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Abstract

Most of the real life classification problems have ill defined, imprecise or fuzzy class boundaries. Feedforward neural
networks with conventional backpropagation learning algorithm are not tailored to this kind of classification problem.
Hence, in this paper, feedforward neural networks, that use backpropagation learning algorithm with fuzzy objective
functions, are investigated. A learning algorithm is proposed that minimizes an error term, which reflects the fuzzy
classification from the point of view of possibilistic approach. Since the proposed algorithm has possibilistic classification
ability, it can encompass different backpropagation learning algorithm based on crisp and constrained fuzzy classification.
The efficacy of the proposed scheme is demonstrated on a vowel classification problem. q 1998 Elsevier Science B.V.
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1. Introduction

Ž .Feedforward neural networks FFNN based on
Ž . Žbackpropagation BP learning algorithm Haykin,

.1994; Yegnanarayana, 1994 are currently used ex-
tensively for pattern classification. However, a major
drawback of the BP algorithm is that it assigns each
input pattern exactly to one of the output classes,
assuming well-defined class boundaries. In real life
situations, however, boundaries between the classes
may be overlapping. There can be certain input
patterns that do not completely belong to a single
class, but partially belong to the other classes too.
This limits the applicability of the BP algorithm on
the real life problems. In order to reduce this limita-
tion, fuzzy sets based classification approach inside
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the basic framework of the BP algorithm, has been
recently investigated. The use of fuzzy concept in
pattern classification is also supported by the fact
that the psycho-physiological process involved in
human pattern classification does not employ precise
or crisp mathematical formulations. Several interest-
ing feedforward neuro-fuzzy systems have been pro-

Ž .posed Pal and Mitra, 1992; Pedrycz, 1992 , and
Žthey cover a wide range of applications Lin and

.Lee, 1996 .
This research work proposes a method of embed-

ding fuzzy classification properties into the conven-
tional BP learning algorithm of FFNNs. Input is
assumed to be crisp for these FFNNs, only the
classification is fuzzy. A network applied for this
kind of classification is needed to be passed through
two phases, namely training and testing phase. In the
training phase the network is trained with a given set
of training patterns as inputs and the corresponding
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classes as target outputs. During training, the net-
work adapts certain parameters, e.g. weights and
bias, such that the network output reaches the target
value. Since the classification is fuzzy, an input
pattern may not necessarily belong to a single class;
rather it may belong to more than one class with
different degrees of belongingness. Consequently,
unlike the conventional BP, the number of target
classes corresponding to each input training pattern
may be more than one. The aim of the proposed
learning algorithm during training is to minimize an
error term, henceforth termed as fuzzy mean square
error. The fuzzy mean square error is the overall
weighted sum of the square error between the actual
network output and all possible target outputs, where
the weight signifies the level of belongingness of the
input pattern into the corresponding target class. If a
new input pattern is presented to the network after
training, it yields the output as class membership
values of the corresponding input pattern.

The proposed learning algorithm is derived in
such a manner that the sum total of the membership
values for a particular pattern to all the classes need
not necessarily be equal to one. This implies that the

Žmembership assignment is not constrained fuzzy Pal
.and Bezdek, 1995 ; on the other hand, it is possi-

Ž .bilistic Pal and Bezdek, 1995 . This idea of possi-
bilistic membership assignment is in the line of
possibility theory, which was first proposed by L.

Ž .Zadeh 1978 . The possibilistic membership assign-
ment is desirable to signify the ignorance or different
levels of evidence, which are well discussed in belief

Ž . Žtheory Shafer, 1976 and possibility theory Klir and
.Folger, 1993; Klir and Yuan, 1995 . In the case of

constrained fuzzy membership assignment, i.e., when
the sum total of the membership values of an input
pattern to all the classes is one, we show that the
attractive learning algorithm, given by Pal and Mitra
Ž .1992 , is equivalent to the proposed algorithm. In
addition to it, when the classification is crisp, the
proposed learning algorithm boils down to the con-
ventional BP algorithm. Thus, it turns out that the
possibilistic approach of the proposed algorithm leads
it to encompass both constrained fuzzy classification
and crisp classification. Another aspect of the pro-
posed learning algorithm is that it has the scope for
controlling the amount of fuzziness that is involved
in the classification process.

