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Robustness of Group-Delay-Based Method
for Extraction of Significant Instants
of Excitation from Speech Signals

P. Satyanarayana Murthy and B. Yegnanaray&sajor Member, IEEE

Abstract—In this paper, we study the robustness of a group-  Determination of the instants of significant excitation is
delay-based method for determining the instants of significant difficult even for clean speech. In the case of strong voicing,
excitation in speech signals. These instants correspond to thedue to sharp glottal closure in the voiced speech, the instant
instants of glottal closure for voiced speech. The method uses the N S . S
properties of the global phase characteristics of minimum phase of S|g_n|f|cant e_XC|tat|on can be percelved even in the presence
signals. Robustness of the method against noise and distortion isOf noise. But in the case of voiced sounds where the glottal
due to the fact that the average phase characteristics of a signal closure is gradual, the instant of glottal closure is difficult
is determined mainly by the strength of the excitation impulse. to perceive or identify, especially if the signal is corrupted
The strength of excitation is determined by the energy of the 1, ",ice Reliable identification of the instant of significant

residual error signal around the instant of excitation. We propose itation d d h h of th o
a measure for the strength of the excitation based on Frobenius €Xcitation depends on the strength of the excitation.

norm of the differenced signal. The robustness of the group-delay- ~ Several methods have been proposed in the literature for
based method is illustrated for speech under different types of determining the instants of significant excitation [4]—[8]. Most

degradations and for speech from different speakers. of them depend on either the short-time energy of the speech
Index Terms—Glottal pulse, group-delay, instants of excitation, Signal or on the linear prediction (LP) residual signal. These
residual signal. methods are based on block-data processing, and hence there

is some ambiguity in the locations of the instants. Moreover,
the performance of these methods generally deteriorates when
_ o ~ the speech signal is corrupted by noise and distortion.

EE_CH is produced as a result of eXC|tat|0r_1 of a time- | [9], a method was proposed for the extraction of the

arying vocal tract system. In the case of voiced speegRstants of significant excitation. The method is based on the
the excitation is due to the quasiperiodic airflow resulting fromct that the average value of the group-delay function of a
the opening and closing of the glottis in each glottal cyclgjgnal within an analysis frame corresponds to the location
Within a glottal cycle, the vocal tract system is strongly excitegk the significant excitation within the frame. An improved
around the instant of glottal closure. We refer to this instant gssthod based on the computation of the group-delay function
the significant instantin this_ paper. Strong excitations sucr}jirecﬂy from the speech signal was proposed in [10]. In this
as at the release of unvoiced or voiced stops can also Bgser we propose further refinements of the method and then
considered as significant instants. _ discuss the robustness of the group-delay-based method. Even

Instants of significant excitation are useful in several Sithough it was mentioned in [9] that the method would be

uations, for example, for accurate analysis and synthesis @fysitive to additive noise, the studies in this paper show that
speech [1]-[3]. For noisy speech, knowledge of the significajife group-delay-based method is indeed robust against additive
instants helps in performing robust spectrum analysis. This,ig,qom noise and channel distortions. This is because it is the
because a short (2-4 ms) segment in the voiced speech sigR@lngth of the excitation that determines the robustness of the
immediately after the significant instant usually corresponds {Qathod against noise.
a high signal-to-noise ratio (SNR) portion of the speech within |, section II, the modified group-delay-based method for
a glottal cycle [4]. Hence, analysis of these short segments Mgy exiraction of the instants of significant excitation is briefly
yield better estimates of the characteristics of the vocal tragl iewed. Some refinements of the method are also discussed.

system. Since the robustness of the method is due to the strength of the
excitation, we discuss in Section Il the need for a measure of
Manuscript received February 14, 1997; revised August 1, 1998. THae strength of excitation, and propose a measure based on the
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Il. DETERMINATION OF INSTANTS OFSIGNIFICANT EXCITATION 5000F

In this section, we briefly present the group-delay-based \
method proposed in [9] and [10] for determining the instants
of significant excitation from speech signals, and proposg,,.. . . .. . : AARANEARREAS :
some refinements to the method. The method is based on 50 100 150 200 250 300 350 400 450 500
the global phase characteristics of minimum phase signals. (a)

Since the average group-delay of a minimum phase system

is zero [11], the average slope of the phase spectrum of tHé&*
impulse response of the system corresponds to the locatiopro
of the excitation impulse within the analysis frame [9]. In o
practice, the computed phase spectrum or the group-delayo}

