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Enhancement of Reverberant Speech Using LP
Residual Signal

B. Yegnanarayana, Senior Member, IEEE,and P. Satyanarayana Murthy

Abstract—In this paper, we propose a new method of processing
speech degraded by reverberation. The method is based on anal-
ysis of short (2 ms) segments of data to enhance the regions in the
speech signal having high signal-to-reverberant component ratio
(SRR). The short segment analysis shows that SRR is different in
different segments of speech. The processing method involves iden-
tifying and manipulating the linear prediction residual signal in
three different regions of the speech signal, namely, high SRR re-
gion, low SRR region, and only reverberation component region. A
weight function is derived to modify the linear prediction residual
signal. The weighted residual signal samples are used to excite a
time-varying all-pole filter to obtain perceptually enhanced speech.
The method is robust to noise present in the recorded speech signal.
The performance is illustrated through spectrograms, subjective
and objective evaluations.

Index Terms—Glottal pulse, linear prediction residual, re-
verberant speech, short segment analysis, signal-to-reverberant
speech, speech enhancement.

I. INTRODUCTION

DEGRADATIONS in speech are caused by additive noise
and reverberation. In this paper, we consider enhancement

of speech under reverberant conditions. The focus is on the
degradation of speech caused in speakerphone-like situation.
Speech from a speakerphone contains both the direct component
and the reverberant component. The objective of processing is
to enhance the signal in the direct component, wherever pos-
sible, so that the resulting processed speech is perceived as less
reverberant and thus increasing the comfort level for listening.

Normally, degraded (additive or reverberant) speech is pro-
cessed assuming that the degradation has long term stationary
characteristics relative to speech. For example, for additive
noise degradation, the noise statistics are estimated from the
degraded speech and the long (100–300 ms) term noise effects
are subtracted from the short (10–30 ms) time speech spectra
[1], [2] to reduce the effects of noise. Due to sharp changes in
the subtracted spectra within a frame and across the frames,
the resulting processed speech produces significant audible
distortions. Thus noise reduction is accomplished at the cost
of quality. Likewise, for reverberant speech, the reverberation
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effects are captured by estimating the impulse response of
the room environment from long (500–1000 ms) segments of
speech [3]–[5]. The room impulse response is usually long,
of the order of 200–300 ms. The reverberant speech is passed
through an inverse filter for the room response to dereverberate
speech. Here again the estimated long term characteristics are
used to filter out its effects from the short (10–30 ms) quasi-
stationary segments of speech. The main problems in these
approaches for processing degraded speech is that the estimates
of the characteristics of the degradations are not good enough
to remove their effects in short segments of speech. This is
because the level of degradation in terms of signal-to-noise ratio
(SNR) is different for different segments of speech. Moreover,
the emphasis in many of these approaches seems to be on the
degradation and not on speech. In other words, enhancement
is sought to be accomplished by suppressing noise from noisy
speech.

In noise suppression and dereverberation, there is more em-
phasis on improving the overall SNR of the degraded speech.
In this process most of the attention is given to improve the low
SNR regions of speech. When attempting to reduce the degra-
dation in these regions, the natural characteristics of speech are
changed, causing significant distortions. This is because all seg-
ments of degraded speech are treated equally. In order to im-
prove the overall SNR, it is necessary to reduce the noise in the
low SNR regions, which does not produce significant enhance-
ment perceptually.

Methods focusing on characteristics of speech also have been
proposed for enhancement of degraded speech [6]–[11]. Some
of these methods are based on exploiting the pitch periodicity
and high signal energy characteristics in short (10–30 ms) seg-
ments of speech [6]–[9], [11], [12]. These methods are mainly
applicable for additive noise, and also they depend critically
on the periodicity property. Methods for enhancement of rever-
berant speech generally rely on estimating the impulse response
of the inverse system for dereverberation [5]. It is not possible
to estimate this response accurately from speech in most situ-
ations. In some methods, the room response is collected sepa-
rately to design the inverse system [13]. The recovery of the av-
erage envelope modulation spectrum of the original (anechoic)
speech by filtering the time trajectories of spectral bands of
reverberant speech has also been proposed [14]–[16]. Several
multimicrophone methods have been proposed [17]–[19] for en-
hancement of speech degraded by room reverberation. The mi-
crophone array based methods attempt to enhance the signal in
a particular direction and suppress signals arriving from other
directions.

