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A Constraint Satisfaction Model for Recognition of
Stop Consonant—\Vowel (SCV) Utterances

C. Chandra Sekhar and B. Yegnanarayana

Abstract—In this paper, we propose a model for recognition of 3) signal level:parameters from the speech signal;

utterances of consonant-vowel (CV) units. The acoustic-phonetic  4) dynamic constraintsdiscrimination among units within
knowledge of the CV classes is incorporated in the form of con- a group

straints of a constraint satisfaction model. The model combines )
evidence from multiple classifiers. The significant feature of this Some of the knowledge at various levels can be represented

madel is that discrimination of the CV units could be enhanced by through a constraint satisfaction model [5]—[7].
a combination of even weak evidence derived from the features. The next section describes the overall approach used for de-
The evidence is obtained from multilayer feedforward neural net- veloping the neural network model for SCV recognition. Sec-

works trained for subgroups of CV classes. The evidence is en- . - . .
hanced using a set of feedback subnetworks in the constraint satis- tion Il deals with the preparation of speech data of SCV units

faction model. The weights for the connections in the feedback sub- for this study. It also describes preprocessing and parametric
networks are derived using acoustic-phonetic knowledge and the extraction stages. Section IV presents the modular networks

performance statistics of the trained networks. The performance of for classification of SCV units using different grouping criteria
the proposed model is demonstrated for recognition of utterances paqeq on speech production. A constraint satisfaction model
of a large number (80) of stop consonant-vowel units for the Indian . ) - . -
language Hindi. is developed incorporating the acoustic—phonetic knowledge as
weak constraints. The model is described in detail in Section V.
Section VI describes the operation of the constraint satisfaction
model. The results of recognition of SCV units uttered in isola-
tion are given in Section VII.

Index Terms—Consonant—vowel units, constraint satisfaction
model, neural networks, speech recognition.

|I. INTRODUCTION

N THIS PAPER, we propose a constraint satisfaction neurall. PROPOSEDAPPROACH FORRECOGNITION OFSCV UNITS

network model for recognition of consonant—vowel (CV)
units of speech. CV units occur frequently in normal speech
and recognition of these units is crucial for development of ah
speech recognition system. Moreover, they are also natural u
of speech production in the sense that, typically most syllabl

Speech data for these studies consists of SCV units of a typ-

| Indian language. The SCV units for the language Hindi [8]
.ﬁg organized along three broad categories, namely, the manner
égarticulation (MOA) of the consonant, the place of articulation
are of CV type [1]. Human beings are able to extract the rel POA) of the consonant and the vowel. There are four manners

vant parameters or features from the speech signal and recogﬂ{zgrt'cmat'on: unvoiced unaspirated (UVUA), unvoiced aspi-

them effortlessly most of the time [2]. The remarkable chara ated (UVA), voiced unaspirated (VUA), and voiced aspirated
t). There are four places of articulation for Hindi stop con-

teristic is that they are able to do this in a speaker independ o .
y P P nants: velar, alveolar, dental, and bilabial. The five vowel cat-

manner even in adverse environmental conditions. This abil¥

of humans may be attributed to the knowledge they have £ ories used in our studies are: /a/, /i/, /ul, /e/, and /o/. Combi-

quired about the sound units, besides the sophisticated audi%%t/\(/) ns '(t)f all Ml?_ASé OPé)'fAfS, aTdS\C/:(i/well categories for forming
processing and neural classification mechanism. While devel- units result in ireren classes.

oping a speech recognition system, this knowledge factor mu#\lormal]y _each of the SCV class.es.has unique production
be kept in mind. Characteristics and when uttered in isolation these produc-

tion characteristics are well reflected in the resulting speech

Among the CV units that occur in a text of the Indian Ianéi nal. However, due to closeness of the shapes of the vocal

