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Abstract 

In this paper, an evolutionary programming-based clustering algorithm is proposed. The algorithm effectively groups a 
given set of data into an optimum number of clusters. The proposed method is applicable for clustering tasks where clusters 
are crisp mad spherical. This algorithm determines the number of clusters and the cluster centers in such a way that locally 
optimal solutions are avoided. The result of the algorithm does not depend critically on the choice of the initial cluster 
centers. © 1997 Published by Elsevier Science B.V. 
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1. Introduction 

Clustering a set of data provides a systematic 
approach for partitioning the given set of data into 
different groups such that patterns having similar 
features are grouped together, and patterns with dif- 
ferent features are placed in different groups (Dubes 
and Jain, 1987). Formally, clustering can be defined 
as follows (Bezdek, 1981): Given a set X = 
{ x ~ , x  z . . . . .  x N} of feature vectors, find an integer K 
(2 < K < N) and the K partitions of X which ex- 
hibit categorically homogeneous subsets. In the field 
of clustering, the K-means algorithm (Tou and Gon- 
zalez, 1974) is a very popular algorithm. It is used 
for clustering where clusters are crisp and spherical. 
In the K-means algorithm, clustering is based on 
minimization of the overall sum of the squared errors 
between each pattern and the corresponding cluster 
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center. This can be written as minimization of the 
following objective function, 

K 

E= E E ][x-mkll 2 (1) 
k= l  x ~ C  k 

where K is number of clusters and m k is the center 
of the kth cluster C k. Although the K-means algo- 
rithm is extensively used in literature (Dubes and 
Jain, 1987; Selim and Sultan, 199l), it suffers from 
several drawbacks, Firstly, to apply the method, the 
user has to know a priori the number of clusters 
present in the given input data set. Secondly, the 
objective function is not convex, and hence, it may 
contain local minima. Therefore, while minimizing 
the objective function, there is a possibility of getting 
stuck in local minima (also in local maxima and 
saddle points). Finally, the performance of the K- 
means algorithm depends on the choice of the initial 
cluster centers. 

rights reserved. 
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In this article we propose a clustering algorithm to 
address the following issues: 
1. How to determine the optimum number of the 

clusters. 
2. How to avoid local minima solutions. 
3. How to make clustering independent of the initial 

choice of the cluster centers. 
4. How to cluster properly when the clusters differ 

in size, density and number of patterns. 
Since human ability to cluster data is far superior 

to any of the clustering algorithms, we look at some 
of the features in our clustering mechanism. For 
example, when we see a picture, we try to cluster the 
elements of the picture into different groups. It is 
interesting to note that, immediately after observing 
a picture we can find how many clusters there are, 
and it is done without looking at each point within 
the clusters. Thus, it appears that clustering depends 
on the global view of the observer. After deciding 
the number of clusters, we try to see which point 
belongs to which cluster. So, we gather global infor- 
mation first, and then we look for local properties. 
Now the question is, what criterion do we use to 
gather the global information? Possibly we collect 
this global information from the isolation and com- 
pactness of the clusters in the whole picture. Al- 
though the K-means algorithm takes care of the local 
properties of the picture, it does not take the global 
view into account. 

We propose a clustering algorithm which mimics 
the above mentioned features of the human way of 
clustering. The proposed algorithm is applicable 
when clusters are crisp and spherical. In this algo- 
rithm, two objective functions are minimized simul- 
taneously. The global view of the input data set is 
considered by an objective function called Davies- 
Bouldin index (DB-index) (Dubes and Jain, 1987). 
Minimization of this objective function takes place 
by randomly merging and splitting the clusters. The 
objective function E given in Eq. (1), is minimized 
to take care of the local property, i.e., to determine 
which input pattern should belong to which cluster. 
It turns out that minimization of the global perfor- 
mance index, i.e., the DB-index, gives the optimum 
number of clusters, whereas minimization of E leads 
to proper positioning of the cluster centers. In other 
words, the task of minimizing the DB-index can be 
considered as a major one, while the task of mini- 