’

function depends on the window function used for analysis. 0 - 100 150 200 250 300 350 400 450 500
To reduce the effects of the window function on the estimated (b)

group-delay function, it is preferable to compute the group-
delay function from the LP residual signal. The residual signal |

is also preferable because some characteristics of the glotta)
source can be seen better in the residual error signal than jnpjf "% ¥ AR i
the speech signal. The average slope of the phase spectrugt.... . % i b p
of the speech signal is the same for the residual signal also, 0. 700 10200 250 300 350 400 450 SO0
because the inverse filter of the LP analysis is a minimum ©)
phase system [12]. The residual signal is derived by inverse g : ; : -

filtering the speech signal, and the inverse filter is obtaine@p & iy N
using LP analysis. For LP analysis, a frame size of about 280 H’ :
35

i,

0 400 450 500

1

T

ms for every 10 ms may be chosen [9], [10]. The instantsoo ”H ‘ l’
of significant excitation can be derived from the LP residual olooin.u L L
. . . 50 100 150 200 250 300
signal as follows [10]. Around each sampling instant a 10 @
ms segment of the LP residual signal is considered and the

50 :

:

group-delay function is computed using the formula [13] ' ; ;

.
b
00 250 300 350

1t : e
Xr(w)Yr(w) + X1(w)Yr(w)
= 1 | : [ ]
R W W o
0
where X(UJ) — XR(UJ) +}X[(UJ) and Y(UJ) — YR(UJ) + 100 150 2 e (1) 450 500
JY1(w) are the Fourier transforms of the windowed residual ()

signal a:(n) an_d y(n) = na:(n), respectlvel_y. The, gro_up— Fig. 1. (a) Clean speech for the utterang&:ua/. (b) LP residual signal
delay function is smoothed using a three-point median filter {@rived from the signal in (a). (c) Phase slope function. (d) Significant instants,
remove any discontinuities in the group-delay function. Theeighted by their strengths, derived from the signal in (a). (e) Significant
negative of the average of the smoothed group-delay funCtiiBﬁtantS’ derived from the signal in (a) using the proposed algorithm.
is calledphase slopeThe phase slope value is computed at
each sampling instant to obtain tiphase slope functionf of significant excitation relative to other regions in the LP
the instant of significant excitation within a frame is at theesidual signal. This can be accomplished by deriving a weight
midpoint of the frame, then the phase slope is zero. Therefdumction for the LP residual signal. The weight function is
the positive zero-crossings of the phase slope function corderived here by smoothing the LP residual signal with a
spond to the instants of significant excitation. Short-time (1+3amming window of duration 0.75 ms (eight samples at
ms) energy of the LP residual signal around the instant cah kHz sampling rate). This smoothing reduces the noise
be used to represent the strength of excitation associated Witittuations in the residual signal. The short-time energy of the
the instant [9], [10]. Fig. 1(a)—(d) show a segment of speesmoothed residual signal is computed at every sample using
signal, the LP residual signal, the phase slope function aadrame size of 1.4 ms (15 samples at 11 kHz sampling rate).
the extracted instants with estimated strengths, respectivélifie short-time energy curve will have large amplitudes around
The speech signal shown corresponds to the utterafiee:/, the significant instants. The short-time energy is normalized to
where /dz/ is a voiced palatal fricative as ifiulie. a maximum value of one and is used as a weight function for
Sometimes the LP residual signal may contain some sphe residual signal to enhance the regions in the residual signal
rious impulses which may result in wrong estimation of tharound the significant excitations. The weighted residual signal
instants of significant excitation, as can be seen in Fig. 1(@, used to derive the instants of significant excitation. The
where the strengths are computed using the short-time enepipase slope function is smoothed using a five-point Hamming
of the residual signal centered around the estimated instawiadow. Positive zero-crossings of the smoothed phase slope
of significant excitation. The effect of these spurious impulsésnction are used as the instants of significant excitation.
can be reduced by enhancing the region around the instafigg. 1(e) shows the plot of the instants derived after these
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refinements. Some of the errors in the estimation of instamgiven by
in Fig. 1(d) are corrected in E|g. 1(e). The dn‘ferent_ stgps in lel2 = [|Sal2
the algorithm for the computation of the instants of significant 2 22 )

excitation are given in Fig. 9. <|IS[7 - [lallz (4)

where||S||r is the Frobenius norm . The ratio||e||3/|a||3
[ll. M EASURE OF STRENGTH OF EXCITATION is upper bounded by|S||%.. Ignoring the variation inj|al|3

Reliability of the extracted instants depends on the strendiAmpared toS]%., we can usdle|3/||al|3 as a measure of
of excitation around the instants. In [9], [10] the short-tim&'€ Strength of excitation. Computing the Euclidean norm of
energy of the LP residual signal was used to represent thdfom (2), we get
strength of excitation at each instant. In some cases it is 2 T(gT

o : : llellz _ a”(S” S)a
difficult to use the short-time energy around the instant as a a2 = Ja (5)
measure of the strength, especially when the residual signal is 2 = pla) (6)
noisy, as in the region BC in Fig. 1(b). Moreover, the derived e

residual signal energy depends on the effectiveness of the WRerep(a) is the Rayleigh quotient qfS*'S) [14]. It is shown

analysis for these segments. in Appendix A [see (A.8)] that
We propose an alternative measure for the strength of ) )
excitation, which is based on the use of the Frobenius norm. In op1 < pla) < of (7