2. Background of fuzzy classification

In this section we present different theoretical
aspects of fuzzy sets for applying them to pattern
classification problems.

2.1. Fuzzy sets

In traditional two-state classifiers, where a class
A is defined as a subset of a universal set X , any
input pattern xgX can either be a member or not
be a member of the given class A. This property of
whether or not a pattern x of the universal set
belongs to the class A can be defined by a charac-

� 4teristic function m : X™ 0,1 as follows:A

1 if and only if xgA ,
m x sŽ .A ½ 0 if and only if xfA

In real life situations, however, boundaries be-
tween the classes may be overlapping. Hence, it is
uncertain whether an input pattern belongs totally to
the class A. To take care of such situations, in fuzzy

Ž .sets Bezdek, 1981 the concept of the characteristic
function has been modified to membership function

w xm : X™ 0,1 . This function is called membershipA

function, because larger value of the function de-
notes more membership of the element to the set
under consideration.

A C-class classification problem for a set of input
� 4patterns x , x , . . . , x is basically an assignment1 2 P

Ž .of the membership values m x on each x gX ,c p p

;cs1,2, . . . ,C, ;ps1,2, . . . , P. If the membership
values are crisp, then X is partitioned into C sub-
groups during the classification process. In fuzzy
context, C partitions of X are the set of values
� Ž .4m x , that can be conveniently arranged on ac p

w Ž .xC=P matrix Us m x . Based on the character-c p

istic of U, classification can be of the following
Ž .three types Pal and Bezdek, 1995 :

1. Crisp classification:

C P � 4M s UgR N m x g 0,1 ;c, ;p ;Ž .hc c p½
C P

m x s1; 0- m x -P ;c .Ž . Ž .Ý Ýc p c p 5
cs1 ps1

1Ž .
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2. Constrained fuzzy classification:

C P w xM s UgR N m x g 0,1 ;c, ;p ;Ž .fc c p½
C P

m x s1; 0- m x -P ;c .Ž . Ž .Ý Ýc p c p 5
cs1 ps1

2Ž .

3. Possibilistic classification:

C P w xM s UgR N m x g 0,1 ;c, ;p ;Ž .pc c p½
P

0- m x -P ;c . 3Ž . Ž .Ý c p 5
ps1

Fig. 1 shows a situation containing two classes.
Here, both the patterns A and B are equidistant from
the two classes. In crisp classification, the member-
ship value of A in one class will be 1 and in the
other class it will be 0. It is true for the pattern B
also. Obviously, this kind of membership assignment
does not reflect the intuitive classification situation
as A and B partially belong to both the classes. In
constrained fuzzy membership assignment, both the
patterns A and B will be assigned the membership
values equal to 0.5. Although this membership as-
signment is better than the crisp counterpart, it fails
to consider the pattern A as a more typical one than
the pattern B. It is because, here the membership
assignment is a relative one, and it depends on the
membership values to both the classes. In possibilis-
tic membership assignment, the pattern A will re-
ceive equal membership values to both the classes. It

Fig. 1. The crisp membership values of data A and B in both
classes are either 0 or 1. The constrained fuzzy membership
values of data A and B in both classes are about 0.5, which do
not consider the fact that B is much less representative of either
class than A.

is true for B also. But, the membership of B in any
class will always be less than that of pattern A.
Therefore, the possibilistic assignment may not be
summed to one, and thus, it can distinguish between

Žequal evidence and ignorance Krishnapuram and
.Keller, 1993 . This property of the possibilistic as-

signment makes it attractive compared to the other
Ž . Ž . Ž .two assignments. From the relations 1 , 2 and 3 ,

it is obvious that M ;M ;M . We will see laterhc fc pc

that our proposed learning algorithm is based on the
possibilistic classification, and hence as a natural
consequence, various BP algorithms based on the
constrained fuzzy and crisp classification become
particular cases of the proposed algorithm.