mizing E can be regarded as a minor one. The role 
played by the DB-index and E are quite similar to 
the role played by the generalization error and train- 
ing error in configuring an artificial neural network 
(Pao et al., 1996). Minimization of both objective 
functions may yield locally optimal solutions. To 
circumvent the local minima problem, we propose an 
optimization technique based on evolutionary pro- 
gramming (EP) (Fogel, 1995). EP optimizes both 
objective functions by using a controlled stochastic 
search. It performs the search in parallel from more 
than one point. While searching for the global mini- 
mum, this technique explores simultaneously many 
paths. Certain search paths may be less promising in 
the initial stages, whereas due to random perturba- 
tion of the search parameters it may become highly 
promising after some time. In the EP-based ap- 
proach, the less promising solutions are also kept 
along with the highly promising solutions, hoping 
that in future they would lead to new search paths 
towards the global minimum. These new paths help 
the search process to avoid locally optimal solution. 
Also, by splitting and merging the clusters or by 
small perturbation of the cluster centers, the search 
operation may jump over locally minimal solution. 
Due to these two reasons, the proposed method can 
avoid local minima. In the EP-based clustering ap- 
proach, initially, more than one solution is generated, 
and the solutions are then repeatedly adapted by 
splitting and merging the clusters or by small pertur- 
bation of the cluster centers. Thus, the initial choice 
of the cluster centers is also not very critical in the 
proposed EP-based algorithm. 

In many pattern recognition problems, including 
clustering, EP is considered to be a more powerful 
optimization tool than other existing optimization 
methods, namely simulated annealing (SA) (Selim 
and Sultan, 1991) and genetic algorithms (GA) 
(Goldberg, 1989). In particular, SA is a sequential 
search operation, whereas EP is a parallel search 
algorithm. In fact, we can say that EP is more than a 
parallel search. Parallel search starts with a number 
of different paths (say P > 1) and continues until all 
the search paths get stuck in blind alleys or any one 
of them finds the solution. EP also starts with P 
different paths. But, it always tries to generate new 
paths which are better than the current paths. Due to 
this inherent parallelism, an EP-based search opera- 
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tion is more efficient than the SA-based search oper- 
ation (Porto et al., 1995). Moreover, through mathe- 
matical analysis it can be shown that under mild 
conditions, the probability of success in stationary 
Markovian optimization techniques like EP is better 
than nonstationary Markovian optimization processes 
like SA (Hart, 1996). Although EP and GA are both 
parallel search operations based on the principle of 
the stationary Markov chain, for the clustering prob- 
lem an EP-based optimization approach is advanta- 
geous over a GA-based approach. One major prob- 
lem with the GA-based approach is the permutation 
problem (Yao, 1993). The permutation problem stems 
from the fact that in GA two functionally identical 
sets of clusters which order their clusters differently 
have two different genotype representations. There- 
fore, the probability of producing a highly fit off- 
spring from them by crossover will be very low. The 
EP-based optimization method, however, does not 
suffer from this problem. Hence, for clustering prob- 
lems, EP is a better optimization tool than GA. 

2. Background of evolutionary programming 

2.1. Basics of evolutionary programming 

Let us consider the problem of finding the global 
minimum of a function 

y ( x ) : E  n ~ 

where x is an n-dimensional vector. EP uses the 
following steps to solve the problem (Fogel, 1994b, 
1995): 
1. Initially a population of parent vectors x i, i = 

1,2 . . . . .  P, is selected at random (uniformly) from 
a feasible range in each dimension. 

2. An offspring vector 2 i, i = 1,2 . . . . .  P, is created 
from each parent x i, by adding a Gaussian ran- 
dom variable with zero mean and predefined stan- 
dard deviation to each component of x i. 

3. A selection procedure then compares the values 
Y ( x  i) and Y ( x i )  to determine which of these 
vectors are to be retained. The P vectors that 
possess the least error become the parents for the 
new generation. 

4. This process of generating new trials and select- 
ing those with least error continues until a suffi- 
cient solution is reached or the number of genera- 

tions becomes greater than some prespecified 
constant. 
As an example, minimization of the following 

quadratic function by EP is described in (Fogel, 
1994b), 

Y ( x ) =  ~ x  2, (2) 
l=1  

which shows that solution of the above function 
quickly converges to the global minimum. 

2.2. Evolutionary programming in clustering 

In this section, we use the above ideas to cluster a 
given set of data. The objective is to find the opti- 
mum number of clusters and optimum position of 
each cluster center. Formally, this can be treated as a 
problem of finding the global minimum of the fol- 
lowing function, 

J ( ~ : )  :~"= --, ~, (3) 

where ~ is an nK-dimensional vector representing 
[ml,m2 . . . . .  mK] and 9 - ( ~ )  signifies how good the 
clustering is. In the above relation, ~ is like x in Eq. 
(2). However, there is a fundamental difference. 
Unlike x, here the dimension of ~ is variable. So, 
EP should be able to find the optimum value of ~ as 
well as the optimum value of K. 