guage Hindi, about 45% of the units belong to the category Qb . o some of these classes, it is difficult to extract the
stop consonant-vowel (SCV) units [3]. Inthis paper, we propoggycriminant features by processing the speech signal alone.
a new approach for developing a recognition system for SGM,e 4coustic—phonetic knowledge of the SCV units suggests
units. It takes into account the constraints at various levels: inat these units can be grouped into different subgroups, so
1) language leveliegal sound units, relative frequency ofthat a modular network can be developed for the classifier.
occurrence; Each module is designed to classify the units in that subgroup
2) acoustic-phonetic levespeech production features [4]; having fewer units. The advantage is that the complexity of the
Manuscript received February 9, 2000; revised June 3, 2002. The assoc%l%ssmerwm be reduced. However, for these modular petwprks
editor coordinating the review of this manuscript and approving it for publicd0 be successful, one needs to know the subgroup identity of
tion was Dr. Rafid A. Sukkar. a given SCV unit from the input speech. Table | gives the
The authors are with the Department of Computer Science and Engineeri fouping of the 80 SCV units of Hindi into different subgroups
Indian Institute of Technology, Madras, Chennai-600036, India (e—ma?j . L. ; .
ased on three different criteria, namely, manner of articulation
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TABLE | ferent grouping criteria. The modular network for each grouping
LIST OFSCV QLASSES AND THESUBGROUPSBASED ONDIFFERENTGROUPING  criterion in turn consists of multilayer feedforward neural net-
CRITERIA FOR EACH CLASS .
works (MLFFNNSs) for different subgroups. The second stage of
the proposed system consists of feedback neural network mod-

MO& POA Vowel subgroup ules. The outputs of the MLFFNNSs in the first stage are used as
: evidence to the corresponding feedback subnetwork in which
Sub Sub . . -
ubgroup | Subgroup | /a/ /i [u/ [el /o the feedback connections are provided using the knowledge of
UVUA Velar ka ki ku ke ko speech production for the SCV units. It is interesting to note
that the values of the weights on the connecting links in the
Alveolar |ta ti tu te to feedback subnetworks are not unique. That is why the knowl-

edge represented by these weights is termed as “weak.” It is the
combined effect of the entire feedback network that reinforces

even the weak evidence both from the external input (outputs of
MLFFNNSs) as well as the knowledge of the production incor-

Dental ta ti tu te to

Bilabial pa pi pu pe po

UVA Velar kha khi khu khe kho porated in the model.
The evidence from all the three feedback subnetworks is fur-
Alveolar | tha thi thu the tho ther reinforced by combining them through another feedback

subnetwork which uses the concept of instance pool as in the
interactive activation and competition (IAC) model [7]. All the

four feedback subnetwork modules have feedback connections
among the nodes within the module and they also have bidi-

Dental tha thi thu the tho

Bilabial pha phi phu phe pho

VUA Velar ga gi  gu ge go rectional connections to the nodes in the instance pool feedback
subnetwork. The block diagram of the proposed system for SCV
Alveolar | da di du de do recognition is shown in Fig. 1.

Dental da di du de do
Ill. PREPROCESSING ANOREPRESENTATION OFSPEECHDATA
Bilabial ba bi bu be bo

We consider speech data corresponding to isolated utterances

VA Velar gha ghi ghu ghe gho of the SCV units. For each SCV unit, 12 repetitions of iso-
lated utterances of the unit are collected for each of three male
Alveolar | dha dhi dhu dhe dho speakers. Out of these, four for each unit and speaker are used

as the training set 1 and four others for each unit and speaker
are used as the training set 2. All the speech data is collected in
Bilabial | bha bhi bhu bhe bho a laboratory environment using a sampling frequency of 10 kHz
and 16 bits per sample.
to each type of SCV unit as a class. Hence, the problem is toSpeech data for each unit is processed as follows: The point
develop a classifier for these 80 SCV classes. at which the consonant ends and the vowel begins in an SCV
An SCV unit occurs in a different combination of other unitsinit is defined as the vowel onset point (VOP). The VOP for
in a subgroup for each grouping criteria. The classifier devadach SCV unit is identified using the method given in [9]. We
oped for each subgroup captures discriminating features of ttansider 60 ms of data before and 140 ms of data after the VOP
units in the subgroup. Thus, the output for an SCV unit from tHer analysis. The 200 ms segment of speech data is analyzed
classifiers based on the three grouping criterion can be viewkeame by frame, with each frame of duration 20 ms and with
as evidence from three different classifiers. a frame shift of 5 ms. Each frame of data is represented using
The objective of this paper is to propose a constraint satis2 weighted cepstral coefficients derived from eight linear pre-
faction (CS) model [5]-[7] that takes the outputs of the thrediction coefficients [10]. The number of cepstral coefficients
classifiers as input and combines it with the production knowils larger than the order of the linear prediction (LP) analysis.
edge of the SCV units incorporated in the model as constrainthis will help representing the linear prediction spectrum better.
A CS model is a feedback neural network in which each nodde cepstral coefficient vectors of adjacent frames are averaged.
represents a hypothesis and the weights connecting the notlless, each SCV unit is represented2tyx 12 = 240 parame-
represent the constraints. A global “goodness of fit” functioters. It should be noted that parametric representation is crucial
is defined in terms of the activation state of the nodes and timthe sense that we must ensure minimum loss of information
weights of the network. The advantage of such a network rep-order to obtain good discrimination among SCV classes. LP
resentation is that, when the network relaxes to a stable eqiérived cepstral coefficients were found to be suitable parame-
librium state, the resulting state represents a situation when thes for speech recognition studies [10]. We have also conducted
constraints are satisfied to maximum extent. Such a result valkeparate study to evaluate different parametric representations
be obtained even though the constraints are weak due to paftalclassification of the place of articulation of the consonant
knowledge of the domain specification and also due to poor rép-the SCV units based on the transition region (of 30 ms after
resentation of the information in the parametric form. the VOP in an SCV unit) [11]. Table Il shows the results of this
The proposed system thus consists of two stages. The fgsidy. The improved performance for the weighted LP cepstral
stage has three modular networks corresponding to the three ddefficients over the mel-scale cepstral coefficients can be at-

