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Abstract. High-resolution image reconstruction from sparse data is an important problem in sensor array imag- 
ing (SAI). The reconstructed images from such a data are poorly resolved. However, there may exist possibilities 
of making multiple measurements, for example, collecting many frames of data in a dynamic scene situation 
where there is relative motion between the object and the receiver. We discuss here a method of reconstructing 
good-quality images from multiple frames of sparse data obtained from a simulated dynamic scene situation. 
This method, based on projection onto convex sets (POCS), not only restricts the solution set by satisfying the 
constraints in the multiple measurements but also reconstructs a high-resolution image. 
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1. Introduct ion 

Image reconstruction is generally defined as a problem of estimating a two-dimensional 
image of an unknown object  from its degraded data. The observations resulting from the 
reflected wave field from the object of interest are usually defined on a two-dimensional 
(2-D) real space R 2 or a two-dimensional complex space C 2. The image formation is 
formulated by the linear model 

g = h * f ,  (noise-free model)  (1) 

where g is obtained by the 2-D convolution (*) o f f  with h. The image reconstruction is 
the process of  obtaining the best estimate o f f  given the observation g, and is known as 
the inverse problem. The observation g is usually degraded due to the image formation 
mechanism, or due to the recording medium or both. Due to degradations in the observed 
data, the solution to the inverse problem is not unique. The problem is i l l-posed when 
the data is available only at a few points. In such a case (1) has many solutions since there 
are fewer equations than unknowns (underdetermined case). 

The ill-posed problem has been studied extensively and a wide variety of solution methods 
are available to solve this problem [1-3]. Most  of  these methods have been unified under 
the theory of  regularization of  i l l-posed problems ([4]). The basic idea in regularization 

is to restrict the space of  acceptable solutions by choosing a function that minimizes an 
appropriate functional. Deterministic constraints can be used to reduce the solution space. 
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Constraints like finite support, nonnegativity or bounded energy, can be used as the a priori 
information in the reconstruction method. The method of projections onto convex sets 
(POCS) is useful when the constraints about the solution is known a priori. This method 
enables any number of a priori convex-type constraints to be incorporated in the algorithm, 
and it guarantees a weak convergence, i.e., inner product convergence [5]. Apart from 
restricting the solution space, it is also required to reconstruct a good-quality image from 
the observed data. 

Several methods have been proposed to reconstruct a good-quality image from sparse 
data [6, 7]. The sparse data was collected for different frequencies of the wave illuminating 
the object. Through simulation studies, it was shown that the quality of the reconstructed 
image improved when sparse data collected from various frequencies were combined in 
the reconstruction algorithm. The image reconstruction algorithm was based on the method 
of POCS. 

Another approach for reconstructing a good-quality image was proposed [8]. In this ap- 
proach, the sparse data was collected by varying the object-receiver distance in a simulated 
sensor array imaging (SAI) setup. In this approach, it was shown that the quality of the 
reconstructed image improved as the data collected at various object-receiver distances were 
combined in the reconstruction algorithm. Another method for data collection using the 
variation of both frequency and object-receiver distance was also suggested. In these methods, 
multiple frames of data were collected when the object remained Stationary throughout 
the imaging process. 

A recursive procedure, based on weighted least-square theory for reconstructing a high- 
resolution image from a set of low-resolution noisy images was proposed [9]. Each image 
in the set had been shifted by a known amount with respect to a reference frame. The restora- 
tion procedure was carried out in the transform domain by first estimating the nth frame 
from the (n - 1)th frame, and then the actual measurements of the nth frame were incor- 
porated to obtain a new estimate for the nth frame. They had shown that the image quality 
also improved as the number of frames were increased. 