1063-6676/00$10.00 © 2000 IEEE
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Fig. 1. Variation of short-time signal-to-reverberant sound ratio and signal-to-noise ratio with time for degraded speech: (a) clean speech signal, (b) short-time
energy of clean speech computed using 2 ms frames, (c) short-time signal-to-reverberant sound ratio, and (d) short-time signal-to-noise ratio for an average SNR
of 10 dB.

There appears to be a need to look at the problem of en-
hancement of reverberant speech with more emphasis on the di-
rect component of speech at the receiving microphone. In pro-
cessing, it is necessary to increase the contribution of the di-
rect component relative to the reverberant component [20]. In
such an attempt, there will be more emphasis on the speech than
on the degradation during the enhancement. This point of view
is also reasonable, since speech is a nonstationary signal, with
signal energy varying over a wide (about 60 dB) dynamic range
both in temporal and spectral domains. Therefore the signal-to-
degradation ratio will be varying even within 10–30 ms seg-
ments of data. For short (10–30 ms) segments it is difficult to
estimate the reverberant component. Moreover, the reverberant
component itself will be different in different segments due to its
dependence on the energy in the preceding segments of speech.
That is, the reverberant component is signal dependent.

It is also essential that we specify our goal in the enhance-
ment of degraded speech. Obviously, complete dereverberation
is not a realizable task. Therefore, the emphasis should be on en-
hancement, but not necessarily enhancement of all segments of
speech. There are segments of speech where reverberant compo-
nent dominates over the direct component. For such segments,
there is no point in attempting to enhance the speech part. On
the other hand, if regions, where the direct speech signal com-
ponent is significantly higher compared to the reverberant com-
ponent, could be identified, then by enhancing speech in such
regions the annoyance due to reverberation could be reduced
in some segments at least. Likewise, the levels of the signal in
the regions with higher reverberation could be reduced, if such
regions could be identified. In the regions where there is only a
reverberant component, such as silence regions, the levels could
be reduced to very low values. Perception of the overall speech
is influenced significantly by the high signal energy regions,
thus giving an impression of enhancement of degraded speech.

Therefore the criterion for improvement need not be based on
giving equal emphasis to all the speech segments. It is better to
focus on the regions having high direct path signal component.

In this paper, we show that using short segment analysis it is
indeed possible to locate the segments in the degraded speech
where the direct component is higher than the reverberant
component. These segments are usually much shorter than the
glottal cycle. The proposed approach is different from the ex-
isting methods, as there is more emphasis on the characteristics
of speech, and also the analysis segments are much shorter
(1–3 ms) compared to the normal frame size (10–30 ms) used
in speech analysis. In Section II, we discuss the model of
reverberant speech and some of its characteristics. By studying
the effects of degradation in short (1–3 ms) segments, we
obtain clues that can be used for processing the reverberant
speech. In Section III, steps for processing degraded speech are
discussed. In particular, the importance of processing the linear
prediction (LP) residual signal is emphasized. We present some
experimental results in Section IV. The improvement in the
processed speech is demonstrated through the signal waveform,
short-time spectra, and spectrograms.

II. CHARACTERISTICS OFREVERBERANTSPEECH

In this section, we will examine the characteristics of re-
verberant speech to determine clues for processing speech for
enhancement. Throughout the discussion we will examine the
similarities and differences in the characteristics of reverberant
speech and speech corrupted by additive noise. For this purpose,
we consider the following models for reverberant speech and
noisy speech.

Reverberant speech: (1)
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Fig. 2. Comparison of clean and reverberant speech signals: (a) clean speech, (b) signal corrupted by reverberation, (c) LP residual signal for the clean speech
in (a), and (d) LP residual signal for the reverberant speech in (b).

Noisy speech: (2)

where
clean speech signal;
relative amplitude of the reflection arriving after a
delay of samples;
number of such reflections;
additive noise component.

