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Enhancement of Reverberant Speech Using LP
Residual Signal

B. Yegnanarayangenior Member, IEEENd P. Satyanarayana Murthy

Abstract—In this paper, we propose a new method of processing effects are captured by estimating the impulse response of

speech degraded by reverberation. The method is based on anal-the room environment from long (500-1000 ms) segments of

ysis of sh_ort (2 ms) segments of data to enhance the regions in _thespeech [3]-[5]. The room impulse response is usually long
speech signal having high signal-to-reverberant component ratio '

(SRR). The short segment analysis shows that SRR is different in of the order. of 200_,300 ms. The reverberant speech is passed
different segments of speech. The processing method involves idenihrough an inverse filter for the room response to dereverberate
tifying and manipulating the linear prediction residual signal in ~ speech. Here again the estimated long term characteristics are
three different regions of the speech signal, namely, high SRR re- ysed to filter out its effects from the short (10-30 ms) quasi-
gion, low SRR region, and only reverberation componentregion. A - gtationary segments of speech. The main problems in these
welght functlon_ls derlved_ to mO(_jn‘y the linear prediction reS|dur_;lI hes f ina d ded his that th timat
signal. The weighted residual signal samples are used to excite adpproaches tor prqcessmg egrade _speec IS that the estimates
time-varying all-pole filter to obtain perceptually enhanced speech. Of the characteristics of the degradations are not good enough
The method is robust to noise present in the recorded speech signal.to remove their effects in short segments of speech. This is
The performance is illustrated through spectrograms, subjective pecause the level of degradation in terms of signal-to-noise ratio
and objective evaluations. (SNR) is different for different segments of speech. Moreover,
Index Terms—Glottal pulse, linear prediction residual, re- the emphasis in many of these approaches seems to be on the
verberant speech, short segment analysis, signal-to-reverberant degradation and not on speech. In other words, enhancement
speech, speech enhancement. is sought to be accomplished by suppressing noise from noisy
speech.
|. INTRODUCTION In noise suppression and dereverberation, there is more em-
. . . phasis on improving the overall SNR of the degraded speech.
EGRADATIONS in speech are caused by additive noi R this process most of the attention is given to improve the low

and reverberation. In this paper, we conaderenhancem;mR regions of speech. When attempting to reduce the degra-

of speech under reverberant conditions. The focus is on tion in these regions, the natural characteristics of speech are

degradation of speech caused in speakerphone-like Situati@rﬁ‘anged, causing significant distortions. This is because all seg-

Speech from a speakerphone contains bc_)th t_hedirect comp_oqﬁghts of degraded speech are treated equally. In order to im-
and the reverbera_mt component. The objective of processin fdve the overall SNR, it is necessary to reduce the noise in the
to enhance the signal in the direct component, wherever pyg; SNR regions, which does not produce significant enhance-
sible, so that the resulting processed speech is perceived as S8t perceptuall'y
reverberant and thus increa.s.ing the comfort level for Iistgning. Methods focusing on characteristics of speech also have been
Normally, de_graded (additive or r_everberant) speech IS PiSfoposed for enhancement of degraded speech [6]-[11]. Some
cessed assuming th_at the degradation has long term statior rPEese methods are based on exploiting the pitch periodicity
characteristics relative to speech. For example, for additi fd high signal energy characteristics in short (10-30 ms) seg-

noise degradation, the noise statistics are estimated from nts of speech [6]-[9], [11], [12]. These methods are mainly

. &
degradt:e d spedecf:h andhtherllong (11()()%—()300 m§) term nmﬁe eff%g licable for additive noise, and also they depend critically
are subtracted from the short (10-30 ms) time speec spe%g he periodicity property. Methods for enhancement of rever-

[1], [2] to reduce the effects of noise. Due to sharp Changesd r

the subtracted spectra within a frame and across the fram he inverse system for dereverberation [5]. It is not possible

the re;ultlng proce;sed speeph produces s_|gn|f|cant aud &stimate this response accurately from speech in most situ-
d|stort|gns. _Thu§ noise reduction is accomplished at the CQ¥ons. In some methods, the room response is collected sepa-
of quality. Likewise, for reverberant speech, the reverberatl%ltely to design the inverse system [13]. The recovery of the av-

erage envelope modulation spectrum of the original (anechoic)
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Fig. 1. Variation of short-time signal-to-reverberant sound ratio and signal-to-noise ratio with time for degraded speech: (a) clean spe@ishigmdlme
energy of clean speech computed using 2 ms frames, (c) short-time signal-to-reverberant sound ratio, and (d) short-time signal-to-noiseararager sNR
of 10 dB.

There appears to be a need to look at the problem of erherefore the criterion for improvement need not be based on
hancement of reverberant speech with more emphasis on thegiliing equal emphasis to all the speech segments. It is better to
rect component of speech at the receiving microphone. In pfoeus on the regions having high direct path signal component.
cessing, it is necessary to increase the contribution of the didn this paper, we show that using short segment analysis it is
rect component relative to the reverberant component [20]. imdeed possible to locate the segments in the degraded speech
such an attempt, there will be more emphasis on the speech thdurere the direct component is higher than the reverberant
on the degradation during the enhancement. This point of vieemponent. These segments are usually much shorter than the
is also reasonable, since speech is a nonstationary signal, witbttal cycle. The proposed approach is different from the ex-
signal energy varying over a wide (about 60 dB) dynamic rangsing methods, as there is more emphasis on the characteristics
both in temporal and spectral domains. Therefore the signal-tf-speech, and also the analysis segments are much shorter
degradation ratio will be varying even within 10-30 ms sed21—3 ms) compared to the normal frame size (10-30 ms) used
ments of data. For short (10—30 ms) segments it is difficult fo speech analysis. In Section Il, we discuss the model of
estimate the reverberant component. Moreover, the reverbenaverberant speech and some of its characteristics. By studying
component itself will be different in different segments due to ithe effects of degradation in short (1-3 ms) segments, we
dependence on the energy in the preceding segments of speebtain clues that can be used for processing the reverberant
That is, the reverberant component is signal dependent. speech. In Section Ill, steps for processing degraded speech are