[8] the Frobenius norm of a signal prediction matrix, forme%here(},1 > 0y > -+ > 0py1 > 0 are the singular values o,
by using the s_amples in a frame of about 3 ms, was _pmpo%ﬁ?d are also the eigenvalues$fsS. It is also known that the

to locate the instants of glottal closure. The Frobenius nor; uare of the Frobenius norm is the sum of squared singular
was computed at each sampling instant. The locations of t\%ues [15]. So we have the inequality

peaks in the plot of the Frobenius norm as a function of time

were considered as the desired instants. In this section we b2 <1 I18]12 < o2 8)
propose that the Frobenius norm [14] of the signal prediction P (p+1) F=r

matrix [8] formed by using the samples in a 3-ms frame qf ce(p+1)1||S||% is the arithmetic mean of squared singular

dllffe_r(.anced sp_ee(_:h centered around the identified Instant, Ay, e, It is known that all the singular values rise in magnitude
significant excitation can be used to represent the strengt en there is an excitation within the analysis frame and fall

excitation at that instant. . s .

. . . when there is no excitation [8]. Therefore, bgifu) in (7)
Cor|13|der a frame of tXe dlffgrencei_d speechd_s?_nal Wgh and (p + 1)7Y||S||% in (8) track these changes. Therefore
S?mptﬁs";lil 52’.""3Nc'j. tgsumlng a |rt19ar preb |cf|on o(;.er(p +1)71||S||% can be used as a measure of the strength of
of p, the Tollowing prediction error vector can be formed. oy citation. We note that though this is a measure of energy

e—Sa @) of the residual signal, it is computed directly from the speech
signal.
where is the Toeplitz signal prediction matrix of dimension It is to be noted that since the square of the Frobenius norm
(N—p)x(p+1) of the signal prediction matrix is the sum of squares of all
samples in the matrix, it is nothing but the short-time energy
[S$p+1 Sp 0 81 ] of the speech signal computed from the weighted samples of
Sp+2  Sp+1 - S2 the speech signal.
" : To illustrate the need for a measure for the strength of
S=1 . . ' ' (3) excitation, let us consider the differentiated glottal pulses
: : Spt+1 [Fig. 2(a)] generated using the LF model [16]. All the parame-
: ters of the model are kept constant except the time constant of
sy sn_1 o SN_p the return phase and the instant of peak positive excitation. To

vary the rate of closure, the time constant of the return phase is
and a is the augmented vector of LPC[8 a; as---a,]”. increased from 0.05-1.5 ms from left to right. The amplitudes
Assumings,, n = 1,---,N are the samples of a signal atbof the pulses are progressively scaled up (from left to right) so
the output of an all-pole system excited by a periodic impuldkat all the pulses have equal negative peak amplitudes. These
train, there is a linear dependence between the column vectifferentiated glottal pulses are used to excite an all-pole model
of S, when the instant of excitation is not included in theo obtain a synthetic voiced sound shown in Fig. 2(c). It should
analysis frame [8]. The error vector is then zero. But whdpe noted that, in the first 40 ms of the speech signal, the signal
the instant of excitation is included, the norm of the errasomponents due to higher formants can be clearly seen. This
vector goes up. The amplitudes of signal samples in the sigistue to the sharp closing phase, which results in a magnitude
prediction matrix also go up, because of the excitation. Thusgectrum of the excitation pulses that is less steep. This feature
the Frobenius norm of the signal prediction matrix, computes not seen in the latter portion of the signal in Fig. 2(c) due to
as the square root of the sum of all squared elements of the gradual closing phase. The second derivative of the glottal
matrix, also goes up. The square of the Euclidean norm ofpulse and the twelfth-order LP residual signal are shown in
which is a measure of the energy (strength) of excitation, i$g. 2(b) and (d), respectively. From these figures it is evident
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of the glottal pulse in Fig. 2(b) and the differenced signal
in Fig. 2(e) both show the characteristics of the strength of
excitation. These figures suggest that the Frobenius norm of
the differenced signal can be used as a measure of the strength
of excitation around the instant of significant excitation.

IV. ROBUSTNESS OF THEGROUP-DELAY-BASED METHOD

In this section we shall examine the robustness of the group-
delay-based method for two types of degradations, namely,
additive random noise and echo/reverberation.