In each model, the first term on the right hand side is the signal
component and the second term is the component due to degra-
dation. The main difference between these two models is that, in
the case of reverberation, the degrading component is dependent
on previous speech data, whereas in the case of noisy speech the
degrading component is independent of speech. That is, in the
reverberation the degrading component is speech-like.

The relative strength of the reverberant component over the
direct component depends on the energy of the speech signal
in a short segment around the current instant. This strength can

be called signal-to-reverberant component ratio (SRR) at that
instant. Likewise, the ratio of the signal energy to the noise en-
ergy in a short segment around the current instant is called SNR
at that instant. To study the characteristics of SRR and SNR as
a function of time, these ratios are computed for short (2 ms)
segments of degraded speech. Due to nonstationary nature of
speech, the signal energy varies with time. Fig. 1(a) shows a
clean speech signal. The energy of the clean speech and the SRR
for the reverberant speech are computed for every 2 ms frame
shifted by one sample (8 kHz sampling rate) and are shown in
Fig. 1(b) and (c), respectively. The reverberant speech signal is
generated by convolving the clean speech signal in Fig. 1(a) with
the impulse response of a room collected in a normal room at a
distance of 1.5 m from the source. Likewise, the SNR is com-
puted for speech degraded by additive noise (overall SNR = 10
dB) and is plotted in Fig. 1(d). In both cases, it is obvious that
SRR and SNR vary with time, since the signal energy is also a
function of time. In fact, in the case of reverberant speech, both
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Fig. 3. Comparison of short-time spectra for clean and reverberant speech in different segments. (a)–(c) Short-time spectra of the clean signal in Fig. 2(a) in the
regions AB, BC, and CD, respectively. (d)–(f) Short-time spectra of the reverberant signal in Fig. 2(b) in the regions AB, BC, and CD, respectively.

Fig. 4. Comparison of normalized prediction error for: (a) clean, (b) reverberant, and (c) noisy speech (average SNR= 10 dB).

the signal energy and the energy of the degrading component are
time-varying, which is not always true in the case of noise-cor-
rupted speech. In Fig. 1(c), we observe that in the 300–400 ms
region the SRR is very poor. This is because the direct com-
ponent is small in this region, whereas there is a large rever-
berant tail component due to the preceding vowel. In Fig. 1(c)
and (d), we also observe that there are finer variations (ripple)
in the SRR and SNR plots. This is because of the variation of

the signal energy and energy of the degrading component even
within a glottal cycle.

The effects of reverberation can be seen by comparing the
signal waveforms for clean and reverberant speech signals
shown in Fig. 2. The clean speech has damped sinusoidal pat-
tern within each glottal cycle, whereas the reverberant speech is
smeared within each cycle [region AB in Fig. 2(b)]. Smearing
of the signal within each glottal cycle is more prominent when
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Fig. 5. Characteristics of LP residual signal for reverberant speech: (a) clean speech signal, (b) reverberant speech signal, (c) skewness, (d) kurtosis, and (e)
entropy function.

the envelope of the signal waveform is decaying as in the region
BC in the figure. The smearing extends for several glottal cycles
due to the influence of large amplitude signal component in the
region AB. Only the reverberation tail component is present in
the low amplitude silence regions (CD).

Nature of the reverberant speech in the spectral domain can
be observed by comparing short-time (20 ms) spectra (Fig. 3)
for segments in each of the three regions. In all the three cases
the dynamic range of the dominant initial portion of the spectral
envelope is higher for the reverberant speech compared to that
of the clean speech. Thus, there is reduction in the flatness of
the spectral envelope due to reverberation. The figure also illus-
trates that the spectral features of the clean speech are altered
significantly due to reverberation, especially for the segments
in the regions BC and CD in Fig. 2.