From the above discussion, it is apparent that any
concept that uses fuzzy sets requires the membership
function to be defined. This function is usually de-
signed by taking into consideration the requirements
and constraints of the problem.

2.2. Computation of membership Õalues for fuzzy
classification

This part of the discussion describes how to deter-
mine the membership value of each input pattern.
The membership value of the pth input pattern to the

Ž .class c is defined as Pal and Dutta Majumder, 1986

1
m x s , 4Ž . Ž .c p Fe1q z rFŽ .pc d

where z is the weighted distance, and the positivepc

constants F and F are the denominational andd e

exponentional fuzzy generators controlling the
amount of fuzziness in this class-membership set.
The weighted distance is discussed in detail later.

Ž . w xObviously, m x lies in the interval 0,1 . Specifi-c p

cally, the higher the distance of a pattern from a
class, the lower is its membership value to that class.
In particular, when the distance is zero, the member-

Ž .ship value is one maximum , and on the other hand,
when the distance is infinite, the membership value

Ž .is zero minimum . The method of calculating the
weighted distance is as follows.

Let the N-dimensional vectors m and s denotec c

the mean and standard deviation, respectively, of the
set of training patterns for the cth class. The weighted
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d istance of a tra in ing pattern x sp
w xTx , x , . . . , x from the cth class is defined asp1 p2 pN
Ž .Pal and Dutta Majumder, 1986

2N x ympi ci
z s , ;cs1, . . . ,C. 5Ž .Ý)pc

sciis1

The weight 1rs is used to take care of the vari-c j

ance of the classes so that a feature with higher
Ž .variance has less weight significance in characteriz-

Ž .ing a class Pal and Dutta Majumder, 1986 . Note
that when the ith feature values of all the patterns
from the cth class are the same, then the standard
deviation s will be zero. In such a situation, weci

consider s s´ , where ´ is a very small positiveci

value. In this work the mean and standard deviation
of each class are calculated from the set of input
training data corresponding to that particular class.

Ž .Note that here Ý m x ;p needs not be equal toc c p

one.
However, while choosing the mean as the proto-

type of a class, we must be careful enough to avoid
the outliers present in the input data set. To avoid the
effect of the outliers, we first calculate the mean mc

and the standard deviation s of the cth class byc

considering all the training inputs from that class.
Then, we recalculate the mean of the cth class by
taking the training input patterns of the cth class
which lie in between m y2s and m q2s . Itc c c c

can be shown that the speech data from each class
form a normal distribution. As the distribution is
normal, we basically recalculate the mean based on
the 95.45% data from the cth class. Since the out-
liers lie at the boundary of the class, there are high
chances that the outliers will come from the remain-
ing 4.55% patterns, that are lying at the boundary of
the class. Thus, the effect of the outliers is reduced.
In order to avoid outliers, we could have chosen the
median in place of the mean as the class representa-
tive. Although the mean and median each provides a
single number to represent an entire set of patterns
from a class, the mean is usually preferred in the
problems of estimation. An intuitive reason is that
the median is generally subject to greater chance of
fluctuation, i.e., it is apt to vary more from sample to
sample. Hence, in this work we decided to choose
mean as the class prototype.

3. Back propagation algorithm with fuzzy objec-
tive functions

Let, the training set in a C-class problem consists
�Ž . Ž . Ž .4of vector pairs x , y , x , y , . . . , x , y , where1 1 2 2 P P

N � <x gR refers to the pth input pattern and y g t ,p p c
C4cs1,2, . . . ,C; t gR refers to the target output ofc

the network corresponding to this input. Specifically,
if x is from the k th class, then y s t , wherep p k

t s1 and t s0 ;c, c/k.k k ck

3.1. Architecture

The network used here is a multilayer feedfor-
ward network which can have several hidden layers.
Without loss of generality, number of the hidden
layers can be assumed to be one with H hidden
nodes. W hen an input pattern x sp
Ž .Tx , x , . . . , x is applied at the input layer ofp1 p2 pN

the network, the input units distribute the values to
the hidden layer units. The output of the jth hidden
unit is