A. Robustness Against Additive Noise

Let us consider an excitation signa{n) consisting of an
impulse of amplitudeA at time» = L and a zero-mean
additive white Gaussian noisgn).

xz(n) = Aé(n — L)+ v(n), n=20,1,---,N —1. (10)

The Fourier transform of(n) is

X(w) = Aexp(—jwLl) + V(w) (11)
where
N-1
V(w) =) v(n)exp(—jwn)
C) =0
= [V(w)] exp(jigu(w))- (12)

|V(w)| and ¢,,(w) are random variables corresponding to the
magnitude and phase 6f(w), respectively. Without loss of
generality, the phase spectrufn(w) can be assumed to have
a uniform probability density function over the ranger, 7]

B e [17]. Let | X(w)| and ¢, (w) be the magnitude and phase of
() X(w), respectively.
Fig. 2. (a) Differentiated glottal pulses. (b) Second derivative of glottal v p
pulses. (c) Synthetic signal. (d) Residual signal derived from the signal in log[| X (w)]] + j¢e(w)
(c). (e) First-order difference of the signal in (c). — log(.A) — jwL
V(w)l ,
log |1+ ———= 7( Dy L))]. (13
that the amplitudes of the excitation impulses are higher for the tlog |1+ A exp(j{fo(w) +wl))]. (13)

glottal pulses with sharper closure. The strength of excitation is. _ )
higher for sharper closure, although the amplitude and energys Shown in Appendix-B [see (B.4)] that

of the speech signal in Fig. 2(c) is nearly the same throughout E[IV(w)]] _(5./20)

for all the glottal pulse shapes. It should be noted in Fig. 2(a) — <1 (14)
that the energy concentration is higher for the pulses in the

initial portion than in the latter portion of the signal. where & denotes ensemble average akid is the excitation

If we consider the differenced signal of Fig. 2(c), as showRNR, defined as the logarithm of the ratio of average excitation
in Fig. 2(€), we notice that the strength of excitation i§ignal power per sampled®/N) to the average noise power
also evident in the differenced signal. It can also be seBfr sample(o;)
by considering a difference operatiqa — 2=*) on the z-

2
transform of the signalS(z) = E(z)H(z), where E(z) E, = 10log;, <i2> dB. (15)
corresponds to the differentiated glottal pulse excitation, and Noy
H(z) corresponds to the vocal tract system. We have For E, = 0 dB, the upper bound on the expected value of
(1—2"18(2) = (1 — 2~ E(2)H(2). 9) the magnitude of(|V(w)|/.A) exp(j(¢.(w)+ wl))] is one. If

the Fourier transform in (11) is evaluated using &Rpoint
Thus, the differenced signal can be viewed as a signal tliscrete Fourier transform (DFT), the magnitude of the DFT
results due to the excitation of the vocal tract system with th& (w; )| can be shown to be less thahwith 99% confidence
second derivative of the glottal pulse. The second derivatiwdhen E; > 6.6 dB [see App. B, (B.7)]. Expanding the third
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term on the right hand side of (13) by Taylor series expansion T T v T g ! T T T

the phase term of (13) can be approximated as OZ T : 1

V(w)| . ookt N R ........ ......... Uy ,,,,, ........ ALY LY

po(w) = —wL + A sin(¢u(w) + wl). (16) 0 W 20 30 4 s 80 70 80 %
The group-delay functionir,,(w)) is given by @
by 0 10 200 30 40 50 60 70 80 90
(b)
oo [ mle)d S S s S . ———
Te T oy [ TR } T A A SO AL SO
1 §
- _% [d)a}(ﬁ) - d)w(_ﬂ)] (18)
Substituting (16) in (18) and noting that.(w) is an odd ©

function of w and that the second term in (16) vanishes at
7, we have

1 e ,. .......................
7, =L (19) os j _____ l ...... ! .....

30 40 50 60
time (ms)

location of the impulse.
In practice, the group-delay function is computed at discrete @

frequencies, and hence the computed average deviates ffdgn3. (a) Synthetic speech of Fig. 2(c) at an average SNR of 5 dB. (b)
LP residual signal derived from the signal in (a). (c) The true locations of

(19)' Rand(_)m fluctuations an_d spikes aPpear in the 9roYRs instants of significant excitation. (d) The instants of significant excitation
delay function [18]. These spikes may bias the mean valt€ived from the noisy signal in (a).

of the group-delay function. Therefore, it is preferable to

use median smoothing of the computed group-delay functigipe second momert[|V (w)|?] depends on the frequeney

before computing the average. o Let us consider the worst case situation, i.e., the maximum
So far we have considered an excitation signal corrupted byj e of (1/N)E[V(w)|?]. Let

additive noise. Let us now consider a noisy speech sighal

2 _ 1 2
_ A2 2
wheres(n) is the speech signal and(n) is the additive white = Auaxw (24)

noise. To derive the instants of significant excitation, let ughere A,,,, is the maximum value ofA(w)| given by
consider the LP residual signal. The frequency response of the