In this paper we propose a method based on POCS for image reconstruction from multi- 
ple frames of data obtained from a dynamic scene situation. The data collected from a 
dynamic scene not only contains the information regarding the image but also the informa- 
tion regarding the motion of the object. The objective here is to use all the information 
obtained from the multiple frames of data for image reconstruciton. The motion parameters 
(shift values between one frame to the other) are assumed to be known. Preliminary results 
of reconstructing a good-quality image from multiple frames of sparse data were already 
reported [10]. The major differences between our approach and the approach proposed 
by Kim et al. [9] are (i) a method based on POCS is used to reconstruct an image from 
a sequence of sparse data frames; (ii) any arbitrary shift values can be used in the reconstruc- 
tion algorithm; (iii) the shifts are incorporated in the spatial domain; (iv) the reconstruc- 
tion is done by assuming a noiseless measurement of data; and (v) the data collection is 
done using a simulated SAI setup. 

A brief review of the method of POCS is presented in Section 2. The basic SAI setup 
and the problems associated with it are discussed in Section 3. In Section-4, we show how 
the sparse nature of the data affects the solution. In Section 5, we show how to generate 
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multiple frames of data from a simulated dynamic scene situation. An algorithm for image 
reconstruction from multiple frames of data obtained from a dynamic scene is also described 
and the simulation results are illustrated. 

2. The method of projection onto convex sets 

Youla and Webb [5] proposed a method based on POCS for image reconstruction. The 
advantage of POCS method is that it enables any number of a priori convext-type con- 
straints to be incorporated in the reconstruction algorithm. We follow this approach for 
image reconstruction from sparse data. We briefly review the method of POCS here. 

The method of POCS follows an approach to find a solution from a collection of convex 
sets. It tries to find a solution that satisfies constraints known a priori. The solution belongs 
to a set of all functions satisfying the initial data and satisfying the given constraints. Assume 
that all functions of interest are elements of the Hilbert space 3t2. Consider a closed convex 
set C, C C 5t2. It is required to show that this projection o f f  E 3t2 onto C assigns f i t s  
nearest neighbor in C. We state a theorem without proof [5]. 

THEOREM 1. Let C denote any closed convex subset of 3t2 and l e t f b e  any element of 3C. 
Then there exists a unique f E C such that 

inf II f - xll -- II f - / 11 ,  (2) 
x~C 

where l] " ]l is the norm. This clearly states that f is the element in C closest to f in the 
specified norm. 

In this method, the unknown signalf is  assumed to lie in the Hilbert space 3C. In image 
reconstruction, every known property of the original image restricts it to lie in a closed 
convex subset of 3~. In general m such properties will generate m well-defined closed con- 
vex sets, C/, i = 1, 2, . . . ,  m, and 

m 

Co: n q. (3) 
i=1 

It is required to find a point in the intersection, i.e., an image that lies in Co as shown 
in Figure 1. The intersection set is also closed and convex, and any solution in the set 
is acceptable. I f  Co has only one point, then the solution is unique; if Co is empty, then 
there is no solution. But usually, when the sparse data is used, C O contains many solu- 
tions. It is shown in Figure 1 how a solution can be obtained by projecting the initial esti- 
mate onto the convex sets. It is also shown geometrically that the final solution depends 
on the initial estimate. Any image in the restricted solution set will satisfy all the con- 
straints and therefore represents a solution to the problem. 

Let us denote the projection operators onto Co and Ci by P0 and Pi, respectively. If  
Co is not empty, then every fixed point of P0 is a fixed point of Pi. A fixed point is 
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Figure L Projections onto two convex sets, C 1 and Cz. C o = C~ f3 C z, Note that the solutions s 1 and s 2 obtained 
from two different initial estimates fl and f2 are different but sl, s 2 E C 0. 