Now we describe how the above idea can be used 
in a practical situation. To cluster an input data set, 
initially EP needs to create a population of sets of 
clusters. Hence, EP initializes the population with 
sets of clusters having randomly generated (uniform 
distribution) cluster centers. Thus, P such sets of 
cluster centers are formed, each set having any num- 
ber of cluster centers between two and some prespec- 
ified positive integer. The number of cluster centers 
in each set is determined randomly. These sets are 
called parents. The entire data set is then clustered 
based on the set of parent cluster centers by the 
modified K-means (MKM) algorithm, which is de- 
scribed in the next section. A fitness value for each 
parent set is measured. Each parent is allowed to 
create one offspring. Thus, P offspring sets of clus- 
ter centers are generated. The method of creating the 
offsprings is described in the next section. After 
creating these offsprings, the entire data set is clus- 
tered by the MKM based on the set of offspring 
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1. Randomly generate a population of sets of cluster centers (caIl them 

parents).  

2. Cluster  each set using the MKM. 

3, Find the fitness value of each parent set. 

4. Create the  offspring of each parent  set. 

5. Cluster  each offspring set using the MKM, 

6, Find the  fitness value of each offspring set, 

7. Compet i t ion  starts among all parent and offspring sets based on the  

fitness value. 

8. Survival of the fi t test  sets (call them parents).  

9. I f  number  of generations is less than some prespeeified constant then 

go to step 4. 

F ig .  1. T h e  p r o p o s e d  e v o l u t i o n a r y  p r o g r a m m i n g - b a s e d  c lu s t e r ing  

a lgo r i t hm.  

cluster centers, and then the fitness value of each 
offspring set is measured. As a result, we obtain 2 P 
sets of clusters comprising of parents as well as 
offsprings. Now the competition phase starts. In this 
phase, the fitness values of all sets (parents as well 
as offspring) are compared. For each solution, the 
algorithm chooses 10 randomly selected opponents 
from all parents and offsprings with uniform proba- 
bility. In each comparison, if the conditioned set 
offers as good performance as the randomly selected 
opponent, it receives a win (Porto et al., 1995; 
Saravanan and Fogel, 1995). Based on the wins, sets 
scoring in the top 50% are designated as parents. All 
other sets are discarded. Again these parents are used 
to create offsprings. The whole procedure is contin- 
ued until the number of generations becomes larger 
than some prespecified constant. We can formalize 
the above idea in the form of an algorithm as shown 
in Fig. 1. Finally, the set with maximum fitness 
value is considered as the desired output. 

3. Implementation issues in evolutionary pro- 
gramming-based clustering 

3.1. Fitness function 

The fitness function of a set of clusters is given 
by 

1 
fitness value = Davies-Bouldin index '  (4) 

where the Davies-Bouldin index is determined as 
follows (Dubes and Jain, 1987): 

Given a partition of the N input data into K 
clusters, one first defines the following measure of 
within-to-between cluster spread for two clusters, Cj 
a n d C  k f o r l < j , k < K a n d j v  ak. 

ej + e k 
R j, k - - ,  (5)  

Djk 

where ej and e k are the average dispersion of Cj and 
C k, and Dj,~ is the Euclidean distance between Cj 
and C~. If  mj and m~ are the centers of Cj and C k, 
then 

1 
e j=7  E IIx-mj[12 

x ~  Cj 

and Djk = I l rn j -  mkll z, where mj is the center of 
cluster Cj consisting of Nj patterns. We define a 
term R k for C k as 

R~ = maxj ~= kRj,k. (6) 