inverse filter obtained from the LP analysis is given by max = max [A(w))|

. 'y
Aw) = 1AW xp(ifa(w) = max |14 Y apexp(cjob).  (25)
= Zak exp(—jwk) (22) . . =t .
k=0 In the expression foE; in (15), theo? is replaced by2 .
whereay =1 anday, - - -, a, are the LP coefficients (LPC’s). A_ssurln!ng tgatAgaX >1, the effective F5; for the residual
The residual error signal obtained after inverse filtering gynal is reduced. . .
given by The above analysis is valid even when the speech is

corrupted by additive colored random noise, except that,
z(n) =r(n)+v(n) (22) now also depends on the maximum value of the power
pectrum of the colored noise.
The robustness of estimation of the instant of excitation
depends on the excitation SNR;). For a constant additive
noise, F, will decrease as the strength of the excitation
Wereases. This is illustrated in Fig. 3 for a noisy case of
e synthetic signal generated by exciting an all-pole filter
with the differentiated glottal pulses of Fig. 2(a). The overall
SNR of the speech signal is 5 dB. Note that the periodicity
cannot be immediately seen from the noise corrupted speech
signal. Since it is a synthetic case, the strength of excitation
(23) can be approximated to the amplitude of the second derivative

wherer(n) is the component at the output of the inverse filter
due to the speech signgln) andwv(n) is the colored noise due
to filtering of the white noisev(rn). Note that even though the
speech signal is assumed to be the output of an all-pole syst
the noisy signaly(n) corresponds to a pole-zero system [19
The power spectrum of the colored noise componént) is
given by
Po(w) = 3 EIV@)P]

N
Alw)]Po?

| we
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of the glottal pulse shown in Fig. 2(b). Fig. 3(c) shows the Consider the impulse-in-noise sequenge.) in (10). Let
actual instants of significant excitation. Fig. 3(d) shows the(n), n = —(N —1)/2,---,0,---,(N — 1)/2 be a positive
instants of significant excitation estimated from the noisyindow function such that(0) > v(n), n # 0. Let

speech signal. The figure shows that the accuracy of the

extracted instants depends on the excitation signal-to-noise %(”) _i(”)W(” L)
ratio. Reliability of the extracted instants decreases with a Av(0)6 L) +v(n — L)v(n),
decrease in the excitation SNR, as can be seen from the n=01,---,(N—1) (31)

deviation of the instants in Fig. 3(d) relative to the instants

in Fig. 3(c). The excitation SNRE,) is defined as the ratio be the weighted excitation signal, such that the impulse at
of the square of the amplitude of the impulse and the noige= L is given the maximal weight of(0). By following the
power. Note that even though the average SNR of the spe&tdips in the analysis presented in Section IV-A, we have
signal is nearly constant, i.e., 5 dB, the excitation SNR is

decreasing from left to right on the time scale. ppy(w) = —wL + |ij((°8;| sin(¢,(w) +wl) (32)
B. Robustness Against Echo and Reverberation where
Let us consider the following reverberant sigméh) for an N1
impulse of strength4 and delayed by: = L samples. V,(w) = Z v(n)y(n — L) exp(—jwn)
z(n) = Ad6(n — L) + Mé(n — L — D) =0 )

where is the attenuation factdp < A < 1) andD is the delay 2Nd #:+(w) is the phase of the Fourier transform of the
eighted excitation sequence,(n). The approximation in

due to reverberation. The Fourier transformation of (26) yieléf% A )
Aexp(—jl) (32) is justified provided that
. exXpl —jw
X I D = 27
[ X (w)| exp(jda(w)) (1= hexp(—jwD)) (27) V@l _

A
where | X (w)| and ¢,(w) are the magnitude and phase of A0
the Fourier transform of:(n), respectively. Taking natural Assuming that{=(n)} are zero-mean Gaussian random vari-

logarithm on both sides of (27), we get [20] ables with variancer2, we have from (33)
log[| X(w)[] + j¢u(w) N-1
— log(A) — j : ~ V@)= a2 3 5= 1)
=log(A) — jwL —log(1l — Aexp(—jwD)). (28)
Neglecting the higher order terms in the Taylor series expan- = ( ) isw (34)
sion of the last term above, the phase component is given
by where
¢o(w) = —wL — Asin(wD). (29) = [y —L)]?
-3 M) @
The group-delay is n=0 v
7x(w) = L+ AD cos(wD). (30) Following the steps in the analysis presented in Appendix B,

) ) we define the weighted excitation SNR as
The mean value of the group-delay(w) is L. For a single

echo, the term- log[1— X exp(—jwD)] in (28) can be replaced B, = 10log < A?4%(0) ) 4B
by log[1 + Aexp(—jwD)]. The expression for the phase is O ENVL (W)

same as in (29) and hence the group-delay for the case of A2 N

echo is same as in (30). = 10logg <N—o—2 S-) dB (36)

It should be noted that the above analysis is valid only under v
mild echo and reverberant conditiofs <« 1). We have also Using (15), we get
assumed that the signal characteristics are stationary. Due to
nonstationarity of speech signals, the model of reverberation E, = E, +10logy, <£> (37)
in (26) may not be valid in real situations. Sy

o ) ) Note that for the case without weighting of the LP residual
C. Robustness Due to Weighting of the LP Residual S'gnalsignal,fy(n) — 1. Therefore, from (35) and (37)., = E..