obtained when the projection of a point onto a convex set no longer results in a new point, 
i.e., P 0 f  = )~ If  the projection operator P0 onto Co is known, then the problem is solved. 
However projecting onto Co is usually complex. Therefore the solution is obtained by the 
following iterative relation: 

yk+l = p m p m _ l P m _ 2 . . . p l f k ,  k = 0, 1, 2 . . . .  , (4) 

where 3 ̀0 E 3t2 is the initial image. In order to speed up the convergence, the projection 
operator is relaxed as shown in (6). Then (4) can be generalized as 

fk+l  = T f k ,  k = 0 ,  1 , 2  . . . . .  (5) 

where T (= TmZm_lTm_2 "°" TI)  is a composite operator composed of relaxed parameters 
T/, where 

T i = I + fli(Pi - I ) ,  i = 1, 2, 3, . . . ,  m ,  (6) 

where fli's are the relaxation parameters that control the rate of convergence, Pi's a r e  the 
projection operators, and I is the identity operator. The value of each relaxation parameter 
13 is arbitrarily set between 0 and 2. This relaxation extends the projection beyond the con- 
tours. The advantage of this iteration is that the fli's can be adjusted for rapid convergence. 
I f  fii is set to unity, then (5) reduces to (4). It is shown that T/'s are generally not projec- 
tors but have the same fixed points as the Pi's and every fixed point of T/is a feasible solu- 
tion, i.e., a point in the intersection of the closed convex sets as shown in Figure 1. The 
final solution depends on the initial guess. Any solution in the intersection is acceptable 
and is consistent with the a priori constraint. In the following sections, we show that this 
method can be adopted to reconstruct good-quality images from sparse data. 
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3. Sensor array imaging 

In this section we briefly describe the theory of imaging. An object is illuminated by a 
plane wave, and the reflected wave pattern is captured on the receiver plane using a finite 
number of sensors. A typical SAI setup is shown in figure 2. The data obtained is usually 
a transformation of the original image. Therefore image reconstruction is done by com- 
puting the inverse transform of the received data. The relation between the oNect and the 
receiver field distribution is given by 

g(x, y) = h(x, y) * f (x, y), (7) 

where f (x ,  y) is the image, g(x, y) is the receiver data, * is the convolution operator, and 
h(x, y) is the impulse response function given by [11] 

h(x,y) = 1 e x p ( j k ~ x  2 + y2 + z 2), (8) 
jXz 

where z is the distance between the object and the receiver planes, k = 2~r/X is the wave 
number, and X is the wavelength of the transmitted wave. Using the convolution theorem, 
the convolution in (7) can be written as 

G(u, v) = H(u, v)F(u, v), (9) 

where G(u, v), F(u, v), and H(u, v) are the 2-D Discrete Fourier transforms (DFT) of 
g(x, y), f (x ,  y), and h(x, y), respectively. The image f (x ,  y) is obtained by deconvolution. 
Multiplying both sides of  (9) by H- l (u ,  v) and taking inverse DFT, we obtain the image 

f (x, y). 

f (x ,  y) = I D F T [ H - I ( u ,  v)G(u, v)], (10) 

J 

OBJECT PL,E, HE RECEIVER ARRAY 

Figure 2. A typical sensor array imaging setup. The object and the receiver planes consist of the same number 
of points. The distance between the receiver and the object is z and X is the wavelength of the transmitted wave. 
The reflected pattern is captured at the receiver plane. 



172 R. RAMASESHAN AND B. YEGNANARAYANA 

where H-I(u, v) is given by [11] 

Jexp(jkz~/1 - (Xu) 2 - (Xv)Z), 
H-l(u, !2) - )  

L0, 

for 1 - ()kbt) 2 --  ()kV) 2 > 0 ,  

otherwise. 
(11) 

If  g(x, y) is known completely, a unique solution is obtained. However, in practice due 
to the limited number of sensors, g(x, y) is sparse. In such a case, a set of solutions is 
obtained. The solution set becomes larger as the sparsity of data increases. Our aim is 
to restrict the solution set and obtain a good-quality image from the sparse data. In Section 
4, we show how the method of POCS can be used to restrict the solution set. 