Dental dha dhi dhu dhe dho
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Fig. 1. Block diagram of the proposed system for recognition of SCV units.

tributed to the fact that LP coefficients preserve the formant traeach subgroup consisting of 16 or 20 classes depending on the
sitions better than the mel-scale spectral or cepstral parametgreuping criterion used for organizing the SCV units. The list
In the next section, we discuss the development of featus80 SCV units and the subgroups based on different grouping

extraction for SCV units using trained neural networks. criteria are given in Table I. For example, the class /ka/ belongs
to UVUA subgroup based on MOA, “velar” subgroup based on
IV. NEURAL NETWORKS AS NONLINEAR POA and “/a/” subgroup based on vowel.
FEATURE EXTRACTORS It may be noted that if we train the neural network using sam-

We develop a MLFFNN, which, after training, is interpretegbles for one class only, i.e., a single output unit network, then
as a nonlinear filter. The filter is designed in such a way thattie resulting network does not capture the discrimination char-
provides discrimination among the classes within the subgroagteristics with respect to other classes. On the other hand, if
used for training the network. One such network is used ftte number of classes is large and the classes are close, it may
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TABLE I TABLE Il
PERFORMANCE COMPARISON OFDIFFERENT PARAMETRIC REPRESENTATIONS CLASSIFICATION PERFORMANCE OFMLFFNNS BASED ON DIFFERENT
FOR CLASSIFICATION OF THE PLACE OF ARTICULATION OF THE CONSONANT IN GROUPING CRITERIA (MOA: MANNER OF ARTICULATION, POA: R.ACE OF
SCV UNITS USING THE TRANSITION REGION ARTICULATION, V: VOWEL) FOR TEST DATA OF EACH SCV QLASS
. . . SCV  Grouping Criterion | SCV  Grouping Criterion
Parametric Classification Class MOA POA V | Class MOA POA V
. . ka 58 83 42 | ta 92 92 83
representation accuracy (in %) Kha 92 67 92 | tha 92 83 58
Formant frequencies 29.8 gﬁa 2(7) gg gg gﬁa 23 Sg g;
Mel-scale spectral coefficients 43.5 Eﬁ 2(8) 22 gg :;n g? 18030 gg
Mel-scale cepstral coefficients 50.5 gin gg 23 gg g;u g; g; gz
Weighted LP cepstral coefficients 58.6 tﬁu gg gg 23 :Eu gg 19020 g?
gu 50 50 25 | du 67 92 75
ghu 33 17 33 | dhu 58 67 58
ke 75 67 50 | te 92 92 100
khe 58 42 42 | the 67 92 75
ge 50 42 67 | de 50 92 58
ghe 58 42 42 | dhe 92 92 67
ko 75 67 92 | to 75 83 75
kho 67 58 75 | tho 75 92 50
go 42 42 67 | do 83 83 83
gho 67 58 17 | dho 75 75 67
ta 100 100 100 | pa 92 92 75
tha 42 58 42 | pha 92 100 58
da 67 67 42 | ba 83 83 75
dha 67 92 50 | bha 67 75 33
ti 92 75 67 | pi 50 42 67
thi 75 100 92 | phi 92 83 92
di 75 83 58 | bi 75 75 75
dhi 58 83 42 | bhi 42 100 92
tu 75 83 67 | pu 83 67 83
thu 67 67 50 | phu 42 67 75
du 75 42 75 | bu 92 83 75
dhu 42 75 92 | bhu 75 58 83
te 75 92 83 | pe 83 100 67
- * ST the 75 100 58 | phe 67 92 83
) . . o de 42 58 8 | be 58 58 33
Fig. 2. lllustration 'of the effect of grouping a class with dn‘ferent s'ubsets of dhe 50 100 75 | bhe 75 83 83
classes on the decision surfaces formed. The three classes with intermediate
level of shading only are used for grouping with the class of interest (dark to 67 75 67 | po 75 92 75
shading). tho 75 75 83 | pho 75 92 92
do 42 67 58 | bo 50 75 58
dho 42 67 50 | bho 83 83 75