In this section, we show that suitable weighting of th&or any other window function with a broad peak around the
LP residual signal improves the robustness of the algorithiocation of the impulse i.eq = L, S, <N. Thus, there is
for extraction of the instants of significant excitation. This isome gain in the excitation SNR. For the limiting case of a
because the excitation SNR, can be improved by weighting, weight function with a narrow peak at= L, the gain in the
as shown below. excitation SNR tends ta0logo(V).
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Significant instants derived from the signal in (e).

V. PERFORMANCE EVALUATION OF
THE GROUP-DELAY-BASED METHOD

615

instants computed using the Frobenius norm are shown in
Fig. 4(b). For this signal, the strength of excitation is lower
for the segmenfu/ in the region BC compared to the region
CD. The noisy speech signal in Fig. 4(c) corresponds to the
same speech as in Fig. 4(a), but recorded by a microphone
placed 50 cm away from the speaker. The signal in the region
AB is affected by the additive noise more than the signal
in the region CD due to lower signal amplitudes. Hence the
instants extracted for the signal in region AB are not reliable.
Most of the extracted instants [Fig. 4(d)] for the signal in the
region BC are correct, even though in Fig. 4(c) there appears
to be no visible periodicity in the signal in the region BC.
From Fig. 4(b) and (d), it can be seen that the instants are
correctly extracted for the signal in the region CD. The results
are similar for the case of telephone speech shown in Fig. 4(e)
and (). In the telephone speech shown in Fig. 4(e), the signal
in the region AB is lost and it is significantly attenuated in the
region BC. This is because the low first formant of the vowel
/u/, is severely attenuated due to the bandpass nature of the
telephone channel characteristics. The errors in the region AB
are due to low levels of the signal itself in that region. It is
important to note that although the signal level is high in the
region BC for the clean speech, the strength of excitation is low
for the instants in that region. Hence, the extracted instants in
this region are more prone to errors compared to the extracted
instants in the region CD.

A systematic investigation was carried out to study the
accuracy of the extracted instants for synthetic and natural
vowels. Histograms of the spread of the errors are shown in
Figs. 5 and 6 for five synthetic and natural vowéls/, /¢/,

/i/, Jo/ and /u/), respectively, for an overall SNR of 10 dB.

All the synthetic vowels are generated by the same LF-model-
based differentiated glottal pulses. The length of each pulse
was chosen to be 80 samples. In the case of the natural vowels,
the glottal cycle duration varied from 9 ms for vowg/

to 7 ms for vowel /«/. In Fig. 5, the histogram for each
synthetic vowel is obtained by computing the histogram of
deviations of the estimated instants of significant excitation

(a) Clean speech for the utterarideua/. (b) Strengths of excitation from the true locations for 50 realizations of noise. There are
based on the Frobenius norm. (c) Speech degraded by ambient noise.
Significant instants derived from the signal in (c). (e) Telephone speech.

H glottal cycles in the signal for each vowel and hence we get

0 such deviations for each vowel. In Fig. 6, the deviations
are obtained by subtracting the estimated locations from the
locations extracted from the clean speech signal. Larger spread
of the histograms indicates larger deviation of the extracted
instants from the true locations of the instants. The errors are

In this section, we consider some examples of speegipically larger for the close vowelgu/ and /i/ than for the
data under actual conditions of degradation, and examine thgen vowels/a/, /e/, and /o/. For the synthetic case shown

performance of the group-delay-based method for extractisnFig. 5, all the instants have the same strength and hence the
of the instants of significant excitation. Since we do not hawpread of errors is less compared to the case of natural vowels.
a method for estimating the SNR of the strength of excitatidnis important to note that the variation in the spread of the
for signals with natural degradations, the results can only kerors for different vowels is also due to the artifacts of the LP
interpreted from our priori knowledge of the characteristicsanalysis. For the synthetic case shown in Fig. 5, the spread is
of the excitation for different categories of sounds. Wherevtarger for the close vowelsu/ and/i/, despite the excitation
appropriate, the Frobenius norm of the differenced speestiength being the same for all the five vowels, because of the
signal can be used as a measure of the strength of excitatidominance of the first formant in the LP analysis of the noise-
Fig. 4 shows the performance of the algorithm for noiseorrupted signals for these close vowels. This is also true in the
and telephone channel degradations for the segment of speeade of natural vowels shown in Fig. 6. There is a systematic
given in Fig. 1(a). The strengths of excitation at the extractduas in the estimated locations of the instants of excitation for
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Fig. 5. Histogram of errors in the estimated instants for five synthetic vowelsg. 6. Histogram of errors in the estimated instants for five natural vowels

for SNR= 10 dB. (a)/a/, (b) /¢/, (c) /i/, (d) /o] .(€) [u/. for SNR= 10 dB. (a)/a/, (b) /e/, (c) /i/, (d) /o], (€) [u/.