Now, the DB-index for K-clustering is defined as 

K 

D B ( K )  = 1 / K  ~_~ R k. (7) 
k = l  

It is to be noted that we have two objective 
functions, E in Eq. (1) and the DB-index in Eq. (7), 
to minimize. Of these two, we are treating only the 
inverse of the DB-index as the fitness function (given 
in Eq. (4)). The reason is that the evaluation of E in 
Eq. (1) requires K to be predefined and fixed. 
Hence, when K varies, the value of E for a set with 
optimal number of clusters may not attain the mini- 
mum value. For example, if the number of clusters 
of a set is very close to the number of data, then the 
value of E is close to zero. Obviously, this kind of 
situation may not signify optimal clustering. How- 
ever, instead of minimizing both objective functions, 
we could have minimized only the DB-index. But, 
our search for a better set of clusters becomes more 
efficient when minimization of E is viewed as a clue 
to minimize the DB-index. In other words, use of 
DB-index and E are meant for exploration and 
exploitation in the search space, respectively (Re- 
nders and Flasse, 1996). 
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3.2. Generation o f  offsprings 

To generate offsprings, the following three steps 
are needed: 

3.2.1. Replicate the parent 

In the first step each parent is represented by the 
number of clusters and cluster centers. In this step, 
these values are copied from the parent to generate a 
new offspring. 

3.2.2. Mutation 

The aim of creating offsprings is to minimize E 
and the DB-index. Basically, the creation of an 
offspring is nothing but searching one step forward 
or backward in the search space. But, the length of a 
step size and the step direction are unknown. The 
step size cannot be too big or too small, because it 
may cause the search process to jump over a global 
minimum or it may take lot of time to reach the 
global minimum. Therefore, it is necessary to deter- 
mine the stepsize and step direction of the search 
method probabilistically. The nondeterminism asso- 
ciated with the step size and step direction selection 
further helps to avoid the local minima in the search 
process. To minimize E, we come across local min- 
ima which we call parametric local minima, and to 
minimize the DB-index we come across local min- 
ima which we call structural local minima. Paramet- 
ric local minima and structural local minima are 
reduced by the parametric mutation and structural 
mutation, respectively. Using parametric mutation, 
each cluster center m~, 1 < k _< K, is perturbed with 
Gaussian noise. This can be expressed as 

rn k = m k + N(O,T)  (8) 

Specifically, the mutation step size N(O,T) is a 
Gaussian random vector with each component hav- 
ing mean 0 and variance T. 

The intensity of parametric mutation however 
needs to be controlled, i.e., it is to be high when the 
fitness value of the parent is low and vice versa. This 
can be accomplished if we consider T of a particular 
set of clusters as its temperature, and define it as 

I minimum fitness ] 

T = ce U(0,1) fitness of the set of clusters ' (9) 

where U(0,1) is a uniform random variable over the 
interval [0,1], a is a constant (c~< 1). Obviously, 
from the definition the range of T lies in between 0 
and 1. This temperature determines how close the set 
is to being a solution for the task (Angeline et al., 
1994), and the amount of parametric mutation is 
controlled depending on T. Like simulated anneal- 
ing, this temperature is used to anneal the mutation 
parameters. Initially when the temperature is high, 
mutation parameters are annealed quickly with coarse 
grains. At low temperatures, they are annealed slowly 
with fine grains. Large mutations are indeed needed 
to escape a parametric local minimum during search. 
But, many times it adversely affects the offspring's 
ability to perform better than its parent (Angeline et 
ai., 1994). So, to lessen the frequency of large 
parametric mutation we have multiplied the right- 
hand side of Eq. (9) by aU(0,1). The value of the 
minimum fitness used in Eq. (9) is determined as 
given in the Appendix. 

Structural mutation is used to obtain the optimum 
number of clusters to avoid structural local minima. 
The determination of the optimum number of clus- 
ters can be considered as a search problem in a 
structure space where each point represents a particu- 
lar set of clusters. If a performance index like the 
DB-index is assigned to each set of clusters, the 
performance level of all possible sets of clusters 
forms a surface in the structure space. Thus, determi- 
nation of the optimum number of clusters is equiva- 
lent to finding the lowest point on this surface. 
However, this searching operation becomes compli- 
cated as the surface has the following characteristics 
(Yao, 1993; Miller et al., 1989): 
1. The surface is very large since the number of 

possible sets of clusters can be very high. 
2. The surface is nondifferentiable as the change in 

the number of clusters is discrete. 
In order to find the proper number of clusters, i.e., 

to find the global minimum in the structure space, 
sometimes one cluster is added to or deleted from an 
offspring (Tou and Gonzalez, 1974), and these addi- 
tion and deletion operations are controlled by struc- 
tural mutation. The addition of one cluster into an 
offspring set is done by splitting an existing cluster 
of that set. To identify a cluster for splitting, it is 
required to find the cluster with maximum hypervol- 
ume, where hypervolume V k of cluster C k is defined 
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as (Gath and Geva, 1989) 

V~=l/det (  1-- ~_, ( x - m k ) ( x - m ~ ) ' )  . (10) 
V 

Let C~ be the cluster with maximum hypervolume 
V k. In order to break this cluster into two parts, the 
center of this cluster, i.e., m k, is split into two new 

+ and m~-, and then m k is deleted cluster centers m k 
(Tou and Gonzalez, 1974). As a result, the number 
of clusters of this set, i.e., K is incremented by one. 