It is also essential that we specify our goal in the enhanagiscussed. In particular, the importance of processing the linear
ment of degraded speech. Obviously, complete dereverberatiweadiction (LP) residual signal is emphasized. We present some
is not arealizable task. Therefore, the emphasis should be onexperimental results in Section IV. The improvement in the
hancement, but not necessarily enhancement of all segmentprotessed speech is demonstrated through the signal waveform,
speech. There are segments of speech where reverberant corsipor-time spectra, and spectrograms.
nent dominates over the direct component. For such segments,
there is no point in attempting to enhance the speech part. On  ||. CHARACTERISTICS OFREVERBERANT SPEECH
the other hand, if regions, where the direct speech signal com-

ponent is significantly higher compared to the reverberant com-'M this section, we will examine the characteristics of re-
ponent, could be identified, then by enhancing speech in Y berant speech to determine clues for processing speech for
! ! ancement. Throughout the discussion we will examine the

regions the annoyance due to reverberation could be redu€@dance

in some segments at least. Likewise, the levels of the signalsl

the regions with higher reverberation could be reduced, if Sugﬂeech and speech corrupted by additive noise. For this purpose,

regions could be identified. In the regions where there is onl)}’\é\e consider the following models for reverberant speech and

reverberant component, such as silence regions, the levels Ay speech.

be reduced to very low values. Perception of the overall speech N

is influenced significantly by the high signal energy regions, Reverberant speechz(n) = s(n) + Zka(n — ) (1)
thus giving an impression of enhancement of degraded speech. =
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Fig. 2. Comparison of clean and reverberant speech signals: (a) clean speech, (b) signal corrupted by reverberation, (c) LP residual sigeeah fpeabetc]
in (a), and (d) LP residual signal for the reverberant speech in (b).

Noisy speech: y(n) = s(n) + z2(n) (2) Dbe called signal-to-reverberant component ratio (SRR) at that

instant. Likewise, the ratio of the signal energy to the noise en-

where ergy in a short segment around the current instant is called SNR

s(n) clean speech signal; at that instant. To study the characteristics of SRR and SNR as

b, relative amplitude of the reflection arriving after aa function of time, these ratios are computed for short (2 ms)
delay ofn; samples; segments of degraded speech. Due to nonstationary nature of

N number of such reflections; speech, the signal energy varies with time. Fig. 1(a) shows a
z(n) additive noise component. clean speech signal. The energy of the clean speech and the SRR

In each model, the first term on the right hand side is the sigrfal the reverberant speech are computed for every 2 ms frame
component and the second term is the component due to degtafted by one sample (8 kHz sampling rate) and are shown in
dation. The main difference between these two models is thatFig. 1(b) and (c), respectively. The reverberant speech signal is
the case of reverberation, the degrading component is dependgmterated by convolving the clean speech signal in Fig. 1(a) with
on previous speech data, whereas in the case of noisy speeclitthémpulse response of a room collected in a normal room at a
degrading component is independent of speech. That is, in tlistance of 1.5 m from the source. Likewise, the SNR is com-
reverberation the degrading component is speech-like. puted for speech degraded by additive noise (overall SNR =10
The relative strength of the reverberant component over ttiB) and is plotted in Fig. 1(d). In both cases, it is obvious that
direct component depends on the energy of the speech sigBBR and SNR vary with time, since the signal energy is also a
in a short segment around the current instant. This strength ¢anction of time. In fact, in the case of reverberant speech, both
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Fig. 3. Comparison of short-time spectra for clean and reverberant speech in different segments. (a)—(c) Short-time spectra of the cleag.<Xjapinriite
regions AB, BC, and CD, respectively. (d)—(f) Short-time spectra of the reverberant signal in Fig. 2(b) in the regions AB, BC, and CD, respectively.
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Fig. 4. Comparison of normalized prediction error for: (a) clean, (b) reverberant, and (c) noisy speech (averagé GiIB.

the signal energy and the energy of the degrading componenttiee signal energy and energy of the degrading component even
time-varying, which is not always true in the case of noise-cowithin a glottal cycle.

rupted speech. In Fig. 1(c), we observe that in the 300—-400 m&The effects of reverberation can be seen by comparing the
region the SRR is very poor. This is because the direct cosignal waveforms for clean and reverberant speech signals
ponent is small in this region, whereas there is a large revehown in Fig. 2. The clean speech has damped sinusoidal pat-
berant tail component due to the preceding vowel. In Fig. 1(rn within each glottal cycle, whereas the reverberant speech is
and (d), we also observe that there are finer variations (rippEneared within each cycle [region AB in Fig. 2(b)]. Smearing
in the SRR and SNR plots. This is because of the variation of the signal within each glottal cycle is more prominent when
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Fig. 5. Characteristics of LP residual signal for reverberant speech: (a) clean speech signal, (b) reverberant speech signal, (c) skewnsgs, ddjl Kajt
entropy function.