4. Image reconstruction from sparse data 

The SAI setup used for simulation studies consists of an object plane of 128 x 128 points 
and a receiver plane of 128 x 128 points. The original image is restricted to lie within 64 x64 
grid. Throughout the studies the frequency used for imaging operation corresponds to a 
wavelength of 0.25 unit. The spacing between adjacent receiver points is fixed at 0.5 unit. 
The distance between the object and the receiver plane is kept at 2000 units. The receiver 
size in terms of the number of sensor elements is varied by selecting the points appropriately 
on the receiver array. We consider down sampling to generate sparse data in all our studies. 
We consider equally spaced sensors. 

The field data is simulated for different array sizes. The field data for 64x64,  32x32,  
16 x 16, and 8 x8  points on the receiver plane are collected. Finite support constraint is 
used as the a priori known information and is defined as 

~ fo(x, Y), 
fo(x, y) = {. 0, 

for (x, y) E P, 

otherwise, 
(12) 

where f0 ~ 3t2 and I' is the support region. The initial image is assumed to lie in the Hilbert 
space. The field data corresponding to the initial estimate is generated. The calculated values 
are replaced by the measured values. Then the image is reconstructed using the new field 
data values. The solution is restricted by using the finite support constraint on the resulting 
solution. The detailed algorithm for reconstructing an image from sparse data is given below. 

ALGORITHM 1. Image Reconstruction Using Single Frame of Data 

1. i = 1. Let gkxk(X ', Y ') be the measured field data where k x k  is the size of the receiver 
array. The field data is measured at points x '  = x(128/k) and y '  = y(128/k), for x, y 
= 1, 2, . . . ,  128. N = number of iterations. Let fi(x, y) be the initial image. 

2. Generate the field data corresponding tof(x, y). g(x, y) = IDFT[H(u, v)Fi(u, v)l, where 
H(u, v) and Fi(u, v) are the DFT of h(x, y) and f/(x, y) respectively. Since 128 x 128 
point DFT is used, g(x, y) has 128 x 128 points. 
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3. Replace the calculated g(x, y) with the measured field data g~xk(X ', Y ') at known points 
(0 obtain the new g(x,  y). 

4. Reconstruct the image using deconvolution followed by the method of POCS. 
a. G(u, v) = DFT[g(x, y)]. 
b. f ( x ,  y) = IDFT[H-I(u, v)G(u, v)]. This image has 128 x 128 points. 
c. f+l(X, y) = 1 + fl(Pfi(x, y) - 1), where/3 = 0.8, P is the projection onto the con- 

vex set formed by the finite support constraint, and ! is the identity operator. Here, 

~ f ( x ,  y), for (x, y) E F, 

Pfi(x, y) = L O, otherwise. 

5. i = i + 1  
6. Repeat step 2 through step 5 until i > N. 

Figure 3 shows the original image with 128 x 128 points. The image lies within 64 x 64 
points. Figures 4a-4d show the reconstructed image using 64 x64,  32 x32,  16 x 16, and 
8 × 8 points, respectively. The number of iterations in all the cases is 20. These figures 
clearly illustrate that the quality of the reconstructed image decreases as the size of the 
array decreases. The improvement in the quality of the image would be marginal even if 
the number of iterations are increased as illustrated in figure 5. Figures 5a-5d represent 
reconstructed images using 32 x 32 points on the receiver plane after 10, 20, 50, and 100 
iterations, respectively. The quantitative improvement in the reconstructed image is indicated 
using the signal-to-noise ratio (SNR) parameter. 

variance of the signal ] 
SNR = 10 logl0 L_ ~ ~-~ the n--~se j (13) 

The plot in figure 6 shows that SNR improves up to about 20 iterations. The quality 
of the image does not improve significantly beyond about 20 iterations. This shows clearly 
that the quality of the image cannot be improved be3~ond certain limits. Additional infor- 
mation is required for obtaining a good-quality image. In the next section, we show how 
to collect additional measurements and show how to incorporate them to reconstruct im- 
ages of good quality. 