be difficult to capture the discrimination by a single network.
Therefore, a modular network derived by grouping the units into
subgroups is a compromise among the conflicting requiremestsows the percentage of the total number of test patterns of an
[12]. SCV class that are correctly classified by the MLFFNN. It can
The shape of the decision surface formed for a class by la@noted from Table Il that the MLFFNNs of the three grouping
MLFFNN depends on the classes in a subgroup. This behavioiteria do not give the same performance for many classes.
is illustrated in Fig. 2 for an arbitrary two-dimensional (2-D) The MLFFNN trained for classes in a subgroup can be viewed
pattern space. In this figure the regions for 10 different classas a set of class dependent filters, where the filter characteris-
are shown. The region for the class under consideration is shaties for a class are designed to discriminate that class against the
in dark shade. When this class is grouped with sets of three otb#hrer classes in that subgroup. Thus, there are 16 or 20 filters in
classes (shown by intermediate level shading) only, then the éach subgroup and 80 filters for each grouping criterion. It may
cision surfaces formed for the class may vary as illustrated foe noted that each SCV class occurs with a different subset of
four casesin Fig. 2. Therefore the performance of MLFFNNs @CV classes for each of the three groupings. We can also inter-
the test data of a class can vary for different grouping criteriapret the network as a filter set tailored to the classes in a sub-
The structure of the MLFFNN used in these studies consigigoup. This is like Gabor filters used for texture classification
of 240 nodes in the input layer, 70 nodes in the first hidden layevhere the filters are tailored to the characteristics of the texture
and 50 nodes in the second hidden layer [3]. The results of ttlasses under consideration [13]. The characteristics to be op-
trained MLFFNNSs as classifiers for each of the SCV classémized in the case of Gabor filters are resolution, orientation,
in their subgroups is given in Table IIl. Each entry in the tablend spatial frequency.
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Normally, the trained MLFFNNs can be used directly as clas- TABLE IV
sifiers for the subgroups of classes. However, the filter interpr&Q“gﬁigﬁ&’tI\?:gﬁsAZ%Re'SCVEEFE';N;F""'EA\TQESESﬂZﬁZTéCS::;:%mszLgES
tation provides greater flexibility and robustness in the develop- — age INTERPRETED ASSIMILARITY MEASURESDERIVED FROM
ment of a classifier for all the SCV classes. Once the MLFFNNs THE CONFUSION MATRIX
are trained, then they are used as nonlinear filters. The output~ ~*

the filters for each subgroup for a given training pattern are us

Confusion matrix for different manners of articulation.

to form a feature vector. The distribution of the feature vectors MOA UVUA UVA VUA VA
obtained for each class from the training set 2. The distributic UVUA 869 (0.87) 2.5(0.03) 7.7 (0.06) 2.9 (0.02)
is represented in terms of a mean vector and a variance par:

eter derived from the feature vectors for the class. UVA  31(0.03) 842(0.84) 4.4(0.04) 8.3(0.08)

The outputs of the sets of filters designed in this sectic
are given as input to the feedback subnetworks of the cc
straint satisfaction model. The next section will describe tf VA 04(0.02) 7.9(0.08) 96(0.12) 82.1(0.82)
feedback subnetworks and explain the method of determini
the weights for the connections in the feedback subnetworl
These weights represent the constraints and they are deri POA Velar Alveolar Dental Bilabial
using the acoustic-phonetic knowledge and the performar
statistics of the MLFFNNs.

VUA  4.2(0.06) 3.3(0.04) 78.3(0.78) 14.2(0.12)

(b) Confusion matrix for different places of articulation.