the envelope of the signal waveform is decaying as in the regisignal is computed for a segment of 2 ms at every sampling
BC in the figure. The smearing extends for several glottal cyclasstant, using a fifth-order autocorrelation LP analysis. The
due to the influence of large amplitude signal component in thesidual signal for reverberant speech signal clearly shows
region AB. Only the reverberation tail component is present that there is a significant direct component of the signal in the
the low amplitude silence regions (CD). reverberant speech in the region AB. This is because for the
Nature of the reverberant speech in the spectral domain Gayments in the region AB the signal amplitudes at the epochs
be observed by comparing short-time (20 ms) spectra (Fig. (8)stants of glottal closure) are higher than the signal ampli-
for segments in each of the three regions. In all the three casades in the rest of the glottal cycle, like in the case of clean
the dynamic range of the dominant initial portion of the spectrapeech. This shows that there are segments in the reverberant
envelope is higher for the reverberant speech compared to thag¢ech where the direct component is significantly higher than
of the clean speech. Thus, there is reduction in the flatnesstioé reverberant component. In the region BC, due to the decay
the spectral envelope due to reverberation. The figure also illug-the overall signal amplitudes, the reverberation effects of the
trates that the spectral features of the clean speech are altgmedteding speech dominate over the direct component. In the
significantly due to reverberation, especially for the segmemtsgion CD the residual signal is mainly due to reverberation.
in the regions BC and CD in Fig. 2. Comparing the residual signals for clean and reverberant
Effect of reverberation can also be seen clearly in the L$peech signals, the effects of reverberation can be seen within
residual signal waveform. Fig. 2(c) and (d) shows the L&ach glottal cycle since the residual signal is much higher in
residual signals for clean and reverberant speech. The resichgtiveen two epochs when the reverberant component domi-
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Fig. 6. Various stages in the derivation of the weight function for the LP residual signal: (a) smoothed entropy function, (b) gross weight fuh(tt)aveaall
weight function.
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nates. Whenever the direct component of speech is higher tf@, and there is only reverberant component in the region CD.
the reverberant component, the LP residual signal at the epo8losthe signals in the regions BC and CD need to be attenuated
has significant energy around the instants of glottal closumelative to the signal in the region AB. Within the region AB,
Fig. 2(c) and (d) shows that there are regions where the dirdoe signal around the instants of glottal closure need to be
component is dominant. We need to identify such regions sahanced compared to the signal in the rest of the glottal cycle.
that the signals in those regions can be processed to enhance tlirérst of all, it is necessary to identify these three different
direct component over the reverberant component. Note tmagjions in the reverberant speech. For this purpose let us ob-
there is no clear evidence of the direct component in the regiserve some more characteristics of the reverberant speech. Fig. 4
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Fig. 8. Derivation of the fine weight function: (a) segment of reverberant speech, (b) LP residual signal, (c) normalized prediction errornenddidjfi
function.

shows the normalized errag) of clean and reverberant speech¢an be identified in the high SRR regions such as AB in Fig. 4. It
computed at every sampling instant using a fifth-order autocas-difficult to see the distinction between open and closed glottis
relation LP analysis using a frame size of 2 ms. The normalizeefions in the low SRR regions such as BC. The normalized
errors for both the clean and reverberant speech are similaemor in the purely reverberant region (CD) does not show any
the high SRR regions. But the normalized error for the reveperiodic peaks.

berant speech is generally lower than for the clean speech. Thi§he above study of the characteristics of reverberant speech
is due to the multiplicative effect of the frequency response sfiggest that we need to address the following issues for en-
the room on the speech spectrum. Multiplication of two specth@ncement.

produces larger dynamic range and hence reduces the spectral) which domain to process; temporal or spectral? Which
flatness. signal to manipulate; original or residual?

In contrast, the speech corrupted by additive noise has2) How to identify the high SRR regions in short (2 ms)
higher spectral flatness compared to the clean speech. Thus, segments as well asinthe long segments such as AB, BC,
the normalized error for the additive noise case is higher than and CD?
for the clean speech as shown in Fig. 4. Although the LP 3) How to process the signal in each of these regions so that
residual signal for noisy and reverberant speech look similar, the SRR is increased at the fine level (2 ms) within a
their spectral flathess characteristics are distinct. Reverberation glottal cycle, and at the gross levet20 ms segments)
decreases the spectral flatness of speech whereas additive noise as in the regions AB, BC, and CD?
increases the spectral flatness. In fact, the increase in spectrad) How to increase the spectral flatness to the levels of clean
flatness for additive noise was exploited for developing a  speech signal by increasing the normalized error in each
method for enhancement of noisy speech [21]. segment of speech?

A closer examination of the normalized error plot within each 5) How to measure the enhancement realized by a pro-
glottal cycle shows that the error is maximum just before glottal ~ cessing method?
closure. This is because the speech signal amplitude is low ifnn Section Ill, we discuss some approaches to deal with each
this region. The points of maximumwithin each glottal cycle one of these issues, and present a method for processing rever-
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Fig. 9. Results of enhancement of reverberant speech of a male voice: (a) clean speech, (b) spectrogram of clean speech, (c) speech degradédrpy reverbe
(d) spectrogram of speech degraded by reverberation, (e) speech processed using the proposed algorithm, and (f) spectrogram of processed speech.

berant speech for enhancement. The important point to be nosgropriately. Manipulation of the residual signal is more ap-
is that for enhancement of degraded speech, different segmemtpriate than the manipulation of speech signal, especially for
need to be processed differently according to the characterisgt®rt (2 ms) segments, as the residual signal samples are gener-
of speech in the temporal and short-time spectral domains. ally less correlated than the speech samples. On the other hand,
for manipulation of the speech signal directly, the choice of the
size and shape of the window may affect the results significantly.