CgC[ING 

Figure 3. Original image (128 × 128) used for simulation studies. In this figure only the region of the image is shown. 
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(a) (b) (C) (d) 

Figure 4. Effect of poor sampling of the receiver data on the reconstructed image. The complete receiver data 
contains 128 x 128 points. The figure shows the reconstructed images using different sampling rates. The unknown 
samples are set to zero. The figure shows the reconstructed image using (a) 64 x 64 points on the receiver plane, 
(b) 32 x32 points on the receiver plane, (c) 16 x 16 points on the receiver plane, (d) 8X8 points on the receiver 
plane. In all cases only one frame of data is used for reconstruction, and finite support constraint is used as 
the a priori knowledge. Note the degradation when the number of sampling points decreases. 

(a) (b) (c). (d) 

Figure 5. Effect of increased number of iteration on the reconstructed images. Only one frame of data obtained 
using 32 x32 points on the receiver plane is used for image reconstruction. The figure shows the reconstructed 
image after (a) 10 iterations, (b) 20 iterations, (c) 50 iterations, (d) 100 iterations. In all cases finite support 
constraint is used as the a priori knowledge. 
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Figure 6. The quantitative improvement in the reconstructed images corresponding to Figure 5. The figure shows 
the SNRs of the reconstructed image versus the number of iterations used in the reconstruction. Note that there 
is only a very minimal improvement in the SNR after 20 iterations. 
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5. Image reconstruction from multiple frames of data 

Additional field data can be obtained by several ways, such as by varying the frequency 
of the incident wave, object-receiver distance, etc. It had shown that high-resolution im- 
ages can be reconstructed from multiple frames of sparse data [6-8]. Here we explore the 
possibility of using multiple frames of data obtained from a dynamic scene situation. In 
a practical imaging setup one would obtain multiple frames of data naturally when (i) the 
object is moving while the sensor array is stationary, (ii) the sensor array is moving while 
the object is stationary, and (iii) both the object arid the sensor array are moving. 

In our approach, the data collection is simulated for the case of a moving object, while 
the sensor array remains stationary. Let f ( x ,  y) be the image with no background, and 
)~(x, y), k = 1, 2, 3, . . . ,  M be the spatially shifted verions o f f (x ,  y). Then 

fk(x, y) = f (x + 6x k, y + 6yk), (14) 

where 6x k and 6yk are known shifts o f f (x ,  y) along x and y coordinates, respectively. 
Table 1 gives a set of arbitrarily chosen shift values. Figure 7a is the reference image. 

Each image in the sequence (Figures 7b-7j) is generated based on the shift information 
given in Table 1. Each pair of shift values in Table 1 represents shift values of the (n + 
1)th image with respect to the nth image. Multiple frames of data (in this case 10) are 
simulated using 32 x 32 points and 16 x 16 points on the receiver plane for all the images 
shown in figure 7. 

In the first experiment, we have used the multiple frames of data obtained using a 32 x 32 
receiver array. The first image in the sequence is reconstructed using Algorithm 1. The 
second image in the sequence is obtained by shifting the reconstructed image using the 
shift information given in Table 1. The field data corresponding transformed image is 
generated. The field data corresponding to the second frame is available for 32 × 32 points. 
The calculated values are replaced by these known values. Then the second image is 
reconstructed using the new field data values. The detailed algorithm is given below. As 
more frames of data are included, the quality of the reconstructed image improves. This 
process is continued until all the frames of sparse data are used for reconstruction. 

Table 1. Shift values used in the image reconstruction algorithm. 