Velar  72.1(0.72) 9.0 (0.08) 7.1 (0.08) 11.8 (0.08)

Alveolar 6.0 (0.08) 75.4 (0.75) 7.3 (0.10) 11.3 (0.09)
V. FEEDBACK SUBNETWORKS FOR

We first build three different feedback subnetworks, one f¢ ~ Bilabial  4.2(0.08) 7.5 (0.09) 8.5 (0.10) 79.8 (0.80)
each of the three grouping criteria. Since the SCV classes witt
a subgroup have been designed to compete among themse
during training of the MLFFNN for that subgroup, we provide Vowel /a/ 1i/ /u/ le/ /o]
excitatory connections between the nodes corresponding to
classes within a subgroup. All the connections across the si
groups are made inhibitory. The weights for the excitatory ar /i/ 0.5 (0.01) 85.7 (0.86) 3.1(0.02) 9.9 (0.08) 0.8 (0.00)
inhibitory connections have been derived from the confusic
matrices obtained from the classification performance of t
MLFFNNS. Je/ 1.3(0.01) 6.8(0.08) 1.3(0.01) 90.3(0.90) 0.3 (0.00)

The confusion matrices for different manners of articule
tion, places of articulation and vowels are given in Table I\~
The rounded values in the parentheses are interpreted as
(symmetric) similarity measures. For example, the similari
between UVUA and UVA is indicated as 0.03 which is th
rounded value of the average of the two entries for UVUA a
UVA in the confusion matrix, i.e., ((3.4 2.5)/2)/100.

(c) Confusion matrix for different vowels.

/a/  89.3(0.90) 1.0 (0.01) 2.9(0.02) 0.8(0.01) 6.0 (0.05)

Ju/  13(0.02) 1.6(0.02) 82.3(0.82) 1.3(0.01) 13.5(0.16)

Jo/  4.4(0.05 0.0 (0.00) 188(0.16) 0.0 (0.00) 76.8 (0.77)

%er in MOA or POA or vowel only. For the earlier example of
Qlass /ka/ in the grouping based on MOA, an inhibitory connec-
Nfon is provided between /ka/ in the UVUA subgroup and each

Ef the following classes: /kha/ in UVA, /ga/ in VUA and /gha/

The similarity measures are used to determine the weights Mthe VA subgroup. All the other classes in the UVA, VUA
the excitatory and inhibitory connections in the feedback su hd VA subgroups aiffer with /ka/ not only in MOA bL’Jt also,

networks. An excitatory connection is provided between nodes : S .
of two SCV classes within a subgroup if they differ in only MOAI% POA or/and vowel. The weight for an inhibitory connection

. . . Is inversely proportional to the similarity measure between the
or PQA or vowel charact_erl_stlc;. The weightofan exmtator_y Co.ra'iffering production features of the two classes. If the similarity
nection is equal to the similarity measure between the differi

. . Measure i€’ (in the range 0.0 to 1.0), then the inhibitory weight
production features of the two classes. For example, in grouping assigned as follows;
based on MOA, the class /ka/ belongs to the UVUA subgroup. '

Of the 20 classes present in this subgroup (/ka/, /tal, /pal, 1

[Kil, Itil, il Ipil, Ikul, itul, i, Ipul, Ikel, k1, Itel, Ipel, Ikol, 4, W=- 100-C" (1)
[to/, and /po/), an excitatory connection is provided between /ka/

and each of the following seven classes onlg; Ita, /pa/, /ki/, If C is less than 0.01, then the corresponding inhibitory

/ku/, /kel/, and /ko/. The remaining 12 classes in this subgrowgight is assigned as1.0. The weights of the connections
differ with /ka/ in both POA and vowel and hence no conneder the class /ka/ in the feedback subnetworks for different
tion is provided between the nodes of /ka/ and these 12 clasggsuping criteria are given in Table V.
The weight for the excitatory connection between /ka/ and /ku/ The connections in the feedback subnetwork for the grouping
is 0.02, which is the similarity measure between the vowels fetiterion of POA are illustrated in Fig. 3. The excitatory con-
and /u/ as given in Table 1V(c). nections for the class /ka/ in the ‘Velar’ subgroup are shown in
An inhibitory connection is provided between nodes of thEig. 3(a) and the inhibitory connections for the class are shown
classes in different subgroups only if the two classes differ éir Fig. 3(b).
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TABLE V
ILLUSTRATION OF WEIGHTS OF CONNECTIONS FORCLASS /KA/ IN THE
FEEDBACK SUBNETWORKS FORDIFFERENT GROUPING CRITERIA

Grouping Excitatory Inhibitory

Criterion Connections Connections

Class Weight | Class Weight

MOA /ta 008 | /kha/ -0.33

/ta/ 0.08 | /ga/ -0.16

1o/ 008 | /eha/ -0.50 (a) Excitatory connections for the class /ka/
Pa, . gha/ -0.