1
h h ho s f net s ,Ž .p j j p j h1qexp ynetŽ .p j

where neth sÝN wh x qu h. Here, wh is thep j is1 ji p i j ji

weight of the link from the ith input node to the jth
hidden node. u h and f h are the bias term andj j

transfer function of the jth hidden node. Similarly,
the output of the k th output node is

1
o o oo s f net s ,Ž .pk k pk o1qexp ynetŽ .pk

o H o oŽ o . owhere net sÝ w f net qu . The h and opk js1 k j j p j k

superscripts refer to the quantities in the hidden and
output layers, respectively.

3.2. Training

The adaptive parameters of the FFNN consist of
all weights and bias terms. The sole purpose of the
training phase is to determine the optimum setting of
the weights and bias terms so as to minimize the
difference between the network output and the target
output. This difference is referred to as training error
of the network. The error measure can be fuzzy
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mean square error, which is basically a fuzzy coun-
Ž .terpart of the mean square error Haykin, 1994 used

in the conventional BP algorithm.
In the conventional BP algorithm, the mean square

error for the pth input pattern is defined as E sp
1 C o 2Ž .Ý t yo . However, the use of E as anks1 pk pk p2

error term is justified when each input pattern be-
longs to only one class. But, in fuzzy classification
the input pattern may belong to more than one class
with different degrees of belongingness. It implies
that the target value of an input pattern may be more
than one. In other words, each input pattern can have
all possible target values with different membership

Ž .values certain membership values may be zero also .
Through training the network attempts to reach those
target values weighted by different membership val-
ues. In other words, the problem of training can also
be conceptually viewed as a fuzzy constraint satis-
faction problem. Here, the constraint is that each
input pattern should belong to a particular class, and
the associated membership value signifies upto what
extent this constraint should be satisfied. In the
training phase, the proposed network adapts the pa-
rameters so that these constraints are resolved opti-
mally. Mathematically, for the pth input pattern the
constraints can be expressed as the fuzzy mean
square error term, which is defined as

C C1 2f q oE s m x t yo . 6Ž . Ž .Ž .Ý Ýp c p ck pk2 ks1 cs1

w .Here, the index of m, i.e., qg 0,` controls the
amount of fuzziness present into the classification.
Different values of q signifies upto what extent, the
constraints should be satisfied. When qs0, each
input pattern tries to attain all the target outputs with
equal importance, and ultimately the network learns
the mean of all the class centers. When the value of
q is greater than one, the constraints associated with
the high membership values get more importance to
be resolved. When q tends to be infinity, only the
input pattern which belongs to a class completely,
i.e. with membership one, is learned. Specifically,
the larger the q is, the less fuzzier are the member-
ship assignments. Consequently, we can observe that
E f decreases strictly towards zero as q increases inp
w x Ž . Ž .1,` for 0-m x -1 ;c see Appendix A . Onc p

the other hand, when q is less than one, the con-

straints associated with the high membership values
get less importance to be resolved. Thus, q controls
the extent of the membership sharing between the
fuzzy classes. This can be good; on the other hand,
one must choose q to actually implement it. In our
work q is assumed to be one. The role of q here is
quite similar to the index of fuzziness in the concen-
tration and dilation operators found in fuzzy hedge
Ž .Klir and Folger, 1993 , and the index of fuzziness in

Ž .fuzzy C-means clustering algorithm Bezdek, 1981 .
Next, we derive the learning laws for the network

following the same method as followed in the con-
Ž .ventional BP algorithm Haykin, 1994 . Here, we

assume that the weight updation, Dw, takes place
after the presentation of each input pattern. Assum-
ing the use of same learning-rate parameter h for all
the weight changes made in the network, the weight
changes applied to the weights w and w arek j ji

calculated, respectively, in accordance to the gradi-
ent-descent rules:

E E f E E f
p po hDw syh and Dw syh .k j jio hE w E wk j ji

From Appendix B we can write

C
o q q oDw sh m x y m x oŽ . Ž .Ýk j k p c p pk

cs1

=oo 1yoo oh 7Ž .Ž .pk pk p j

shd o oh , 8Ž .pk p j

where

C
o q q o o od s m x y m x o o 1yo .Ž . Ž . Ž .Ýpk k p c p pk pk pk

cs1

Again, from Appendix C,

C
h h h q´Dw sh f net x m xŽ .Ž . Ýji j p j p i k p

ks1

C
q o o o oy m x o o 1yo w 9Ž . Ž .Ž .Ý c p pk pk pk k j

cs1

C
h h o o´sh f net x d w 10Ž .Ž . Ýj p j p i pk k j

ks1

shd h x , 11Ž .p j p i
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where

C
h h h o o´d s f net d w .Ž . Ýp j j p j pk k j

ks1

In the learning equations, for faster learning mo-
Ž .mentum Haykin, 1994 term can be used. Moreover,

to make the whole learning faster, learning-rate can
be adaptive, i.e., its value can increase or decrease
dynamically as the learning algorithm progresses.

The conventional BP algorithm may not converge
quickly in many cases, especially, when the classes

Ž .are overlapping Pal and Mitra, 1992 . It is because
the ambiguous vectors are given full weightage in
one class. In the proposed version, the error to be
backpropagated has more weightage in case of the
nodes with higher membership values, and hence,
can induce greater weight corrections in favour of
that class for an input data that demands such adjust-
ment. Thus, the contribution of the ambiguous or
uncertain vectors to the weight correction is reduced
and as a result the convergence becomes easier. It is
evident that we can obtain this advantage fully only
when the membership assignment is not any way
constrained, i.e., possibilistic.

Now we illustrate the following particular cases
of the proposed learning algorithm.

Ž .1 Crisp Classification: In case of crisp classifi-
qŽ .cation only one component of m x ;cs1, . . . ,C,c p

is one and the remaining components are zero. Thus,
the expression for E f boils down to the followingp

expression:

C C1 2fE sy t yo 12Ž .Ž .Ý Ýp c p pk2 ks1 cs1

which is the mean square error term found in the
conventional BP algorithm. Consequently, in a crisp
case the learning algorithm based on mean square
error and fuzzy mean square error become identical.
This can be easily verified by making the member-

Ž . Ž .ship assignments in 6 and 9 crisp.
Ž .2 Constrained fuzzy classification: When

Ž .Ý m x s1 ;p and qs1, the learning equationsc c p
Ž . Ž .6 and 9 achieve simpler forms as follows:

Dwo shd o oh 13Ž .k j pk p j

Dwh shd h x 14Ž .ji p j p i

where

o o o od s m x yo o 1yoŽ . Ž .pk k p pk pk pk

and

C
h h h o o´d s f net d w .Ž . Ýp j j p j pk k j

ks1

We can note down that this particular version of the
proposed algorithm is available as the learning algo-

Ž .rithm proposed by Pal et al. in Pal and Mitra, 1992 .
It is also important to note that we are not consider-
ing Pal et al.’s algorithm with fuzzy linguistic input;
rather we are considering it with crisp inputs. In the
future correspondence, the proposed algorithm will
be extended to take care of the fuzzy linguistic input.

Thus, being possibilistic in nature, the proposed
algorithm encapsulates various BP algorithms based
on crisp as well as constrained fuzzy classification.

3.3. Testing

The network learns the fuzzy boundaries between
the classes after training. In this stage, a separate set
of test patterns is given as the inputs to the network.
Generated outputs are the class membership values
corresponding to the respective test inputs.

4. Results and discussion

We consider the task of vowel recognition
Ž .Rabiner and Juang, 1993 to demonstrate the effi-
ciency of the proposed scheme. For our study we
consider the vowels ‘‘a’’, ‘‘e’’, ‘‘i’’, ‘‘o’’ and ‘‘u’’.
The data required for training is collected from
vowel part of the utterances of consonant vowel
pairs of three different speakers. The raw speech
signal cannot be used directly for training the net-
works because the features are deep hidden. There-
fore, we extract features from the speech signal and
use them for training the network. For this purpose
we consider first three formants obtained from the
utterances of speech as the extracted features. The
formants are extracted by taking the LPC and finding
the frequencies at which the spectrum reaches peaks.

