhance even the weak ev-
idence available in the parametric representation of the input
data. The models developed for the classification of the isolated
utterances of SCVs may be useful for spotting SCV segments
in continuous speech [16].
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