/ki/ 0.01 Alveolar Dental
/ku/  0.02
[ke/ 0.01 L
4
]
/ko/  0.05 0125 1
POA /kha/ 003 | /ta/ -0.125

/ga/ 0.06 | /ta/ -0.125

/gha/  0.02 | /pa/ -0.125

Velar Bilabial
/ki/ 0.01
/ku/ 0.02 (b) Inhibitory connections for the class /ka/
/ke/ 0.01 Fig. 3. Connections for the class /ka/ in the POA feedback network. (a)
Excitatory connections for the class /ka/ in the “velar” subgroup. (b) The
/ko/ 0.05 inhibitory connections for the class /ka/.

Vowel /ta/ 0.08 | /ki/ -1.0
feature vector. The dimension of the feature vector is the same

/ta/ 008 | /ku/ 05 as the number of classes in the subgroupy;lis the feature

/pa/ 008 | /ke/ -10 vector obtained for théth training pattern andV is the number
of training patterns for each class, then #ih element of the
/kha/ 003 | /ko/  -0.2 mean vectoru,,, is computed as follows:
/ga/ 0.06
1 N
/gha/  0.02 = N;yik )

The main function of each feedback subnetwork is to enhangfierey,, is thekth element of;. The variance parametef is

the evidence available from the filters for the class of the |np@bmputed from the mean vector and the feature vectors for the
utterance by giving positive contributions from the evidence foy training patterns as follows:

the classes close to it in a subgroup and to reduce the evidence
for the classes which are in the other subgroups but are close to N M
it. The weights of the connections based on S|m|Ie_1r|t|es among o? = izz (yir — Hk)2 3)
classes help the feedback subnetwork to perform its function as N
a constraint satisfaction network.

Each node in a feedback subnetwork is associated withwaereM is the dimension of the feature vectors.
mean vector; and a variance parametef representing the  The mean vector and the variance parameter describe a sym-
distribution of the feature vectors for the class of the node. Weetric Gaussian distribution and they are computed for each of
assume a symmetric Gaussian distribution, which can be dee 80 SCV classes and for each of the three grouping criteria
scribed by the mean vector and the diagonal variance matiikuring the second level of training. For the classification of an
The mean vector and the variance parameter are obtained fi8@V utterance, the pattern belonging to the utterance is given
the training set 2. A training pattern belonging to the class af input to all the MLFFNNSs. The outputs of the MLFFNNs are
the unit is given as input to the MLFFNN for the subgroup corgiven as input to the feedback subnetwork corresponding to that
taining the class. The output of the MLFFNN is used to form grouping.

i=1k=1
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POA Feedback Subnetwork

Alveolar Dental | The excitatory anq inljibitory connections
) ) for the node /ka/ in this subnetwork are
The external evidence or bias for as shown in Fig.3(a) and (b) respectively
the node is computed using the

outputs of the MLFFNNS5 in Fig.1

® O

Velar Bilabial

The external evidence or bias for
the node is computed using the

outputs of the MLFFNN1 in Fig.1

MOA Feedback Subnetwork . Vowel Feedback Subnetwork

The external evidence or bias for
the node is computed using the
outputs of the MLFFNNS in Fig.1

Fig. 4. Constraint satisfaction model for classification of SCV utterances. The model consists of three feedback subnetworks for the thremitgoaing
an instance pool through which the three feedback subnetworks interact. Only connections for the class /ka/ are shown for illustration.

VI. CONSTRAINT SATISFACTION MODEL FOR tional. Note that only the excitatory connections (solid lines)
CLASSIFICATION OF SCVs linking the nodes corresponding to /ka/ across all the four feed-

) back subnetworks are shown in the figure. A few of the in-
The three feedback subnetworks corresponding to the thiggiiory connections (dashed lines) are shown in the instance

different grouping criteria interact with each other through goq| subnetwork. The connections within each subnetwork are
pool of nodes in another feedback subne_twork,_ called instangeshown in Fig. 3(a) and (b), where the connections in the feed-
pool [14]. There are as many (80) nodes in the instance pooligg i subnetwork for the POA grouping criterion are given.