Effect of reverberation can also be seen clearly in the LP
residual signal waveform. Fig. 2(c) and (d) shows the LP
residual signals for clean and reverberant speech. The residual

signal is computed for a segment of 2 ms at every sampling
instant, using a fifth-order autocorrelation LP analysis. The
residual signal for reverberant speech signal clearly shows
that there is a significant direct component of the signal in the
reverberant speech in the region AB. This is because for the
segments in the region AB the signal amplitudes at the epochs
(instants of glottal closure) are higher than the signal ampli-
tudes in the rest of the glottal cycle, like in the case of clean
speech. This shows that there are segments in the reverberant
speech where the direct component is significantly higher than
the reverberant component. In the region BC, due to the decay
of the overall signal amplitudes, the reverberation effects of the
preceding speech dominate over the direct component. In the
region CD the residual signal is mainly due to reverberation.

Comparing the residual signals for clean and reverberant
speech signals, the effects of reverberation can be seen within
each glottal cycle since the residual signal is much higher in
between two epochs when the reverberant component domi-
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Fig. 6. Various stages in the derivation of the weight function for the LP residual signal: (a) smoothed entropy function, (b) gross weight function, and (c) overall
weight function.

Fig. 7. Mapping function to generate the weight values from the entropy values. The mapping functionsw = ((1� b)=2) tanh(�� �(H�a))+((1+ b)=2)
is shown for� = 1:5; a = 1:55 andb = 0:05.

nates. Whenever the direct component of speech is higher than
the reverberant component, the LP residual signal at the epochs
has significant energy around the instants of glottal closure.
Fig. 2(c) and (d) shows that there are regions where the direct
component is dominant. We need to identify such regions so
that the signals in those regions can be processed to enhance the
direct component over the reverberant component. Note that
there is no clear evidence of the direct component in the region

BC, and there is only reverberant component in the region CD.
So the signals in the regions BC and CD need to be attenuated
relative to the signal in the region AB. Within the region AB,
the signal around the instants of glottal closure need to be
enhanced compared to the signal in the rest of the glottal cycle.

First of all, it is necessary to identify these three different
regions in the reverberant speech. For this purpose let us ob-
serve some more characteristics of the reverberant speech. Fig. 4
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Fig. 8. Derivation of the fine weight function: (a) segment of reverberant speech, (b) LP residual signal, (c) normalized prediction error, and (d) fine weight
function.

shows the normalized error () of clean and reverberant speech,
computed at every sampling instant using a fifth-order autocor-
relation LP analysis using a frame size of 2 ms. The normalized
errors for both the clean and reverberant speech are similar in
the high SRR regions. But the normalized error for the rever-
berant speech is generally lower than for the clean speech. This
is due to the multiplicative effect of the frequency response of
the room on the speech spectrum. Multiplication of two spectra
produces larger dynamic range and hence reduces the spectral
flatness.

In contrast, the speech corrupted by additive noise has
higher spectral flatness compared to the clean speech. Thus,
the normalized error for the additive noise case is higher than
for the clean speech as shown in Fig. 4. Although the LP
residual signal for noisy and reverberant speech look similar,
their spectral flatness characteristics are distinct. Reverberation
decreases the spectral flatness of speech whereas additive noise
increases the spectral flatness. In fact, the increase in spectral
flatness for additive noise was exploited for developing a
method for enhancement of noisy speech [21].

A closer examination of the normalized error plot within each
glottal cycle shows that the error is maximum just before glottal
closure. This is because the speech signal amplitude is low in
this region. The points of maximumwithin each glottal cycle

can be identified in the high SRR regions such as AB in Fig. 4. It
is difficult to see the distinction between open and closed glottis
regions in the low SRR regions such as BC. The normalized
error in the purely reverberant region (CD) does not show any
periodic peaks.

The above study of the characteristics of reverberant speech
suggest that we need to address the following issues for en-
hancement.

1) Which domain to process; temporal or spectral? Which
signal to manipulate; original or residual?

2) How to identify the high SRR regions in short (2 ms)
segments as well as in the long segments such as AB, BC,
and CD?

3) How to process the signal in each of these regions so that
the SRR is increased at the fine level (2 ms) within a
glottal cycle, and at the gross level (20 ms segments)
as in the regions AB, BC, and CD?

4) How to increase the spectral flatness to the levels of clean
speech signal by increasing the normalized error in each
segment of speech?

