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Abstract—In this paper, the texture classification problem is
projected as a constraint satisfaction problem. The focus is on
the use of a probabilistic neural network (PNN) for representing
the distribution of feature vectors of each texture class in order to
generate a feature-label interaction constraint. This distribution
of features for each class is assumed as a Gaussian mixture
model. The feature-label interactions and a set of label-label
interactions are represented on a constraint satisfaction neural
network. A stochastic relaxation strategy is used to obtain an
optimal classification of textures in an image. The advantage
of this approach is that all classes in an image are determined
simultaneously, similar to human perception of textures in an
image.

Index Terms—Constraint satisfaction, feedback neural net-
work, Gabor filters, Gaussian mixture model, probabilistic neural
network, self-organizing map, texture classification.

I. INTRODUCTION

I N the domain of image analysis, texture-based segmentation
and classification of natural scenes are much complicated

compared to the approaches based on pixel intensities [5].
A texture classification problem can be viewed as either
feature-specific or domain-specific. A feature-specific texture
classifier assigns a class label to each pixel based on the
features corresponding to the pixel, independent of any domain
knowledge. Examples of feature-specific texture classification
schemes can be found in [7] and [12].

On the other hand, a domain-specific classifier uses do-
main knowledge in the form of additional constraints to
achieve classification. The performance of any domain-specific
approach is expected to be superior to the feature-specific
approaches. Like any human decision making, an image clas-
sification problem also can be posed as one which requires
simultaneous satisfaction of many constraints. One can model
domain-specific knowledge as a set of constraints on the image
features and on the possible labels for each pixel. A suitable
constraint satisfaction model may then be used to attain a state
such that the constraints are satisfied to a maximum extent. An
example of the constraint satisfaction scheme is a rule-based
expert system where the constraints are described as rules in
its knowledge base [19].
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In most of the image processing situations, the use of rule-
based approach is difficult because of the following problems.

1) Most rule-based systems are designed to deal with
symbolic logic and reasoning, whereas image features
are numerical and fuzzy in nature. It is difficult to
translate these numerical features into a set of crisp rules.

2) It is difficult to describe symbolically the knowledge
used by a human interpreter in analyzing a given image.

3) Constraints modeled in rule-based system are generally
hard constraints (whichmust besatisfied), whereas many
real-world constraints are weak constraints [1] which
ought to besatisfied to attain an acceptable solution.

4) Rule-based systems are rigid and deterministic which
do not allow pattern variability in terms of exceptions
and randomness. Generally, domain-specific constraints
are ambiguous, and some times conflicting, but useful
enough to decide the outcome of the processing.

The human reasoning process is superior to a rule-based
system in these situations because our brain uses a computa-
tional architecture with several neurons working in parallel,
thus representing a large number of loosely bound constraints.
We also deal well with ambiguity in problems and usually
have little difficulty in correctly determining the missing
information. In this respect, biologically inspired artificial
neural-network models provide greater flexibility than the
rule-based approach as a constraint satisfaction mechanism
to handle constraints that ought to be satisfied rather than
satisfying all the specified constraints.

Thus it is useful to conceptualize an artificial neural-network
system as a constraint satisfaction model where each node
represents a hypothesis and connection between two nodes rep-
resents the constraint between corresponding hypotheses [16].
The importance and nature of the constraint are decided by the
numerical value of the connection weight. A node may have
an external input and a bias providinga priori information
regarding the truth value of the corresponding hypothesis. The
process of iteratively seeking a solution which satisfies a large
number of weak constraints is called arelaxationstrategy.

Constraint satisfaction neural-network models were devel-
oped for classification of textured images using Markov ran-
dom field (MRF) models based on the modeling in the pixel
intensity domain [3]. But for images which are of texture-
type, proper representation of texture information in terms of
textural features becomes crucial [5]. In this scenario, it is
useful to combine the textural features as well as the con-
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straint satisfaction neural-network models to achieve superior
classification performance.

The work reported in [13] uses this domain-specific ap-
proach for texture classification. The texture classification
was considered as a constraint satisfaction problem consisting
of image-specific constraints represented by three random
processes, namelyfeature formation process, partition process,
and label competition process. The feature formation process
was derived using a statistical model for the textural features
extracted from a bank of Gabor filters [2]. The constraints were
represented on a Hopfield network [6], and a deterministic
relaxation strategy was used to attain an optimal classification
of an image.

In this paper, we show that a PNN representation of fea-
ture vectors produces a better representation of the feature
formation process. Conventional PNN involves defining the
Gaussians at every training pattern for each class. We propose
a modification in the PNN for better representation of the
feature formation process. The main objective of this paper
is to show the significance of this modification of PNN on
classification of textured images.