the total number of SCV classes. Each node in the instance pooi—he outputs of the MLFFNNs corresponding to different sub-
has a bidirectional excitatory connection with the correspondi bups in Fig. 1 are used to compute the external evidence or
nodes in each of the feedback subnetworks. For example, figs which is used as external input to the constraint satisfaction
node corresponding to the class /ka/ in the instance pool hasde|. The external input for each of the nodes in the feedback
a bidirectional connection to the nodes corresponding to /kgfpnetworks is derived from the 16- or 20-dimensional feature
in MOA, POA, and vowel feedback subnetworks, as shown {pctor of the MLFFNN to which the unit belongs. For example,
Fig. 4. The nodes within the instance pool compete with eaghly external input or bias to the node /ka/ in the POA feedback
other and hence are connected by a negative weight. Althougfynenwork is computed using the 20-dimensional output fea-
the choice of value of this weight is not critical, a value-d.2 e vector &) of the MLFFNNS5 in Fig. 1. A mean vectgr and

was found suitable from experimental studies. The Wei_ght tYR-variance parameter? are associated with each node in the
ically depends on how many of the other nodes in the instanggee feedback subnetworks. The mean vector is derived from
pool contribute to the activation of a given node and the extentfs rajning set 2 as discussed in Section V. The bias or external
their contribution, which depends on the output values of tho%ut for a node in the feedback subnetworks is given by

nodes. Normally, the sum of weights (both excitatory and in- 1

hibitory) from all active nodes should be nearly zero. b= ﬁe—dﬂ (4)
The three feedback subnetworks and the instance pool sub- (2m)Ma

network constitute the constraint satisfaction (CS) model rghere 9

flecting the known speech production knowledge of the SCVs, d :M (5)

as well as the knowledge derived from the trained MLFFNNSs fqr 4

different grouping criteria. The CS model developed for classi' M
fication of SCVs is shown in Fig. 4. There are four feedback x — pl? :LZ (z; — m)> . (6)
subnetworks and all the connections in the network are bidirec- M~ '
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Here, M is the dimension of the feature vector andand y, After initialization, the constraint satisfaction model is al-
are thesth elements of the feature vectorand the mean vector lowed to relax until a stable state is reached for a given input
1, respectively. pattern. Deterministic relaxation method is used in this study

Each node in the CS model also computes the weighted s[i#]. In this method, a node in the model is chosen at random
(a) of the inputs from the other nodes in the model. The netinpand its output is computed as shown in the (8). The state of the
(2) to a node in the feedback subnetworks is given by model, represented by the outputs of all the nodes in the model,

is changed due to the update of output of any one node. All the
z=axbtfxa. (") nodes in the CS model are considered, one at a time at random,

The constantsy and 3 determine the relative importancet® complete one cycle of iteration. The state update is continued
given to the external evidenck) @nd to thea priori knowledge for several cycles until there is no significant change in the state
in the form of constraints reflected in the weighted sumh (of the model, i.e., in the outputs of all the nodes in the model.
from other nodes in the model. If the external evidence l4sually a stable state is reached within 10 to 15 cycles. At a
strong, such as for the case of features extracted from clsiable state of the model, the outputs of the nodes in the instance
speech, then the value of may be made large, closer to 1.0P00! are interpreted to determine the class of the input pattern.
If the speech production knowledge is captured well in the If the feature vectors for aninput pattern from the MLFFNNs
weights of feedback subnetworks, then the vafuenay be are considered as the evidence for the classes obtained using
made large, closer to 1.0. While the choice of valuesor different grouping criteria, then the outputs of the instance pool
and 3 is not very critical, some experimentation is useful tgodes in the final stable state of the model can be considered as

determine suitable values for them. We have chasen 0.5 the combined evidence for each class, after satisfying as many
andf$ = 0.5 in our studies. constraints as possible. The class label of the node in the in-
A sigmoid activation function was chosen for all the nodes ifance pool with the largest output value is assigned to the input

the CS model. The output of a node using the sigmoid functif@ttern. Because of similarity among several SCV classes, we
is given by consider the cases in which the correct class can be among the

classes corresponding to thelargest output values. In the next
5= f(z) = 1 ®) section, we present the classification results of the CS model for
B 14 ekG-9) Case_1, Case_2, Case_3, and Case_4, corresponding-to,

2, 3, and 4, respectively.
where0 < k < oo is the slope of the sigmoid function and P 4