5) How to measure the enhancement realized by a pro-
cessing method?

In Section III, we discuss some approaches to deal with each
one of these issues, and present a method for processing rever-



274 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 8, NO. 3, MAY 2000

Fig. 9. Results of enhancement of reverberant speech of a male voice: (a) clean speech, (b) spectrogram of clean speech, (c) speech degraded by reverberation,
(d) spectrogram of speech degraded by reverberation, (e) speech processed using the proposed algorithm, and (f) spectrogram of processed speech.

berant speech for enhancement. The important point to be noted
is that for enhancement of degraded speech, different segments
need to be processed differently according to the characteristics
of speech in the temporal and short-time spectral domains.

III. PROCESSINGREVERBERANTSPEECHUSING LP RESIDUAL

SIGNAL FOR ENHANCEMENT

For processing reverberant speech for enhancement, we pro-
pose manipulation of the LP residual signal in short (2 ms) and
in longer (20 ms) segments in a selected manner. The manipu-
lation basically involves weighting the residual signal samples

appropriately. Manipulation of the residual signal is more ap-
propriate than the manipulation of speech signal, especially for
short (2 ms) segments, as the residual signal samples are gener-
ally less correlated than the speech samples. On the other hand,
for manipulation of the speech signal directly, the choice of the
size and shape of the window may affect the results significantly.
It is interesting to note that any distortion caused by processing
the residual signal is smoothed out by the all-pole filter used for
synthesis.

LP residual signal is computed by performing the LP analysis
on short (2 ms) segments of speech data around every sampling
instant. Differenced speech signal samples are used to perform
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Fig. 10. Results of enhancement of reverberant speech of a female voice: (a) clean speech, (b) spectrogram of clean speech, (c) speech degraded by reverberation,
(d) spectrogram of speech degraded by reverberation, (e) speech processed using the proposed algorithm, and (f) spectrogram of processed speech.

TABLE I
ATTRIBUTES OF THE FIVE-POINT SCALE

USED FORSUBJECTIVE EVALUATION

the LP analysis. The LP residual signal is obtained by inverse
filtering the speech signal using the LPC’s. The reduction of

correlation achieved by the inverse filtering is useful to modify
the residual signal.

As mentioned earlier, processing of the LP residual signal in-
volves determination of suitable weight function for the residual
signal. The weight function is derived for modifying the residual
signal both at the fine (within glottal cycle) level and at the gross
level. To derive the weight function we need to identify the dif-
ferent SRR regions at the fine and gross levels from the rever-
berant speech signal. That is, we need to determine the three
types of regions such as AB, BC, and CD shown in Fig. 2, and
also the regions around the instants of glottal closure in AB.
These regions can be identified using the properties of the LP
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Fig. 11. Frequency histogram showing the frequency distribution of the scores
given to the quality of the clean speech signals on a 1–5 point scale.

Fig. 12. Frequency histogram showing the frequency distribution of the scores
given to the quality of the reverberant speech signals on a 1–5 point scale.

Fig. 13. Frequency histogram showing the frequency distribution of the scores
given to the quality of the processed speech signals on a 1–5 point scale.

residual signal for reverberant speech. The regions at the gross
level are determined using the statistics of the LP residual signal.
In the high SRR regions, the entropy of the distribution of the
samples in the LP residual signal is low compared to the entropy
in the low SRR regions. This is because the LP residual signal
samples exhibit a Gaussian-like probability density function in
the reverberant tail regions, and hence the entropy is high. In the
high SRR regions, especially in the voiced regions, the peaks
in the LP residual signal due to strong excitations of the vocal
tract system produce a skewed density function, and hence the
resulting entropy is low. To compute the entropy, the probability
density function of the samples in each 20 ms segments of the
LP residual signal is estimated. A longer (20 ms) segment is

TABLE II
WEIGHTED ITAKURA DISTANCESCOMPUTED BETWEEN THECLEAN SPEECH

AND THE REVERBERANT SPEECH(d ), AND THE CLEAN SPEECH AND THE

PROCESSEDSPEECH(d ) FOR TEN SPEAKERS

used to obtain a good estimate of the histograms of the samples
and hence their probability density function. The entropy
for the th frame is given by the following expression [22]:

(3)

where is the estimated probability for theth bin of the his-
togram, and is the number of bins in the histogram. The
number of bins ( ) can be chosen to be in the range 5–20,
making sure that there are enough LP residual signal samples
per bin. We have chosen a value of . This ensures that
there are on an average about 20 samples per bin in each 20
ms frame. The entropy is computed for a 20 ms frame at every
10 ms. Fig. 5(a) and (b) show the clean and reverberant speech
signals, respectively. Fig. 5(c) and (d) show the skewness and
kurtosis computed for a 20 ms frame of the LP residual signal
at every 10 ms. Fig. 5(e) shows the entropy function. It is clear
from the figure that both the skewness and kurtosis are high in
the regions where the direct component of the signal is strong
and so the corresponding entropy is low. The skewness and kur-
tosis assume values close to zero in the silence and reverbera-
tion tail regions because the shape of the estimated probability
density function is Gaussian-like [23]. Therefore the entropy in
these regions is high as shown in Fig. 5(e).

The entropy function is smoothed by repeating each entropy
value in Fig. 5(e) 80 times (corresponding to 10 ms at 8 kHz
sampling rate), and smoothing the resulting function using a
600-point mean smoothing filter. From the smoothed entropy
function [Fig. 6(a)] a gross weight function [Fig. 6(b)]
is derived using the nonlinear mapping function shown in Fig. 7.
The objective of the nonlinear mapping function is to enhance
the contrast between the strong direct speech component and the
reverberant component. The values ofand in Fig. 7 can be
varied to derive a suitable mapping function, although the set-
ting of these thresholds is not critical. The entropy function is
preferable to the skewness and kurtosis functions for deriving
the gross weight function. This is because the entropy function
detects even weak speech regions (both voiced and unvoiced)
while the skewness and kurtosis functions were found to be sen-
sitive to only the strongly voiced regions.

From the gross weight function [Fig. 6(b)], the three different
types of SRR regions can be identified. The regions of rising and
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TABLE III
ALGORITHM FOR PROCESSINGREVERBERANT SPEECH FORENHANCEMENT

high values of the weight function correspond to the high SRR
regions (like region AB in Fig. 2). The falling portions corre-
spond to the low SRR regions (like region BC in Fig. 2). The low
weight function regions correspond to the reverberant compo-
nent regions (like region CD in Fig. 2). To derive the fine weight
function, the normalized error () is computed at each sampling
instant using a frame size of 2 ms and a fifth-order LP analysis.
The normalized error is shown in Fig. 8(c) for a segment of 80
ms of speech shown in Fig. 8(a). The peaks in the error function
generally correspond to the region around the glottal excitation
points, at which the LP residual signal [Fig. 8(b)] also has large
amplitudes. Note that the normalized LP error shows the charac-
teristic peaks in the initial 50 ms segment because of the strong

direct component. These peaks are not prominent in the latter
30 ms segment because of the stronger reverberant component.
A second weight function, which we refer to as the fine weight
function, is derived from the normalized error by removing the
global trend in the normalized error function and then mapping
it using the following function:

(4)

where
weight value at the sampling instant;
maximum weight value;
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Fig. 14. Short-time spectra of a segment of speech for: (a) clean speech signal,
(b) reverberant speech signal, and (c) processed speech signal.

minimum weight value;
positive constant which decides the slope of the
weight function;
detrended normalized error value at the sam-
pling instant .

The fine weight function for the segment of the signal in
Fig. 8(a) is shown in Fig. 8(d). The fine weight function
provides relative weighting of short segments within a glottal
cycle in the high SRR regions. The overall weight function
[Fig. 6(c)] is obtained by multiplying the gross weight function
with the fine weight function. The overall weight function
and the LP residual signal are multiplied to derive a modified
residual signal. The modified residual signal is used to excite
the fifth-order all-pole filter to obtain enhanced speech. The
filter is updated at every sampling instant.