the case of synthetic vowels. The bias is about two samplgstabase. The data for the female voice corresponds to the file:
for the average glottal cycle length of 80 samples. That igest/dr5/ficsO/sal.wavThe instants of significant excitation
the bias is about 3%. The bias may have been caused dugvéwe extracted only from the voiced regions, which were
weighting the LP residual signal before computing the instaritfentified using the phonetic transcription files provided with
of excitation. The weight function depends on the nature of thiee TIMIT database. From Figs. 7 and 8, it can be seen
voiced sound, and the extent of degradation caused by notsat there are more values of deviation in the histogram of
That is why the bias is positive in some cases and negatieviations for female speech than for the male speech. This
in some other cases. is because the average pitch of the female speaker is about
Errors in the extracted instants were also studied for utte¥10 Hz and that of the male speaker is about 100 Hz. So
ances taken from the standard NTIMIT [21], [22] data for malthere are more glottal cycles in the utterance of the female
and female speech. Since the TIMIT [23] data was availatdpeaker than for the male speaker. The spread of errors is larger
for reference, the spread was estimated using the deviatidoisthese utterances compared to the errors for the vowels in
of the extracted instants for the NTIMIT data from thos€ig. 6, because the SNR is different for different segments
for the TIMIT data. The TIMIT and NTIMIT data taken for in this case, whereas for vowels it was constant. The speech
study were lowpass filtered and downsampled to 8 kHz befd®®R varies over a range of 20-50 dB for the utterances taken
processing. The TIMIT and NTIMIT data was first time-from the TIMIT data and over a range of 540 dB for the
aligned before the deviations were computed. The histogramtterances taken from the NTIMIT data for both male and
of errors for one male voice and one female voice are shodemale voices. The SNR for different segments was computed
in Figs. 7 and 8. The data for the male voice corresponds the ratio of the energy of the signal samples to the energy of
to the file: test/dr2/mmdm?2/sal.wan the TIMIT/NTIMIT the noise samples in the silence regions. The bias and spread
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mate speech extracted instants are small for many practical signals such as
ot _! _’ " ; T : in the NTIMIT speech data.
dob S I __— » APPENDIX A
: : ; 5 5 : BOUNDS ON THE RAYLEIGH QUOTIENT
o . .
_ : : 5 _ : : Let the singular value decomposition (SVD) [15] $fbe
: ' s SN nE : :
15- .................................. Serreaeneans o . B | N R
g : g § Ss=uxv’ (A1)
g : s z : ; :
z 5 : 5 [‘ : ; : where the columns ofU (n_,yx(nv—p) @NAd V(pi1)x(p+1)
10 e s g NN B “-1 are the left and right singular vectors &, respectively.
: ' Y (N—p)x(p+1) IS the matrix of singular values; > oy >
; : _ -+ 2 0,41 > 0. Therefore
Bhoh S N =T & 15 [E I S PR [RTR e
: : : Sts=v(x"'x)yvt. (A2)
s : : ; - T
i HHHHJ ” lr ; _l : : So o7---02,, are the eigenvalues of(§75) and
s T 5 0 5 10 15 {v1,v2,---vpy1}, the columns ofV, are its eigenvectors.
deviation in no. of samples The Rayleigh quotient ofS”'S) is defined as [14]
Fig. 7. Histogram of errors for the utterance “She had your dark suit in Tl
greasy wash water all year” uttered by a male speaker. p(a) — a (S S)a, (A.3)
ala '
o B "'*’“a‘efp“m _____ _ _________ whereac€ RPtl. Assuming that the eigenvalues 6$75)
: r : : ; : : are all distinct, its eigenvectors form an orthonormal basis in
] § Rrtl Hence,a can be expressed as
1)) SRR SRR e froemnaes e e oo
: M : a=cCciv; +Cv2+- -+ Cp+1VUp+1 (A4)
P I I g ______________ ______________ ..l wherec¢i, e, -, c41 are the components o w.r.t. the
: : : T : : : basis{v1,v2, - - - v,41 }. Premultiplying both sides of (A.4) by
& _ : ‘ ; 5 : _ (8TS) and noting thato? andw;, i = 1---p + 1, are its
§3° """"""" P B o eigenvalues and eigenvectors, respectively, we have
[ (81S)a = c10%v) + coolvy + -+ Cp+10'§+11)p+1. (A.5)
okt _
Premultiplying (A.5) bye” and noting that the eigenvectors
ok HE _ form an orthonormal set, we have
Hﬂﬂﬂﬂﬂ ' : : v ol (8TSYa=c20? + 202+ + 012)_1_102_1_1. (A.6)
ol ﬂ‘ﬂ " . — - From (A.3), (A.4), and (A.6), we have
deviation in no. of samples
) ) . . (C§Uf+030§+"'+02+10§+1)
Fig. 8. Histogram of errors for the utterance “She had your dark suit in p(a) = (A-7)