Section II gives a brief description of the constraint satis-
faction neural-network model presented in [13]. The feature
modeling using PNN is described in Section III. The sec-
tion also presents our proposed modification of PNN. In
Section IV, we provide a set of experimental results to show
the efficacy of the proposed methods.

II. A CONSTRAINT SATISFACTION NEURAL-NETWORK

MODEL FOR TEXTURE CLASSIFICATION

This section reviews the constraint satisfaction neural-
network model proposed in [13]. Consider a textured image
designated by a domain
of pixel positions. Let R be a set
of -dimensional feature vectors used to characterize the
image, where each is an -dimensional feature vector
characterizing the pixel in . The can be considered as
the realization of an -dimensional random process . Let

denote the random variable describing the texture label of
the pixel . We assume that can take any value from the
set of labels where is the number of
texture classes. The corresponding texture classes are denoted
by . Also, let , a subset of , be the training
site for the class . The notation is used to denote
the cardinality of any set . Let be a set of pixels in the

th order symmetric neighborhood of the pixel.

A. Feature Formation Process

The feature formation process formulates the probability of
feature vector of a pixel given the model parameters of each
class , and this is given by

(1)

where is an energy function defined by the selected
statistical model and is a normalization constant considered
independent of and .

B. Partition Process

The label of any pixel in an image depends on the la-
bels of the pixels in its neighborhood. The partition process

describes probability of the label of each
pixel given the labels of the pixels in a uniformth order
neighborhood of [13]

(2)

where is a positive constant, is the Kronecker delta
function and is a normalization constant.

C. Label Competition Process

The label competition process tries to reduce the probability
of having another label when the pixel is already labeled. It is
defined by the conditional probability of assigning a new label
to an already labeled pixel, and is expressed as [13]

(3)

where denotes the set of labels that may be assigned to the
pixel and is the normalization constant.

D. Neural-Network Representation of Constraints

Maximization of the a posteriori probability
will provide the optimal classifi-

cation of the given image. This probability describes the label
of the pixel given the feature measurement of ,

the labels of the neighborhood pixels and the possible labels
previously assigned to. Using Bayes theorem, we can write

(4)

Expressing this as the following Gibbs distribution:

(5)

and by substituting (1)–(3) in (4), we get the Gibb’s energy as

(6)

and the normalization constant
. The energy function in (6) summed over all pixels and
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(a) (b)

(c)

Fig. 1. Structure of the 3-D feedback network: (a) 3-D lattice of size
I � J �K. (b) Connections among nodes in the label column of each pixel.
Each connection is of strength�2�. (c) Connections from a set of neighboring
nodes to each node in a label layer. Each connection has a strength2�.

all possible labels will give the total energy of the
classification model

(7)

The energy function in (7) can be represented on a feedback
network with nodes arranged in three-dimensional (3-D) lattice
of size , for convenience, as shown in Fig. 1. For any
node , corresponds to the pixel position and

denotes the label index for that pixel. Each node
has a bias . Also, each node is connected to
any other node by means of a connection weight

. Comparing (7) with the energy function of the
Hopfield network [6], one can determine the bias and
the weight in a similar manner to [13] as

(8)

and

if and
if and
otherwise.

(9)

Here, the weights are symmetric and there is no self-loop.
Let be the output of node . Estima-

tion of the network state configuration for all pixels

which minimizes the Gibb’s energy in (7) will yield
themaximum a posteriori(MAP) estimate of the classification
of the image. For the experimental results presented in this
paper, a stochastic relaxation procedure based on simulated
annealing [8] extended to this 3-D neural network [14] is
used to obtain a global (or near-global) minimum energy
state. The relaxation procedure derives this stable state by
simultaneously satisfying to a maximum extent the possible
constraints [defined by energy function in (7)] with respect
to all pixels and all possible labels in the given image. Thus
the neural-network model views the entire image in order to
classify it, and hence brings in the global image knowledge
for making decision at the local level.

III. FEATURE FORMATION PROCESS:
FEATURE MODELING USING PNN

Generally, one can use a standard statistical distribution to
define the feature formation process. In [13], we have used
a Gaussian distribution for defining the feature distribution of
each class, assuming that the feature vectors of each class form
a hypersphere in the -dimensional feature space. Alterna-
tively, a multivariate Gaussian distribution, which assumes an

-dimensional ellipsoidal feature distribution for each class,
may be a better feature model [14].

A natural image data does not fit into any of the standard
statistical distributions, and it is difficult to determine the
underlying distribution. But the success of any analysis lies in
our ability to approximate the true distribution. Gaussian and
multivariate Gaussian distributions fail to capture the details
of a class having number of distinct clusters in the feature
space. Further, dispersion of the feature vectors for a given
class may be large and of any arbitrary shape. In such cases,
a Gaussian mixture model seems to be an appropriate choice.