A comparison of the clean speech waveform and reverberant
speech waveform in the voiced regions shows that within
a glottal cycle the reverberant speech waveform does not
decay as rapidly as the clean speech waveform. Despite the
deemphasis of low SRR regions within a glottal cycle by the
fine level weight function, the decay of the envelope within a
glottal cycle is not restored in the processed speech waveform.
Hence, there is a need to increase the flatness by manipulating
the spectrum. One way of doing this is to modify the filter
coefficients to for , where is the
order of the all-pole filter, and is the th LPC at the
sampling instant . The damping factor at each sampling

instant is varied according to the value of the fine weight
function. The value of is restricted to the range 0.9–1.0. The
modification of LPC’s will enable the roots of the all-pole filter
move closer to the origin in the-plane. Due to dependence
of on the fine weight function, the proposed modification
of LPC’s is equivalent to damping the resonances of the vocal
tract system toward the end of the glottal cycle. The algorithm
for processing reverberant speech for enhancement is given in
Table III.

IV. EXPERIMENTAL RESULTS

In this section the performance of the proposed method is ex-
amined for processing speech data collected under reverberant
conditions. The performance of the method is illustrated through
spectrographic results, subjective and objective evaluations. For
this purpose the speech data was collected in an empty room of
dimensions m m m. The microphone was placed
about 1.5 m away from the speaker. In all the experimental re-
sults presented in this section, the preemphasized speech signal
was processed using the algorithm given in Table III.

The results of enhancement of a speech signal corresponding
to the sentence “She had your dark suit in greasy wash water all
year” uttered by a male speaker are given in the waveform and
spectrographic plots in Fig. 9. The utterance is taken from the
TIMIT database [24]. Fig. 9(a) and (b) show the clean speech
signal and its spectrogram, respectively. Fig. 9(c) and (e) show
the reverberant and processed speech signals and Fig. 9(d)
and (f), the corresponding spectrograms, respectively. From
the spectrograms it is evident that the effects of reverberation
(e.g., the reverberation tails) are significantly reduced. The
performance of the method was tested for female voice also.
The resulting signal waveforms and spectrograms are shown
in Fig. 10. Here also the signal corresponds to the sentence
“She had your dark suit in greasy wash” taken from the TIMIT
database.

Subjective tests were conducted to study the improvement
in quality of the processed speech. Perceptually, the processed
signal sounds less reverberant than the unprocessed one. The
subjective evaluation was done by eight listeners who are stu-
dents in the age group of 21–25 years. The listeners are fluent
in English but are not experienced in subjective evaluation. The
evaluation was done on a set of ten different sentences uttered by
ten different speakers taken from the TIMIT database. The test
set comprised of four female voices and six male voices. The
clean speech, reverberant speech and processed speech were
played to the listeners in that order. They were asked to grade
the quality of each of the three speech signals on the following
five-point scale (see Table I). The grades given to the clean, re-
verberant and processed speech signals are shown as frequency
histograms in Figs. 11–13, respectively. It is clear from Fig. 12
that the listeners were not consistent in judging the quality of the
reverberant speech signals. However, the perceived quality of
the processed speech signals was consistent. The mean opinion
score (MOS) [25] for the processed speech was found to be
3.30 on the five point scale, while it was 3.28 for the rever-
berant speech. The MOS does not show any significant im-
provement due to processing. This is partly due to the listener’s
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Fig. 15. Results of enhancement of speech degraded by reverberation and noise: (a) clean speech, (b) spectrogram of clean speech, (c) speech degradedby
reverberation and noise (SNR= 20 dB), (d) spectrogram of speech degraded by reverberation and noise, (e) speech processed using the proposed algorithm, and
(f) spectrogram of processed speech.

inability to make subjective assessment of the quality. The re-
sults for different values of the parameters used in the algorithm
show that the parameter settings are not very critical. They pro-
vide some tradeoff between quality and enhancement in the pro-
cessed signal.

The improvement due to processing is illustrated more
clearly by the weighted average of Itakura distances obtained
between the clean speech and the reverberant speech, and
the clean speech and the processed speech. It is important
to note that Itakura distance emphasizes the differences in
the spectral peaks of two spectra than the differences in

the spectral valleys. Thus it has a good correlation to the
subjective quality [25].