It is interesting to note that any distortion caused by processing
the residual signal is smoothed out by the all-pole filter used for

For processing reverberant speech for enhancement, we mynthesis.

pose manipulation of the LP residual signal in short (2 ms) andLP residual signal is computed by performing the LP analysis
in longer (20 ms) segments in a selected manner. The manipa-short (2 ms) segments of speech data around every sampling
lation basically involves weighting the residual signal samplésstant. Differenced speech signal samples are used to perform

I1l. PROCESSINGREVERBERANT SPEECHUSING LP RESIDUAL
SIGNAL FOR ENHANCEMENT
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Fig. 10. Results of enhancement of reverberant speech of a female voice: (a) clean speech, (b) spectrogram of clean speech, (c) speech debeadedry reve
(d) spectrogram of speech degraded by reverberation, (e) speech processed using the proposed algorithm, and (f) spectrogram of processed speech.

TABLE | correlation achieved by the inverse filtering is useful to modify
ATTRIBUTES OF THE FIVE-POINT SCALE the residual signal.

USED FORSUBJECTIVE EVALUATION . . . . . .
As mentioned earlier, processing of the LP residual signal in-

Points | Perceived quality | Level of degradation volves determination of suitable weight function for the residual
5 [ excellent imperceptible signal. The weight function is derived for modifying the residual
4 |good Just perceptible but not annoying signal both at the fine (within glottal cycle) level and at the gross
3 | fair perceptible, slightly annoying level. To derive the weight function we need to identify the dif-
2| poor_ annoying, not objectionable ferent SRR regions at the fine and gross levels from the rever-
1 unsatisfactory very annoying and objectionable

berant speech signal. That is, we need to determine the three
types of regions such as AB, BC, and CD shown in Fig. 2, and
the LP analysis. The LP residual signal is obtained by inveratso the regions around the instants of glottal closure in AB.
filtering the speech signal using the LPC’s. The reduction dhese regions can be identified using the properties of the LP
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TABLE I
o} . . ) WEIGHTED ITAKURA DISTANCES COMPUTED BETWEEN THE CLEAN SPEECH
AND THE REVERBERANT SPEECH(d sg), AND THE CLEAN SPEECH AND THE
of : 1 PROCESSEDSPEECH(d ac:) FOR TEN SPEAKERS
;m Speaker/Gender dap dsc
| - e female#1 942.98 ] 793.82
ob . ] female#2 1828.30 | 1315.24
: female#3 1145.32 | 859.12
o ‘ 1 female#4 2010.83 | 1663.22
ol . . male#1 1434.57 | 1233.14
. —l . male#2 1097.41 | 1090.46
o ' 2 miome s L male#3 889.39 | 830.90
male#4 2713.85 | 2330.37
Fig.11. Frequency histogram showing the frequency distribution of the scores male#5 875.39 | 663.10
given to the quality of the clean speech signals on a 1-5 point scale. malef#6 2811.29 | 2290.50
nl. used to obtain a good estimate of the histograms of the samples
and hence their probability density function. The entrdiy
o for the kth frame is given by the following expression [22]:
ol M
o Hy=—>_ pi log(p:) 3
=t , i=1
35 AU e s AU NS N wherep; is the estimated probability for th#h bin of the his-
o I 1 togram, andM is the number of bins in the histogram. The
: : ] number of bins §/) can be chosen to be in the range 5-20,
% ; 2 w,f;m . s s making sure that there are enough LP residual signal samples

per bin. We have chosen a valueMf = 7. This ensures that

Fig.12. Frequency histogram showing the frequency distribution of the scotérere are on an average about 20 samples per bin in each 20
given to the quality of the reverberant speech signals on a 1-5 point scale. 15 frame. The entropy is computed for a 20 ms frame at every
10 ms. Fig. 5(a) and (b) show the clean and reverberant speech
, v signals, respectively. Fig. 5(c) and (d) show the skewness and
L SRR T kurtosis computed for a 20 ms frame of the LP residual signal
L IRRITE SR R at every 10 ms. Fig. 5(e) shows the entropy function. It is clear
from the figure that both the skewness and kurtosis are high in
the regions where the direct component of the signal is strong
; ; ; : and so the corresponding entropy is low. The skewness and kur-
o s g tosis assume values close to zero in the silence and reverbera-
ol . B 0 T N tion tail regions because the shape of the estimated probability
density function is Gaussian-like [23]. Therefore the entropy in
]_] N l—l these regions is high as shown in Fig. 5(e).

3 : s e The entropy function is smoothed by repeating each entropy

value in Fig. 5(e) 80 times (corresponding to 10 ms at 8 kHz
Fig.13. Frequency histogram showing the frequency distribution of the sco@ampling rate), and smoothing the resulting function using a
given to the quality of the processed speech signals on a 1-5 point scale. 600-point mean smoothing filter. From the smoothed entropy
function [Fig. 6(a)] a gross weight functiong *** [Fig. 6(b)]

residual signal for reverberant speech. The regions at the grizsserived using the nonlinear mapping function shown in Fig. 7.
level are determined using the statistics of the LP residual signehe objective of the nonlinear mapping function is to enhance
In the high SRR regions, the entropy of the distribution of thiéne contrast between the strong direct speech component and the
samples in the LP residual signal is low compared to the entroggverberant component. The valueszcdndb in Fig. 7 can be
in the low SRR regions. This is because the LP residual signalried to derive a suitable mapping function, although the set-
samples exhibit a Gaussian-like probability density function iing of these thresholds is not critical. The entropy function is
the reverberant tail regions, and hence the entropy is high. In fhreferable to the skewness and kurtosis functions for deriving
high SRR regions, especially in the voiced regions, the peake gross weight function. This is because the entropy function
in the LP residual signal due to strong excitations of the vocdétects even weak speech regions (both voiced and unvoiced)
tract system produce a skewed density function, and hence Wigle the skewness and kurtosis functions were found to be sen-
resulting entropy is low. To compute the entropy, the probabilisitive to only the strongly voiced regions.
density function of the samples in each 20 ms segments of thd-rom the gross weight function [Fig. 6(b)], the three different
LP residual signal is estimated. A longer (20 ms) segmenttigoes of SRR regions can be identified. The regions of rising and