Determination of the mixture model consists of estimat-
ing the parameters and the weight of each component. The
expectation-maximization (EM) algorithm has been widely
used to iteratively compute the maximum-likelihood estimates
of the parameters, considering the observed data as incomplete
data [4]. This general approach is very complex and requires
large computation time. Alternatively, methods based on arti-
ficial neural networks are useful for the mixture modeling of
the feature vectors. It is possible to capture this model using
a PNN [18].

A. Feature Modeling: Gaussian Mixture Model Using PNN

The PNN model [18] is based on Parzen’s results on PDF
estimators [11]. PNN is a three-layer feedforward network
consisting of input layer, a pattern layer, and a summation
layer as shown in Fig. 2. The input layer contains nodes
to accept an -dimensional feature vector. The pattern layer
consists of pools of pattern nodes. Theth pool in the
pattern layer contains number of pattern nodes, where

. Each node in the pattern layer is connected
from every node in the input layer. The summation layer
consists of nodes, one node for each pool in the pattern
layer. Pattern nodes of eachth pool in the pattern layer
is connected to the correspondingth summation node in
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Fig. 2. Structure of the probabilistic neural network (PNN).

the summation layer. A radial basis function and a Gaussian
activation function are used for the pattern nodes. For the
summation nodes, a linear basis function and a linear activation
function are used.

In the network, each training vector of
the class is stored as the weight connecting the input
layer and the th pattern node in theth pool of pattern layer.
The connection weight from each pattern node in theth pool
and the summation node for theth class is assigned as .
Note that the training is a one-pass algorithm, and hence it is
trivial in this case.

For any input vector , the output of
the th pattern node belonging to the th pool is

, where is a
smoothing parameter for the Gaussian activation function
of that node. Output of the th summation node gives the
probability of the feature vector of the pixel , given the
label of that pixel is . Now the feature formation process
in (1) is described as

(10)

This relation shows that the PNN represents the input feature
subspace of each class as a Gaussian mixture distribution,

where there are as many components as there are training
patterns for that class. Each componentof the mixture for
class is represented by the th training vector as the
mean and a constant as the variance.

The complexity in the computation of in (10)
depends upon the number of classes and the number of
training patterns per class. If there are a large number of
training patterns, the number of nodes in the pattern layer
( ) becomes very large. This in turn increases the
time for estimating the probability of all pixels in the image
using (10). Also, the accuracy of the mixture model is decided
by the smoothing parameters . There are onlyad hoc
methods to estimate from the given data [17]. In order to
deal with these problems, we propose a modified architecture
for the PNN.

B. Feature Modeling: Modified PNN Using
Clustering of Training Data

The proposed modification of PNN consists of grouping the
training patterns in each class. The grouping is done using the
principle of vector quantization. Consider the feature subspace
for the class consisting of number of training patterns. A
vector quantizer is used to partition this feature subspace into

partition regions . The assumption
here is that . Each partition is associated
with a subset of so that and

if .
For each class , we first obtain a feature map using the

Kohonen’s self-organizing map (SOM) learning [9], [15]. We
use the neighborhood characteristics of the feature map to
perform the vector quantization effectively. Consider a SOM
(for a class ) with input nodes and an output layer
arranged as a two-dimensional (2-D) lattice of nodes. Letbe
the set of SOM output nodes and let us assume that the number
of components in the mixture for the class is less than
or equal to . Training of SOM is performed so that the
network reaches an optimal state corresponds to a minimum
of the distance measure , where

is the -dimensional weight vector connecting the
input nodes and the node in the output layer of SOM. After
training, each node in the output layer of SOM represents
one partition region . The set of training site pixels
is uniquely assigned to the nodeso that every feature vector
of the pixels in makes the node to win.

For a pixel and label , the feature formation process is
expressed as a multivariate Gaussian mixture given by

(11)

where is the transpose operation. In this, and are
the mean and the covariance matrix, respectively, of theth
component in the mixture for the class .

The model parameters and for each component
in each class are estimated from the training site partition
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of that class as

Mean: (12)

Covariance matrix:

(13)

where each element is the covariance of each compo-
nent and of . It is estimated as

(14)

where is the number of training patterns
belonging to the partition .

The partitioning of into is such that
. This means that, 1) a node may not be winning for

any training vector in ; 2) it may win for only a subset of
training vectors in the training site of class; or 3) it may win
for every training vector in the training site. If ,
we simply omit that node from the parameter estimation.
However, when for any node , the covariance
matrix for that component will become meaningless and
there is a chance that becomes singular. In order to avoid
this, we take advantage of the feature map characteristics to
determine the node adjacent to this isolated vector. For an
output node such that , a node is selected
such that ,
and the feature vector is reassigned to the
node , updating the partitions as,
and . Then, the mean and covariance matrix of the
component is calculated again based on the new partition.