We use different BP learning paradigms to train a
feedforward neural network with 3 input nodes, 5
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Table 1
Classification results of the conventional BP and the proposed BP
on a set of formant data with two different network architectures

No. of hidden nodes Conventional BP Proposed BP

10 74.87% 80.21%
15 77.05% 82.11%

output nodes and variable number of hidden nodes.
The target patterns are 5-dimensional vectors con-
taining 1 in one location and 0 in all others. Here, we
adopt the strategy of picking the output node with
the highest activation value as the output class corre-
sponding to an input. The learning-rate is adaptively
changed for the learning algorithms in the following
way: If the error decreases during training, then the
learning-rate is increased by a predefined amount. In
contrast, if the error increases, then the learning-rate
is decreased and the new weights and errors are
discarded. As a result, the error always decreases or
stays as it is. The momentum is kept constant
throughout the process. The values of F , F and qe d

are taken as 2, 5 and 1, respectively.
In the first experiment, we use two different

network architectures to compare the performance of
the proposed learning algorithm and the conventional
BP learning algorithm. The two architectures are
based on ten and fifteen hidden nodes, respectively.
The classification performance of the proposed algo-
rithm and the conventional algorithm over these two
architectures are shown in the first and second rows
of Table 1. We take a training set of 200 examples
and evaluate their performances on 1000 samples of
test data. From Table 1, we can observe that the
proposed algorithm performs well in both the cases.

In the second experiment, we use different learn-
ing techniques on an another training set of 300
examples and evaluate their performances on 1800
samples of test data. We use Bayes classifier for
multivariate normal patterns with the a priori proba-

Žbilities p sP rP, where P denotes Pal and Duttai i i
.Majumder, 1986 the number of patterns in the ith

class and P is the total number of training patterns.
The covariance matrices for each class is determined
from the training patterns of that particular class.
Classification performance of the Bayes classifier on
the test set is shown in the second column of Table
2. Next we use three different BP learning paradigms
on the data set to train a feedforward neural network
with 3 input nodes, 5 hidden nodes and 5 output
nodes. Classification efficiency of the network on the
test set is demonstrated in the third column of Table
2. The fourth and fifth columns of Table 2 show the
classification performance of the same network
trained with Pal et al.’s algorithm and the proposed
algorithm, respectively.

The Bayes classifier gives optimal classification
performance, provided the parameters of the input
distribution are estimated from the inputs collected
over the whole input space. In practice, the distribu-
tion parameters are estimated based only on a finite
number of training data. As a result, the performance
of the Bayes classifier is no longer optimal, but its
performances approaches the optimal one as the

Žnumber of input data is made very large theoreti-
.cally, it is infinity . Nevertheless, in Table 2, Bayes

classifier, based on a finite number of training sam-
ples, is used to compare the performance of the
proposed method. From Table 2, we can observe that
the performance of the conventional BP algorithm is
comparable to that of the Bayes classifier. However,

Table 2
Results of vowel classification for different types of classification algorithms

Class Bayes classifier Conventional BP Pal et al.’s algorithm Proposed algorithm

‘‘a’’ 84.89% 80.36% 87.09% 90.27%
‘‘e’’ 82.87% 80.59% 85.66% 86.60%
‘‘i’’ 87.34% 82.31% 87.21% 89.41%
‘‘o’’ 80.29% 86.89% 83.75% 86.45%
‘‘u’’ 84.75% 87.91% 92.73% 93.78%

overall 84.28% 83.61% 87.28% 89.39%
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the classification results are significantly improved
when Pal et al.’s algorithm is used. This improve-
ment is possible because of the consideration of the
fuzziness involved in the classification process. The
overall classification result is further enhanced when
the proposed algorithms are used. The proposed
algorithms can find the fuzzy decision boundary