%0 T T

traquancy
-]

° 1 2 3
quaidy 1 puels
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TABLE Il
ALGORITHM FOR PROCESSINGREVERBERANT SPEECH FORENHANCEMENT

Computation of the gross weight function

o Calculate the linear prediction (LP) residual signal using a speech frame of size 20 ms, Hamming
window and a 10th order LP analysis by autocorrelation method.

Block the LP residual signal into 20 ms frames with 10 ms overlap. Compute an M-bin (M = 7)
histogram of the samples in each frame of the LP residual signal.

e Compute the entropy Hy = — Z pi log(p;) for the kth frame, where p; is the estimated proba-
bility in the ith bin of the hxstogram

e Compute a smoothed entropy function H;, by repeating each entropy value Hy 80 times (corre-
sponds to a frame shift of 10 ms at 8 kHz sampling) and smoothing it with a 600-point mean
smoothing filter. This generates a smoothed entropy value at every sampling instant.

¢ Compute the gross weight function by mapping the smoothed entropy values to weight values
using the function

wgrass wg"“-’ gross gross
wgrass = ( 2 min tanh. (_ag T (H:” —_ a)) + w ;wmm

where w3 °%® is the weight value for sampling instant n, wi2s* (= 1) is the maximum weight
value, w2’ (= 0.05) is the minimum weight value (denoted as b in Fig. 7), o, (=1.5) is
a positive constant which decides the slope of the weight function, a (=1.55) is the entropy
value about which the tanh function is anti-symmetric and H? is the smoothed entropy at the

sampling instant n.
Computation of the fine weight function

o Calculate the normalized LP error for every sample of the differenced speech signal using a
frame of duration 2 ms and 5th order LP analysis using the autocorrelation method.

Remove the trend in the normalized LP error by smoothing it with a 10 ms Hamming window
and subtracting the smoothed function from the normalized LP error. The resulting detrended
error function 7, is mapped using the nonlinear function

, fine _ ,,fine fine fine
,w’j:me = (wmaz 5 wmm) tanh(af T ,’7") + (wma.z ;wmm)

where w}i® is the weight value for sampling instant n, wfi2¢ (= 1) is the maximum weight value,
w;f,::',f (= 0.6) is the minimum weight value, ay (=1.5) is a positive constant which decides the
slope of the weight function and 7, is the detrended error value at the sampling instant n.

Synthesis of enhanced speech
e Compute the overall weight function by multiplying the gross and fine weight functions.

e LP residual signal is derived for every sample using 2 ms frames. The residual signal is multiplied
with the overall weight function. The weighted residual signal is passed through the time—varying
LP all-pole filter to obtain enhanced speech. At each sampling instant the LPCs are given by
agnr*, where ayy, is the kth LPC at instant n. The damping factor ry, restricted to the range
0.9-1.0, is derived using a linear map of the fine weight function.

high values of the weight function correspond to the high SRdRrect component. These peaks are not prominent in the latter
regions (like region AB in Fig. 2). The falling portions corre-30 ms segment because of the stronger reverberant component.
spond to the low SRR regions (like region BC in Fig. 2). The low second weight function, which we refer to as the fine weight
weight function regions correspond to the reverberant comgonction, is derived from the normalized error by removing the
nent regions (like region CD in Fig. 2). To derive the fine weighglobal trend in the normalized error function and then mapping
function, the normalized erronj) is computed at each samplingit using the following function:

instant using a frame size of 2 ms and a fifth-order LP analysis. whine _ o fine whine 4 o fine

The normalized error is shown in Fig. 8(c) for a segment of 802 = <M> tanh (a ey, ) + <M>
L . . 2 2

ms of speech shown in Fig. 8(a). The peaks in the error function @

generally correspond to the region around the glottal excitation

points, at which the LP residual signal [Fig. 8(b)] also has largehere

amplitudes. Note that the normalized LP error shows the characsvfine weight value at the sampling instamt
teristic peaks in the initial 50 ms segment because of the strongvi™ (=1) maximum weight value;
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instant is varied according to the value of the fine weight
function. The value of,, is restricted to the range 0.9-1.0. The
modification of LPC’s will enable the roots of the all-pole filter
move closer to the origin in the-plane. Due to dependence

of r,, on the fine weight function, the proposed modification
of LPC's is equivalent to damping the resonances of the vocal
tract system toward the end of the glottal cycle. The algorithm
for processing reverberant speech for enhancement is given in
Table III.

IV. EXPERIMENTAL RESULTS

In this section the performance of the proposed method is ex-
amined for processing speech data collected under reverberant
conditions. The performance of the method isillustrated through
spectrographic results, subjective and objective evaluations. For
this purpose the speech data was collected in an empty room of
dimension2.5 mx 1.8 mx 2.7 m. The microphone was placed
about 1.5 m away from the speaker. In all the experimental re-
sults presented in this section, the preemphasized speech signal
was processed using the algorithm given in Table III.