(G +a+ - +c)
From (A.7), it is clear that

of t_he_ errors in Figs. 7_ and 8 can be attributed not only to_the 0§+1 < pla) < o2 (A.8)
variations of SNR for different segments, but also to the weight

function used on the LP residual signal before computing the., the Rayleigh quotient is bounded by the extreme eigen-
instants of excitation. values of (§7'S).

greasy wash water all year” uttered by a female speaker.

APPENDIX B
V1. CONCLUSIONS EXCITATION SIGNAL-TO-NOISE RATIO

In this paper, we have demonstrated that the group-delayfor the zero-mean Gaussian distributed random variables
based method proposed in [9] and [10] is indeed robust againgh) the Fourier transform¥/ (w) is a complex zero-mean
degradations in speech due to additive noise and changgl,ssian random variable. Therefore we have
distortion. The robustness is due to the fact that the energy
of the signal is concentrated around the instant of significant EIV ()] = No?. (B.1)
excitation, which for voiced speech corresponds to the instaé] ce the square of the mean is always less than the second
around glottal closure. We have discussed the importancela? ment. i.e
the strength of excitation, which cannot be directly inferre T
from the speech signal. We have shown that the errors in the ENVID2 <&V (W) (B.2)
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¢ Calculate the linear prediction residual signal using a frame of size 25 ms, Hamming
window and a 10th order linear prediction analysis by autocorrelation method. The

frame is shifted successively by 10 ms.

Smooth the residual signal with a 0.75 ms Hamming window. Compute the short-time

energy of the smoothed residual signal for every sample, over a frame of duration 1.4 ms.
Normalise the short-time energy function to a maximum value of one. Multiply the
residual signal obtained from the speech signal with the normalised short-time energy

function, to obtain the weighted residual signal.

Select a frame size between one to two periods of a glottal cycle, apply a Hamming

window and compute the group-delay of the weighted residual signal at each sampling

instant using the formula

(W) = Xp(w)Yr(w) + Xi(w)Y7(w)
‘ Xiw) + XFw)

where X (w) = Xp(w) + jXr(w) and Y(w) = Yr(w) + j¥7{w) are the Fourier transforms
of the weighted residual signal z(n) and y(n) = nz(n), respectively.

¢ Smooth the group—delay function computed at each sampling instant using a 3-point

median filter.
o Compute the average of the smoothed group-delay function.

o The negative of the average of the group-delay function obtained at each sampling instant
is plotted with time to obtain the phase slope function. Smooth the phase slope function

using a Hamming window of length 5 samples.

e The positive zero—crossings in the smoothed phase slope function are identified as the
significant instants.

Fig. 9. Algorithm for determination of instants of significant excitation.

we have Since we have the knowledge of both the mean and variance
of |V(wyg)|, we get
EV@l < (Nop)/2. (B.3)
E[V(wn)l] _ ﬁlo—(Es/QO)
Hence A 2
~ —(E,/20)
gHVf(‘w)” < 1B /20 6.4 ~ (0.9)10 (B.6)

which is indeed close to the upper bout(#:/2% given in
where E; is the excitation SNR: (B.4) above. From the cumulative distribution function of a
Rayleigh distribution [25], we may write

2
E; =10log, <%) dB (B.5) 42
Let ider arV-point discrete Fourier transform (DFT y
et us consider anvV-point discrete Fourier (DFT) 1 exp(— 10019 B.7)

of the sequence given in (10), computedwat = (27k/N),

k =0,---,N — 1. It can be shown [24] that the real anqNh : o :

; ST ere P[|V(wi)| < A] is the probability thajV (wy)| is less
imaginary parts of the DFT ob(n), Vr(ws) and Vi(ws), 04" From (B.7), we note tha¥’ (wy)| < .4 with more than
are (real) independent identically distributed (i.i.d.) Gau35|%% confidence v'vhelE > 6.6 dB

random variables fok = 1,2,---,((N/2)—1). Therefore, the ' = '

vectorsvg = [Vr(wi) Vr(wz) -+ Ve(winy2)-1)]* andvy =
Vi(w) Vi(wz) - Vilwonyz-)]" are ~ N(0,(No2/2)I).
Under these conditions the magnitude of the DFTvO#), The authors would like to thank Dr. H. A. Murthy for
|V (wi)| = [VA(wr)+V7E(wi)]*/?, is Rayleigh distributed [24]. providing the data required for some of the studies in this
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