If we compare (10) and (11) with the general expression for
feature formation process in (1), the values of bias can
be determined for the cases where conventional and modified
PNN are used for feature modeling. This is given by the
following cases.

Case 1: Feature formation process with conventional PNN
model

(15)

Case 2: Feature formation process with modified PNN
model

(16)

IV. RESULTS AND DISCUSSION

We compare the performance of the proposed method with
a scheme which uses a multivariate Gaussian distribution for
the feature formation process, in which case the bias of the
network takes the following form:

(17)

We also compare the conventional and modified PNN models
on the basis of the accuracy of classification results and
the time taken for bias estimation. For the experiments with
conventional PNN, we have used a constant value of for
all components and for all classes .

Gabor wavelets expressed as [10]

(18)

are used for texture feature extraction. Here,, , and are the
orientation, radial frequency, and the bandwidth of the Gabor
filter. is the wavelet scale factor chosen as , where

is an integer.
An image shown in Fig. 3(a) containing five Brodatz texture

tiles (raffia D18—left upper, brick wall D95—right upper,
beans—left bottom, straw—right bottom, and burlap—center)
was used for the experiments. The Gabor wavelet bank used
for extracting features from this image consists of eight filters
derived from a mother wavelet of , using
two scales ( and , with wavelengths of and

pixels/cycle) and four rotations ( and
). This results in an eight-dimensional feature vector for

each pixel. The training site per class contains 1000 pixels,
and hence the total number of nodes in the pattern layer
for the conventional PNN becomes 5000. The classification
result when the multivariate Gaussian was used for feature
formation process is shown in Fig. 3(b). The results with the
conventional PNN for feature formation process are shown
in Fig. 3(c) and 3(d) for and ,
respectively. Fig. 3(e) shows the result when the modified
PNN was used for the Gaussian mixture modeling of the
feature vectors. A third-order ( ) partition process was
used in these experiments.

An important observation is the dependency of the smooth-
ing parameters of the conventional PNN on the classification
accuracy. This is obvious if we compare the results in Fig. 3(c)
and 3(d). Another observation is that the Gaussian mixture
distributions implemented using the conventional and modified
PNN models [Fig. 3(c) and 3(e)] perform much better than the
multivariate Gaussian distribution [Fig. 3(b)]. The multivariate
Gaussian is not able to capture well the distribution of the
texture features compared to the Gaussian mixture models.
The time requirements for bias estimation using conventional
and modified PNN’s are given in Table I. This shows that the
modified PNN model takes significantly less time compared to
the conventional PNN for estimating the bias for the constraint
satisfaction network.
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(a)

(b) (c)

(d) (e)

Fig. 3. Texture classification using the constraint satisfaction network: (a) image with five texture tiles, (b) result with multivariate Gaussian distribution,
(c) result when PNN with�m;k = 0:001 is used (mixture of Gaussians), (d) result when PNN with�m; k = 0:01 is used (mixture of Gaussians), and
(e) result when modified PNN model is used (mixture of multivariate Gaussians).
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TABLE I
TIME TAKEN FOR ESTIMATING THE BIAS OF THE

CONSTRAINT SATISFACTION NETWORK IN DIFFERENT CASES

USING CONVENTIONAL AND MODIFIED PNN MODELS

Image Class Training
site

no. of
mixture

Bias estimation time
(min)

k sizeSk components
Qk

Conventional
PNN

Modified
PNN

1 1000 7
2 1000 10

Fig. 3(a) 3 1000 9 439.26 21.44
4 1000 15
5 1000 12

V. CONCLUSION

In this paper, we have presented the texture classification
as a constraint satisfaction problem, exploiting image-specific
knowledge. To represent the image-specific constraints, we
have used three random processes namely, feature formation
process, partition process, and label competition process. For
the formulation of feature formation process, we have used a
Gaussian mixture model based on a PNN. The model was
modified by incorporating a learning scheme using vector
quantization principle. These image-specific constraints were
represented on a constraint satisfaction neural-network model.
In contrast with the conventional Hopfield network with a
deterministic relaxation strategy which traps the network in
local minima, the simulated annealing procedure was used here
to find the global minimum state of the network. The results
of our experimental studies show that the proposed mixture
models using PNN are superior to multivariate Gaussian
distribution for feature formation process.

An important observation of the constraint satisfaction
model for classification of textured images is that the
classification takes place for all the pixels of the image
together. This is equivalent to say that the neural-network
model is able to view the entire image to make decision on
the different classes in the image. This is significant because
this is one way to bring in the global image knowledge
for making decision at the local level. It also corresponds
to the way human beings perceive images for arriving at
classification.
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