The results of enhancement of a speech signal corresponding
to the sentence “She had your dark suit in greasy wash water all
year” uttered by a male speaker are given in the waveform and
b b R HRIE HIENTIRTE SRR spectrographic plots in Fig. 9. The utterance is taken from the
: s ; s i i s TIMIT database [24]. Fig. 9(a) and (b) show the clean speech
frequn 28 : 38 ¢ signal and its spectrogram, respectively. Fig. 9(c) and (e) show

the reverberant and processed speech signals and Fig. 9(d)
Fig. 14. Short-time spectra of a segment of speech for: (a) clean speech sigqaly (f), the corresponding spectrograms, respectively. From
(b) reverberant speech signal, and (c) processed speech signal. . . .
the spectrograms it is evident that the effects of reverberation
(e.g., the reverberation tails) are significantly reduced. The

whine minimum weight value; performance of the method was tested for female voice also.

ay(=1.5)  positive constant which decides the slope of th€he resulting signal waveforms and spectrograms are shown
weight function; in Fig. 10. Here also the signal corresponds to the sentence

i detrended normalized error value at the saniShe had your dark suit in greasy wash” taken from the TIMIT
pling instantn. database.

The fine weight function for the segment of the signal in Subjective tests were conducted to study the improvement
Fig. 8(a) is shown in Fig. 8(d). The fine weight functionin quality of the processed speech. Perceptually, the processed
provides relative weighting of short segments within a glottaignal sounds less reverberant than the unprocessed one. The
cycle in the high SRR regions. The overall weight functiogubjective evaluation was done by eight listeners who are stu-
[Fig. 6(c)] is obtained by multiplying the gross weight functiordents in the age group of 21-25 years. The listeners are fluent
with the fine weight function. The overall weight functionin English but are not experienced in subjective evaluation. The
and the LP residual signal are multiplied to derive a modifiegialuation was done on a set of ten different sentences uttered by
residual signal. The modified residual signal is used to exciten different speakers taken from the TIMIT database. The test
the fifth-order all-pole filter to obtain enhanced speech. Theet comprised of four female voices and six male voices. The
filter is updated at every sampling instant. clean speech, reverberant speech and processed speech were
A comparison of the clean speech waveform and reverbergfyed to the listeners in that order. They were asked to grade
speech waveform in the voiced regions shows that withthe quality of each of the three speech signals on the following
a glottal cycle the reverberant speech waveform does tive-point scale (see Table I). The grades given to the clean, re-
decay as rapidly as the clean speech waveform. Despite eeberant and processed speech signals are shown as frequency
deemphasis of low SRR regions within a glottal cycle by theistograms in Figs. 11-13, respectively. It is clear from Fig. 12
fine level weight function, the decay of the envelope within that the listeners were not consistent in judging the quality of the
glottal cycle is not restored in the processed speech wavefoneverberant speech signals. However, the perceived quality of
Hence, there is a need to increase the flatness by manipulating processed speech signals was consistent. The mean opinion
the spectrum. One way of doing this is to modify the filtescore (MOS) [25] for the processed speech was found to be
coefficients toa,r;* for k = 1,2, ---, p, wherep is the 3.30 on the five point scale, while it was 3.28 for the rever-
order of the all-pole filtery,, < 1 anday., is thekth LPC at the berant speech. The MOS does not show any significant im-
sampling instant.. The damping factor,, at each sampling provement due to processing. This is partly due to the listener’'s
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G (sec) o

Fig. 15. Results of enhancement of speech degraded by reverberation and noise: (a) clean speech, (b) spectrogram of clean speech, (c) spbgch degraded
reverberation and noise (SNR 20 dB), (d) spectrogram of speech degraded by reverberation and noise, (e) speech processed using the proposed algorithm, and
(f) spectrogram of processed speech.

inability to make subjective assessment of the quality. The e spectral valleys. Thus it has a good correlation to the

sults for different values of the parameters used in the algorittsubjective quality [25].

show that the parameter settings are not very critical. They pro-The data used is the same ten speaker corpus used for the sub-

vide some tradeoff between quality and enhancement in the pjeetive evaluation. The clean speech, reverberant speech and the

cessed signal. processed speech for each speaker were first time aligned. The
The improvement due to processing is illustrated moitakura distance [268,a5 was computed between each pair

clearly by the weighted average of Itakura distances obtainefdcorresponding framek in the clean speech and reverberant

between the clean speech and the reverberant speech, spkch signals. The weighted averaiges of these distances

the clean speech and the processed speech. It is importaas obtained using

to note that Itakura distance emphasizes the differences in - gross

the spectral peaks of two spectra than the differences in dan :zk: wy dran ®)
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gross

where the frame weights;; ™ were derived from the gross ceived reverberation without significantly affecting the quality.
weight functionwg™***. The frame weighting is done to deem-By adjusting the parameters used for obtaining the weight func-
phasize the contribution of the Itakura distances in the pausan, the comfort levelin the processed signal can be traded with
regions of the speech signal. Similarly, the weighted averatie distortion caused by the manipulation. Thus processing the
dac of the distances between the clean speech and procedsedesidual signal provides an alternative approach for enhance-
speech signals was obtained. The distankgs anddac for ment of reverberant speech. A uniform approach for processing
each of the ten speakers are given in Table Il. The distdgge reverberant speech as in [14]-[16] may not be satisfactory, since
is consistently greater than the distankte-. This is because the reverberation affects the speech differently in different seg-
the dynamic range of the linear prediction spectra of the protents due to nonstationary nature of the speech signal.
cessed speech signal is lower compared to that of the reverThe key ideas in this paper are as follows:

berant speech. Therefore, the LP spectra of processed speect) need to process different regions of reverberant speech
yield lower distances with those of clean speech, compared to  gitferently;

the distances of reverberant Speech. This is also illustrated |n2) advantage of manipu'ating the residual signa| Samp'es for
Fig. 14. The figure shows the short-time (20 ms) spectra fora ~ enhancement;

voiced segment of §pe§ch for clean,. reverberant and processeg) apility to tune the processing depending on the level of
speech. The reduction in the dynamic range of the spectra after  tolerance of distortion versus the desired comfort level.