The data used is the same ten speaker corpus used for the sub-
jective evaluation. The clean speech, reverberant speech and the
processed speech for each speaker were first time aligned. The
Itakura distance [26] was computed between each pair
of corresponding frames in the clean speech and reverberant
speech signals. The weighted average of these distances
was obtained using

(5)
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where the frame weights were derived from the gross
weight function . The frame weighting is done to deem-
phasize the contribution of the Itakura distances in the pause
regions of the speech signal. Similarly, the weighted average

of the distances between the clean speech and processed
speech signals was obtained. The distances and for
each of the ten speakers are given in Table II. The distance
is consistently greater than the distance . This is because
the dynamic range of the linear prediction spectra of the pro-
cessed speech signal is lower compared to that of the rever-
berant speech. Therefore, the LP spectra of processed speech
yield lower distances with those of clean speech, compared to
the distances of reverberant speech. This is also illustrated in
Fig. 14. The figure shows the short-time (20 ms) spectra for a
voiced segment of speech for clean, reverberant and processed
speech. The reduction in the dynamic range of the spectra after
processing can be seen clearly, especially around the formant re-
gions. Thus, the spectral flatness of the clean speech is restored
to some extent. For enhancement of noisy speech, on the other
hand, one attempts to lower the spectral flatness by increasing
the spectral dynamic range [21].

In a practical speakerphone-like situation, in addition to
degradation due to reverberation, there will be ambient noise
also. Fig. 15 shows this situation. The reverberant speech signal
in Fig. 10(c) is corrupted by additive random noise so that the
overall SNR is 20 dB. The noise added reverberant speech is
shown in Fig. 15(c). The processed speech signal is shown in
Fig. 15(e). The spectrograms for Fig. 15(c) and (e) are shown
in Fig. 15(d) and (f), respectively. The improvement can be
clearly seen in the spectrogram in Fig. 15(f). We observe that in
the silence regions the noise level as well as the reverberation
are significantly reduced. This is because the noise increases
the randomness in the LP residual signal, more so in the silence
regions and hence increases the entropy. Hence, in the silence
regions both the reverberation tails and the noise increase the
entropy. Thus, the gross weight function will have small values
in the silence regions. We also observe from the processed
signal in Fig. 15(e) and the spectrogram in Fig. 15(f) that the
weak signal segments are severely attenuated, which produces
some distortion in the processed speech signal.

There will be some reduction in quality when the proposed al-
gorithm is applied to clean speech. But this reduction in quality
is offset by the advantage due to enhancement obtained in pro-
cessing degraded speech.

V. CONCLUSIONS

In this paper, we have presented a new approach for pro-
cessing reverberant speech. The proposed method is based on
the knowledge that the speech signal energy fluctuates over a
large dynamic range in short segments (2 ms). Thus, the SRR
varies significantly over different segments of speech. By identi-
fying the high SRR regions, and enhancing such regions at gross
level and at fine (within glottal cycle) level one can achieve en-
hancement of reverberant speech. The processing was done by
weighting the LP residual signal, and the weight function was
derived using the characteristics of the reverberant speech in dif-
ferent regions. The resulting signal shows reduction in the per-

ceived reverberation without significantly affecting the quality.
By adjusting the parameters used for obtaining the weight func-
tion, the comfort level in the processed signal can be traded with
the distortion caused by the manipulation. Thus processing the
LP residual signal provides an alternative approach for enhance-
ment of reverberant speech. A uniform approach for processing
reverberant speech as in [14]–[16] may not be satisfactory, since
the reverberation affects the speech differently in different seg-
ments due to nonstationary nature of the speech signal.

The key ideas in this paper are as follows:

1) need to process different regions of reverberant speech
differently;

2) advantage of manipulating the residual signal samples for
enhancement;

3) ability to tune the processing depending on the level of
tolerance of distortion versus the desired comfort level.

It is interesting to note that only regions of high SRR need to
be processed for enhancement, whereas the low SRR and the
reverberant tail regions should be deemphasized to obtain per-
ceptually significant enhancement.
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