Shift with respect to 
Frame number the previous frame 

1 (Reference frame) 
0,0 

2 1,1 
3 1,0 
4 1,1 
5 1,1 
6 1,0 
7 1,2 
8 1,2 
9 1,0 

10 0,1 
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Figure 7. Simulated sequence of images (128 × 128 points) obtained from a dynamic scene situation. Figure 7a 
is used as the reference image. The images in Figures 7b-7j are obtained using the shift values given in Table 
1. In this figure only the region of the image is shown. 

ALGORITHM 2. High-Resolution Reconstruction from Multiple Frames of  Data 

Figures 8b-8e  represent the reconstruction of the fourth, sixth, eighth, and tenth images 
of the original sequence (figures 7b, 7d, 7f, 7g, and 7j), respectively. F rom the images 
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in Figure 8, it is clear that images with better resolution can be obtained when additional 
frames of the receiver data are used. A graph showing the improvement in image reconstruc- 
tion in terms of SNR is shown in Figure 9. It is shown clearly in the plot (Figure 9) that 
the SNR increases as multiple frames of data are used in the image reconstruction. Figure 
9 shows clearly the quantitative improvement in image. Note in Figure 8e that even the 
letters (CYCLING) are visible in the reconstructed image. 

In the second simulation study, we have used 16 ×16 points on the receiver array to collect 
the data. The reconstruction is done as before. Figures 10a-10e represent the reconstruction 
of the second, fourth, sixth, eighth, and tenth images of the original sequence (Figures 7b, 
7d, 7f, 7g, and 7j), respectively. As the number of frames increases, the SNR values increases 
(Figure 11). This also indicates a quantitative improvement in the quality of the image. 

( a )  ( b )  ( c )  (d )  (e )  

Figure 8 Images reconstruction using multiple frames of data obtained from a simulated dynamic scene situation. 
Multiple frames of data are collected for every image shown in Figure 7, using only 32×32 points on the receiver 
plane. Finite support constraint is used in the reconstruciton algorithm as a priori information. The figure shows 
the image reconstructed by combining (a) the first and the second frames of data, (b) the first four frames of 
data, (c) the first six frames of data, (d) the first eight frames of data, (e) all ten frames of data. 
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Figure 9. The quantitative improvement in the reconstructed images corresponding to Figure 8. Here SNRs of 
the reconstructed images versus the number of frames of data used in the reconstruction are shown in the plot. 
Note the increase in the SNR as additional frames of data are combined in the reconstruction algorithm. 
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(a) (b) (c) (d) (e) 

Figure 10. Images reconstruction using multiple frames of data obtained from a simulated dynamic scene situa- 
tion. Multiple frames of data are colteced for every image shown in Figure 7, using 16x 16 points on the receiver 
plane• Finite support constraint is used in the reconstruction algorithm as a priori information. The figure shows 
the image reconstructed by combining (a) the first and second frames of data, (b) the first four frames of data, 
(c) the first six frames of data, (d) the first eight frames of data, (e) all ten frames of data. 
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Figure 11. The quantitative improvement in the reconstructed images corresponding to Figure 10. Here SNRs 
of the reconstructed images versus the number of frames of data used in the reconstruction are shown in the 
plot. Note the increase in the SNR as additional frames of data are combined in the reconstruction algorithm• 

6. Conclusions 

In  this paper, we have proposed a method  for solving an i l l-posed p rob lem that arises due 
to sparse data. The method  of POCS is used to reduce the solut ion set by making use of 
the finite support  constraint  as the a priori  information.  Mul t ip le  f rames of sparse data 
are used to improve the quali ty of the reconstructed image. It is obvious from our studies 
that the image quali ty improves as mul t ip le  frames of data are combined  in the reconstruc-  

t ion a lgor i thm as shown by the increasing SNR values in Figures  9 and 11. It is also shown 
that sparsity of data can be  overcome by making use of the mult iple  frames of data. However, 
this method assumes that the mot ion  parameters  are known  a priori .  We are current ly  
addressing the issue of est imating the mot ion  parameters f rom poorly resolved images. 
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