processing can be seen clearly, especially around the formanﬁ{% interesting to note that only regions of high SRR need to

gions. Thus, the spectral flatness of the clean speech is rest Séarocessed for enhancement, whereas the low SRR and the

to some extent. For enhancement of noisy speech, on the o erberant tail regions should be deemphasized to obtain per-
hand, one attempts to lower the spectral flatness by mcreas&_cbtua”y significant enhancement

the spectral dynamic range [21].
In a practical speakerphone-like situation, in addition to

degradation due to reverberation, there will be ambient noise REFERENCES

also_. Fig. 15 §hOWS this S|tuat|0n._ The reverberar_]t SpeeCh Slgn.’ﬂ] S. F. Boll, “Suppression of acoustic noise in speech using spectral

in Fig. 10(c) is corrupted by additive random noise so that the”  syptraction,” IEEE Trans. Acoust., Speech, Signal Processig.

overall SNR is 20 dB. The noise added reverberant speech is ASSP-27, pp. 113-120, Apr. 1979.

; ; ; ; :12] Y. Ephraim and H. L. Van Trees, “A signal subspace approach for
shown in Fig. 15(c). The processed speech signal is shown irk speech enhancementEEE Trans. Speech, Audio Processingl. 3,

Fig. 15(e). The spectrograms for Fig. 15(c) and (e) are shown  pp. 251266, July 1995.
in Fig. 15(d) and (f), respectively. The improvement can be [3] M. Tohyama, R. H. Lyon, and T. Koike, “Pulse waveform recovery in

clearly seen in the spectrogram in Fig. 15(f). We observe that in ;g"i;bgezram condition,J. Acoust. Soc. Amewol. 91, pp. 2805-2812,

the silence regions the noise level as well as the reverberatiop) A. p. Petropulu and S. Subramaniam, “Cepstrum based deconvolution
are significantly reduced. This is because the noise increases for speech dereverberation,” Rroc. IEEE Int. Conf. Acoust., Speech,

the randomness in the LP residual signal, more so in the silence,, g'ggﬁL':;?;:;:EggAie'g‘d%e?r‘f;{ﬁ'a'aﬁg“éggvcéﬁg{ g‘éshstrum-base g

regions and hence increases the entropy. Hence, in the silence’ deconvolution for speech dereverberatiofEEE Trans. Speech Audio
regions both the reverberation tails and the noise increase the Processingvol. 4, pp. 392-396, Sept. 1996.

; ; ; [6] Y. M. Perlmutter, L. D. Braida, R. H. Frazier, and A. V. Oppenheim,
entropy. Thus, the gross weight function will have small values *Evaluation of a speech enhancement systemP'i. IEEE Int. Conf.

in the silence regions. We also observe from the processed acoust., Speech, Signal Processiktpy 1977, pp. 212-215.
signal in Fig. 15(e) and the spectrogram in Fig. 15(f) that the[7] J.S.Lim,A.V.Oppenheim, and L. D. Braida, “Evaluation of an adaptive

; ; comb filtering method for enhancing speech degraded by white noise ad-
weak signal segments are severely attenuated, which produces dition,” IEEE Trans. Acoust., Speech. Signal Processin ASSP-26,

some distortion in the processed speech signal. pp. 354-358, Aug. 1978.
There will be some reduction in quality when the proposed al-[8] M. R. Sambur, “Adaptive noise canceling for speech signdBEE

gorithm is applied to clean speech. But this reduction in quality ~ J/ans Acoust. Speech, Signal Processing ASSP-26, pp. 419-423,

is offset by the advantage due to enhancement obtained in prog] p. Malah and R. V. Cox, “A generalized comb filtering technique for
cessing degraded speech_ speech enhancement,”froc. IEEE Int. Conf. Acoust., Speech, Signal
ProcessingParis, France, May 1982, pp. 160-163.
[10] Y. M. Cheng and D. O’Shaughnessy, “Speech enhancement based con-
ceptually on auditory evidencd EEE Trans. Signal Processingol. 39,
pp. 1943-1954, Sept. 1991.
. 611] J. H. Chen and A. Gersho, “Adaptive postfiltering for quality enhance-
In this paper, we have presented a new approach for Pro- " ment of coded speechlEEE Trans. Speech Audio Processingl. 3,

cessing reverberant speech. The proposed method is based on pp. 59-71, Jan. 1995. o
the knowledge that the speech signal energy fluctuates overl#] S:- Nandkumar and J. H. L. Hansen, “Dual-channel iterative speech

; . enhancement with constraints on an auditory spectrdBEE Trans.
large dynamic range in short segments (2 ms). Thus, the SRR gpeech Audio Processingpl. 3, pp. 22-34, Jan. 1995.

varies significantly over different segments of speech. By identif13] M. Tohyama, H. Suzuki, and Y. And@he Nature and Technology of
fying the high SRR regions, and enhancing such regions at gro?isa] Acoustic Space London, U.K.: Academic, 1995.