6 is the threshold on the activation valuef the node. Larger
value of k results in lesser ambiguity in the final output, but
the network may get stuck at some local minimum state of theThe classification performance of different recognition sys-
energy landscape of the feedback network. Here, the terms statas on the test data of 80 SCV classes is obtained for compar-
and energy refer to those of a Hopfield-type feedback netwadon. The hidden Markov model (HMM) based system uses a
[5], [15]. From our studies, we have found thHat= 1.0 was 5-state, left-to-right, discrete HMM trained for each class. The
adequate. The value of the threshélid to be chosen in such asize of the codebook used is 256. The structure of the 80-class
way that the average value of £ #) is close to zero for all the multilayer feedforward network consists of 240 nodes in the
training data. The value df = 0.3 was found to be adequateinput layer, 120 nodes in the first hidden layer and 60 nodes
for our studies. in the second hidden layer. Table VI gives the performance of
The constraint satisfaction model is initialized as followghe HMM based system, the 80-class MLFFNN and the mod-
When a new pattern is presented to the MLFFNNSs, the featuriar networks based on different grouping criteria. The perfor-
vectors &) for all the MLFFNNs are obtained. Note that formance of a modular network is obtained by using the decision
each component of the feature vector there is a correspondinte on the outputs of the MLFFNNSs in the network. The recog-
node in the three feedback subnetworks. The values of the carition performance is also obtained by using the decision rule
ponents of the feature vectors are examined for the utteranoesthe combined evidence computed by adding the output for
in the training set 2 to determine the average value of the fezach class from the MLFFNNSs in the three modular networks.
ture vector component corresponding to the class of the inpitlie performance of all these systems is compared with that of
data. The average value for all the classes gives an idea of tive constraint satisfaction model (CSM). The performance of
value of the threshold§, which is used to initialize the outputsthe CSM for Case_1 is as high as 65% indicating that the in-
of all the nodes in the three feedback subnetworks. The outpstance pool hode with the largest output value gives the class
of the nodes for which the corresponding feature vector compai-the input utterance correctly for 65% of the total number of
nent exceeds the threshold are initialized-th0 and the outputs test utterances. The performance of the CSM increases to about
of all other nodes in the three feedback subnetworks are initi82% for the Case_4 of the decision criterion.
ized to 0.0. A threshold value &f = 0.3 was chosen in our  The explanation for the superior performance of the CSM is
studies based on observation of feature vector componentstf@ following: In the CSM, the outputs from the MLFFNNSs of
the training set 2. The bias for a node in the instance pool sw&ch grouping criterion are processed by the feedback subnet-
network is computed from the net input to the node, using theork for that grouping. Similarities among classes are repre-
initialized values for the outputs of the nodes in the three feeskented in the weights of the connections in the feedback subnet-
back subnetworks. The output of a node in the instance poolnsrk. Evidence available from different groupings is combined
initialized to 4+1.0, if the net input to the node is greater thaby letting the feedback subnetworks interact with one another
0.0. through the instance pool. Therefore, the CSM not only uses the

VII. RESULTS AND DISCUSSION
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TABLE VI
CLASSIFICATION PERFORMANCE OF THECSM AND THE OTHER SCV
RECOGNITION SYSTEMS ONTEST DATA OF 80 SCV QASSES

[6] P. P. Raghu and B. Yegnanarayana, “Supervised texture classification
using a probabilistic neural network and constraint satisfaction model,”
|EEE Trans. Neural Networksol. 9, pp. 516-522, May 1998.

D. E. Rumelhart, P. Smolensky, J. L. McClelland, and G. E. Hinton,
“Schemata and sequential thought processes in PDP modeBdrin

allel Distributed Processing: Explorations in the Microstructure of Cog-
nition, J. McClelland D. Rumelhart, Eds. Cambridge, MA: MIT Press,

(71

SCV Recognition Decision Criterion

System Case.l Case2 Case3 Cased 1986, vol. 2, Psychological and Biological Models.
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pp. 213-237, 1989.
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based approach for detection of vowel onset pointsPrioc. Int. Conf.
80-class MLFFNN 45.3 59.7 66.9 72.2 Advances in Pattern Recognition and Digital TechniqiDes. 1999, pp.
316-320.
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tion. Englewood Cliffs, NJ: Prentice-Hall, 1993.
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in continuous speech using neural network modelsProc. Int. Symp.
Speech, Image Processing, and Neural Netwdi®94, pp. 97-100.
Vowel modular network 30.1 47.5 58.8 63.6 [12] A.Waibel, H. Sawai, and K. Shikano, “Modularity and scaling in large
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vol. 5, pp. 1625-1636, Dec. 1996.
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knowledge about the similarities among classes but also conft4]
bines the evidence from multiple classifiers in performing the
classification. On the other hand, the postprocessor in a modul &
network processes the outputs of the MLFFNNs in that network; ¢
to decide the class. The postprocessor simply assigns the class of]
the largest output value without using the similarity information
available in other outputs. The modular networks for different
groupings operate independent of each other. Hence, the perfor-
mance of three modular networks is inferior to the CSM.
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