+ is formed by adding a Here, the cluster center m k 
certain quantity Yk to the component of m k which 
corresponds to the maximum component of o" k 
(variance of the kth cluster), i.e., o-kin, x; and in a 
similar way m~- is formed by subtracting Yk from 
the same component of mk. One simple way of 
specifying Yk is to make it equal to some fraction of 
O'km, x, that is 

Yk = K~r kin°X, where 0 < K < 1. (11) 

Deletion of one cluster from an offspring set is 
executed by merging two existing clusters of that set. 
In order to accomplish it, in the set of clusters, the 
two closest clusters with centers mkl and mk2 are 
identified for merging. Thereafter, these two clusters 
are merged by a lumping operation as 

1 
m; = Nk + Nk [ Nkfn~l + Nk2m~2], 

where m~ is the center of the new cluster. Next, mk~ 
and ink2 are deleted, and the number of clusters K is 
reduced by one. 

It is important to note that the splitting and merg- 
ing operations employed in the proposed scheme are 
quite similar to the splitting and merging operations 
found in ISODATA (Tou and Gonzalez, 1974). 
However, unlike in ISODATA, here cluster merging 
and splitting are executed in a nondeterministic fash- 
ion. This inherent nondeterministic property plays 
the key role in avoiding local minima while finding 
the optimum number of clusters, and eventually it 
guarantees the asymptotic convergence of the EP- 

based clustering scheme towards the global mini- 
mum (Fogel, 1994a). 

The specific instants of cluster addition or dele- 
tion depend upon the amount of structural mutation, 
which further depends upon the value of the proba- 
bility of structural mutation (Pro)" A large value of 
Pm transfers EP into a purely random search algo- 
rithm, on the other hand some mutation is indeed 
needed to prevent the premature convergence of EP 
to a suboptimal solution (Srinivas and Patnalk, 1994). 
So, the value of Pm of each solution is adaptively 
changed in response to the fitness (~--) of that 
particular solution. Let the average fitness value of 
the population and maximum fitness value of the 
population be denoted by ~ and 3-m, x, respectively. 
Here we borrow a result from (Srinivas and Patnaik, 
1994), which says that (3-ma x - 9 - )  is likely to be 
less for a population that has converged to an opti- 
mal solution than that for a population scattered in 
the solution space (Srinivas and Patnaik, 1994). The 
value of Pm is increased when the population tends 
to get stuck in a local minimum, and is decreased 
when the population is scattered in the solution 
space. Hence, Pm of the above average offsprings 
(i.e., the offsprings with ~ - - > 3 - )  should be in- 
versely proportional to g-max -- 3- '  In addition, p~ of 
the above average offsprings is made proportional to 
Ym,x - g-" This is done to achieve low values of Pm 
for highly fit offsprings so that these offsprings are 
preserved. Therefore, 

) i f J  > f t .  

(12) 

The value of the proportionality constant k m is taken 
as 0.5, such that Pm varies linearly from 0 (for the 
best set) to 0.5 (for the average set). Since below 
average offsprings should undergo a large amount of 
mutation, Pm for them is assumed to be equal to k m. 
Hence, 

pro=kin if~-- < Y .  (13) 

Fig. 2. (a) Input data set. (b), (c) and (d) are clustered outputs of K-means algorithm with different initializations. (e) Clustered output of the 
proposed algorithm. (f) Number of clusters plotted versus number of generation. 
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3.2.3. Modified K-Means algorithm (MKM) 
By exploiting the mutation efficiently we obtain 

the perturbed cluster centers and number of clusters 
for a particular offspring. However, to calculate the 
fitness value of this offspring, the input data set 
needs to be clustered based on these perturbed clus- 
ter centers. In addition, if the perturbed cluster cen- 
ters are updated based on the clustered output, then 
the minimization of E takes place, and as a result, 
minimization of the DB-index becomes easy. We 
exploit the modified K-means (MKM) algorithm to 
accomplish this task. In each offspring, the MKM is 
executed for one iteration at each generation. Conse- 
quently, if an offspring survives g generations, then 
it passes through g iterations, and thus, the MKM is 
indeed iterative in nature. The steps associated with 
the MKM algorithm are specified below: 
1. If the current generation is the first generation, 

follow this step else skip it. For each parent set, 
randomly generate the number of clusters, K 
where K > 1, and randomly determine the cluster 
centers within the range of the input set. 