| | and at fi ithin alottal le) | | hi T. Langhans and H. W. Strube, “Speech enhancement by nonlinear
eveland atnne (W' In glottal cyc e) evel one can achieve en- multiband envelope filtering,” ifProc. IEEE Int. Conf. Acoust., Speech,

hancement of reverberant speech. The processing was done by Signal ProcessingParis, France, April 1982, pp. 156-159.
weighting the LP residual signal, and the weight function wag15! H. Hirsch, "Automatic speech recognition in rooms,” $ignal Pro-

; . .. . cessing—V: Theories and Applicatiods L. Lacome, A. Chehilian, N.
derived using the characteristics of the reverberant speechindif-  yy2rtin"and 3. Malbos, Eds.

ferent regions. The resulting signal shows reduction in the per-  198s.

V. CONCLUSIONS

Amsterdam, The Netherlands: Elsevier,



YEGNANARAYANA AND MURTHY: ENHANCEMENT OF REVERBERANT SPEECH 281

[16]

(17]

(18]

[19]

[20]

(21]

(22]
(23]

[24]

(25]

[26]

B. Yegnanarayana(M'78—-SM’'84) was born in India

on January 9, 1944. He received the B.E., M.E., and
the Ph.D. degrees in electrical communication engi-
neering from the Indian Institute of Science, Banga-
lore, in 1964, 1966, and 1974, respectively.

He was a Lecturer from 1966 to 1974 and an As-
sistant Professor from 1974 to 1978 with the Depart-
ment of Electrical Communication Engineering, In-
dian Institute of Science. From 1966 to 1971, he was

C. Avendafio and H. Hermansky, “Study on the dereverberation
speech based on temporal envelope filteringPiac. Int. Conf. Spoken
Language Processindhiladelphia, PA, Oct. 1996, pp. 889-892.

M. Omologo, P. Svaizer, and M. Matassoni, “Environmental conditio
and acoustic transduction in hands-free speech recogniti®oegech
Commun,.vol. 25, pp. 75-95, Aug. 1998.

H. Wang and F. Itakura, “An approach of dereverberation using m
timicrophone sub-band envelope estimation,Piroc. IEEE Int. Conf.
Acoust., Speech, Signal Processihg91, pp. 953-956.

M. Miyoshi and Y. Kaneda, “Inverse filtering of room acousticlEEE engaged in the development of environmental test fa-
Trans. Acoust., Speech, Signal Processi. 36, pp. 145-152, Feb. cilities for the Acoustic Laboratory, Indian Institute
1988. of Science. From 1977 to 1980, he was a Visiting Associate Professor of com-
B. Yegnanarayana, P. Satyanarayana Murthy, C. Avendafio, and H. Heuter science at Carnegie Mellon University, Pittsburgh, PA. He was a Visiting
mansky, “Enhancement of reverberant speech using LP residual,” Scientist at ISRO Satellite Center, Bangalore, from July 1980 to December 1980.
Proc. IEEE Int. Conf. Acoust., Speech, Signal Processioig1, Seattle, Since 1980, he has been a Professor with the Department of Computer Science
WA, May 1998, pp. 405-408. and Engineering, Indian Institute of Technology, Madras. From July 1994 to
B. Yegnanarayana, C. Avendafio, H. Hermansky, and P. Satyanaraydaauary 1995, he was a Visiting Professor with the Institute for Perception Re-
Murthy, “Processing linear prediction residual for speech enhancemendggarch (IPO), Eindhoven Technical University, Eindohoven, The Netherlands.
in Proc. EUROSPEECH'9Patras, Greece, Sept. 1997, pp. 1399-1408&ince 1972, he has been working on problems in the area of speech signal
A. Papoulis,Probability, Random Variables, and Stochastic Processeprocessing. He is presently engaged in research activities in digital signal pro-
3rd ed, New York: McGraw-Hill, 1991. cessing, speech recognition, and neural networks.

W. H. Press, S. A. Teukolsky, W. T. Vellerling, and B. P. Flannahy; Dr. Yegnanarayana is a Member of the Computer Society of India and a
merical Recipesin C New Delhi, India: Cambridge Univ. Press, 1992.Fellow of the Institution of Electronics and Telecommunications Engineers of
W. M. Fisher, G. R. Doddington, and K. M. Goudie-Marshall, “Thelndia, the Indian National Science Academy, and the Indian National Academy
DARPA speech recognition research database: Specifications asfdEngineering.

status,” inProc. DARPA Workshop Speech Recognitfeeb. 1986, pp.
93-99.

J. R. Deller, J. G. Proakis, and J. H. L. Handeiscrete-Time Processing
of Speech Signal®lew York: Macmillan, 1993. s
P. E. Papamichalis, Practical Approaches to Speech|
Coding Englewood Cliffs, NJ: Prentice-Hall, 1987. :

P. Satyanarayana Murthy was born in Kakinada,
India, in 1971. He received the B.E. degree in elec-
tronics and communication engineering from Chai-
tanya Bharathi Institute of Technology, Osmania Uni-
versity, India, in 1992, and the M.Tech. and Ph.D. de-
grees in electrical engineering from the Indian Insti-
tute of Technology, Madras, in 1994 and 1999, re-
spectively.

From January 1994 to July 1994, he was a Senior
7 Project Officer in the Department of Computer Sci-
ence and Engineering, Indian Institute of Technology,
Madras. He is currently a Manager, Research and Development, with Speech
and Software Technologies (India) Pvt. Ltd., Madras. His research interest is in
speech signal processing.