Žmore accurately as some input patterns especially, at
.the borders or away from the classes may not satisfy

Ž .the condition Ý m x s1. Thus, the possibilisticc c p

approach is more appropriate here. In this work, we
did not attempt to optimize the number of hidden
nodes of the FFNN. This can be an attractive re-
search issue for the future study. For further reading,

Ž .see Kandle, 1986; Rumelhart et al., 1986 .
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Appendix A. Ef is a monotonically decreasingp

function

Ž . fFor 0-m x -1, one might suspect that Ec p p

decreases monotonically with q, when q)1. To see
that this is indeed the case, differentiating E f withp

respect to q we get

f C CE E 1 2p q q os m x ln m x t yoŽ . Ž . Ž .Ž .Ý Ý c p c p ck pkE q 2 ks1 cs1

A.1Ž .
C C1

s m x ln m xŽ . Ž .Ž .Ý Ý c p c p2 ks1 cs1

2qy1 o= m x t yo . A.2Ž . Ž .Ž .c p ck pk

Ž .With the usual convention that x ln x s0 if xs0,
w Ž . Ž Ž ..x w qy1Ž .Žwe have m x ln m x (0 and m x tc p c p c p ck

o .2 xyo 00 ;c,k. Both the inequalities being strictpk
Ž . Ž .whenever 0-m x -1. Hence, when 0-m xc p c p

f Ž .-1, E strictly decreases Bezdek, 1981 on everyp
w xfinite interval of the form 1,b with 1-b.

Appendix B. The expression for ≥ Ef rrrrr≥ w o
p k j

The expression for E E frE wo can be derived asp k j

E E f
p

oE wk j

C o o oE f net E netŽ . Ž .k pk pkq osy m x t yoŽ . Ž .Ý c p ck pk o oE net E wŽ .pk k jcs1

B.1Ž .
C

q o o o hsy m x t yo o 1yo o B.2Ž . Ž .Ž . Ž .Ý c p ck pk pk pk p j
cs1

C
q o qsy m x t yo q m xŽ . Ž .Ž . Ýk p k k pk c p

cs1c/ k

= o o o ht yo o 1yo o . B.3Ž .Ž . Ž .ck pk pk pk p j

Since t s1 and t s0 ;c/k,k k ck

E E f
p

oE wk j

C
q o q osy m x 1yo y m x oŽ . Ž .Ž . Ýk p pk c p pk

cs1c/ k

=oo 1yoo oh B.4Ž .Ž .pk pk p j

C
q q o o o hsy m x y m x o o 1yo o .Ž . Ž . Ž .Ýk p c p pk pk pk p j

cs1

B.5Ž .

Appendix C. The expression for ≥ Ef rrrrr≥ w h
p ji

The expression for E E frE wh can be found asp ji

follows:
f C CE Ep q osy m x t yoŽ . Ž .Ý Ý c p ck pkhE wji ks1 cs1

=
E f o neto E neto E oo E nethŽ . Ž . Ž .k pk pk p j p j

o o hhE net E o E wE netŽ . Ž .pk p j jip j

C.1Ž .
C C

q o o o o h́sy m x t o o 1yo w fŽ . Ž . Ž .Ý Ý c p ck pk pk pk k j j
ks1 cs1

= neth x C.2Ž .Ž .p j p i
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C C
h h q o o´syf net x m x t yo oŽ . Ž .Ž . Ý Ýj p j p i c p ck pk pk

ks1 cs1

= 1yoo wo . C.3Ž .Ž .pk k j

Ž .Following the steps involved while deriving B.5
Ž .from B.2 , we can write

C
q q om x y m x oŽ . Ž .Ýk p c p pk

cs1

C
q o' m x t yo . C.4Ž . Ž .Ž .Ý c p ck pk

cs1

Hence,

E E f
p h h´syf net xŽ .j p j p ihE wji

=
C C

q q om x y m x oŽ . Ž .Ý Ýk p c p pk
ks1 cs1

=oo 1yoo wo . C.5Ž .Ž .pk pk k j
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