2. Distribute the N input data among the present 
cluster centers, using the relation 

x c C k if ]Ix - m~[I ___ IIx - mi l l  Vx, 

k =  1 . . . . .  K, andj  = 1 . . . .  ,K, j4:k. (14) 

Resolve ties arbitrarily. Moreover, if some cluster 
remains empty after the above grouping is over, it 
is eliminated. 

3. Update each cluster center m~, by 

) mk N~+ 1 x +ink " 

The MKM algorithm basically remembers the 
cluster center at the last generation, and updates the 
old cluster center in the current generation. This 
updating process, however, may get stuck in certain 
parametric local minima. In order to avoid this, the 
cluster centers of the offspring obtained from the last 
generation are perturbed by applying Eq. (8), and 
then used in the current generation for further updat- 
ing. Although both MKM and K-means are iterative 
in nature, the difference between them is that the 
K-means never uses the old cluster centers in per- 
turbed form. This difference makes the K-means a 

deterministic search operation, and thus vulnerable 
for parametric local minima. 

4. Results and discussion 

For our first experiment, we generated 350 two- 
dimensional data from nine Gaussian distributions 
(Fig. 2(a)). Even after assigning the number of clus- 
ters in the K-means algorithm as nine, it failed to 
cluster this data set properly (Fig. 2(b)). One possi- 
ble reason may be poor initialization, which in the 
presence of local minima may force the search pro- 
cess to get stuck in one of these local minima. To 
avoid this initialization problem, we executed the 
K-means algorithm with two other random initializa- 
tions (Fig. 2, (c) and (d)). The K-means algorithm 
performed poorly with these initializations also. 

Fig. 2(e) depicts the clustered data using the 
proposed algorithm on the same data set. The pro- 
posed algorithm found the optimum number of clus- 
ters after twelve generations. In this method, the 
values of P and • were taken as 4 and 0.6, respec- 
tively. We observed that for c~ equal to one, the 
proposed algorithm worked quite well. During struc- 
tural mutation only one cluster was added or deleted 
at a time. Fig. 2(D illustrates the evolution of clusters 
in the best set against the number of generations. 
Moreover, this figure exhibits the self-organization 
capability of the proposed algorithm, due to which it 
is able to cluster correctly, even though it started 
with the wrong number of clusters and the incorrect 
position of the cluster centers. This figure also shows 
that sets with different stl~ctural variations evolve 
throughout the whole process. In fact, it exhibits that 
search for a better set of clusters (structurally) is 
carried out all through the process. After the pro- 
posed algorithm converges on this data set, the value 
of E is calculated from Eq. (1). It is found to be 
7.2% less than the value of E obtained after the 
K-means converges on this same data set. It again 
demonstrates the usefulness of the proposed method 
to avoid parametric local minima. 

We performed a second experiment on a set of 
350 English vowel sounds corresponding to the 
classes " a " ,  " i "  and " o " .  They were uttered in a 
Consonant-Vowel-Consonant context by three 25-35 
year-old male speakers. The data set has three lea- 
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Fig. 3. (a) Input speech data corresponding to the classes "a '  ', " i "  and "o" .  Along the X-axis formant F l and along the Y-axis formant F 2 
are shown. (b) Clustered output by K-means. Three different clusters are represented by " . " ,  " o "  and " +  ". (c) Clustered output by the 
proposed algorithm. Classes corresponding to "a" ,  " i "  and " o "  are represented by the clusters consisting of symbols " o " ,  " + "  and " . " ,  
respectively. The cluster centers are represented by " *" .  
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Fig. 4. (a) Eight different Gaussian distributions are used to artificially generate a set of data. (b) and (c) Clustered outputs by fuzzy 
K-means with two different sets of random initial cluster centers. (d) Clustered output by the proposed clustering algorithm. The proposed 
algorithm automatically finds the proper number of clusters and cluster centers. 

tures F l, F 2 and F 3 corresponding to first, second, 
and third vowel formant frequencies (obtained 
through spectrum analysis of the speech data). For 
ease of visualization, we illustrate the clustering 
performance on a two-dimensional plane formed by 
the formants F~ and F 2. The given data set is 
depicted in Fig. 3(a). From Fig. 3(b), we can see that 
the K-means failed to cluster the input data set, even 
though it knew in advance the number of clusters 
present in the data set. In contrast, the proposed 
algorithm took five generations (Fig. 3(c)) to cluster 
the input data set after finding the proper number of 
clusters. The classification rate of the clustered out- 
put of the proposed algorithm, when compared to the 
original data, is 99.5%. 

In the last experiment we generated 252 two-di- 
mensional data from eight different Ganssian distri- 
butions (Fig. 4(a)). We applied the fuzzy K-means 
clustering algorithm (FKM) (Bezdek, 1981) on this 

data set. The number of clusters was indicated as 
eight a priori in the algorithm. Fig. 4(b) and Fig. 4(c) 
show clustered outputs of the FKM with two differ- 
ent random initializations. From these figures, it can 
be observed that the FKM has failed to cluster the 
data set. The reason may be that the FKM search 
procedure got stuck in some local minima due to 
incorrect initialization. Fig. 4(d) shows the clustered 
output after applying the proposed algorithm on the 
same set of data. The proposed algorithm self- 
organizes to find the proper number of clusters and 
proper cluster centers automatically. The clustered 
output is evidently far better than the FKM' s outputs. 
Moreover, unlike the FKM, the proposed algorithm 
does not need to know the number of clusters in the 
data set a priori. However, it should be noted that the 
FKM may perform better when clustering is more 
fuzzy, as the proposed algorithm is not designed to 
take fuzzy classification into account. 
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5. Conclusion 

It is important to note that like the K-means 
algorithm, the proposed clustering method depends 
on the Euclidean distance between input data and the 
cluster centers. Hence, this clustering approach can 
be applied only when the common property of  the 
data of  a cluster can be described by Euclidean 
distances between the input data and the cluster 
center. No attempt has been made to test the effi- 
ciency of  the proposed method with other fitness 
functions as the purpose of  this article is to illustrate 
the approach. The advantage here is that one can do 
other modifications in the given framework. In the 
future, this kind of  technique is proposed to be 
extended to take care of  fuzzy clustering. 
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Similarly, r 2 can be defined. Therefore, 

~1-1 r1 + l N/~-2 r2 
R1, 2 = 

r 1 + r 2 

r l + r 2 

when N 1 > S 2 . (A.1)  

Since, N t < N, we can write, R~, 2 < f N .  The nu- 
merator of  the fight-hand side of Eq. (5) does not 
vary with position of  the clusters, and for any posi- 
tion of  the clusters the denominator of  the right-hand 
side of  Eq. (5) is larger than r 1 + r 2. Hence, the 
maximum value of  R1, 2 is v/N. Without loss of 
generality, we can say that, ~/N is the maximum 
value of R1. k for k =  1,2 . . . . .  K, i.e., R1, k < f N .  
Hence, from Eq. (6), R 1 < f N .  Obviously, this rela- 
tion is true for all Rk when k = 1,2 . . . . .  K. So, 

K K 

D B ( K )  = I / K E  Rk < 1/K Z fN, 
k=l  k=l  

i.e., D B ( K )  < fN-. Therefore, the minimum fitness 
value is 1 / x/N. 

Appendix A. Minimum fitness value 

Suppose that there are K clusters (K  > 2) in the 
input data set of  size N. Of the K clusters, we are 
considering any two clusters C 1 and C a consisting of 
N 1 and N 2 patterns (Nt,N 2 < N ) ,  respectively. Let 
the centers of  the clusters be m 1 and m 2, and the 
radii be r~ and r 2, respectively. These two clusters 
are such that dist(ml,m 2) = D12 = r 1 + r 2, i.e., both 
clusters are touching each other. From Eq. (5), we 
can say, 

e~ + e a e~ + e~ 

R1, 2 -  D1 ~ = rl  q - r  2 

Here, r x can be approximately taken as average 
dispersion of  C t per pattern that belongs to C 1, i.e., 

rl  = E I I ( X - - C l )  112 = 
x c  C 1 1N/~-I " 
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