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Abstract

This paper presents an artificial neural network-based approach for static-security assessment. The proposed approach uses radial basis
function (RBF) networks to predict the system severity level following a given list of contingencies. The RBF networks are trained off-line to
capture the nonlinear relationship between the pre-contingency line flows and the post-contingency severity index. A method based on
mutual information is proposed for selecting the input features of the networks. Mutual information has the advantage of measuring the
general relationship between the independent variables and the dependent variable as against the linear relationship measured by the
correlation-based methods. The performance of the proposed approach is demonstrated through contingency ranking in IEEE 30-bus test

system. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Security assessment is one of the key issues in power
system operation and planning. Assessment of static-secur-
ity of a power system enables us to detect, through simula-
tion, any potential line flow violations or an out-of-limit
voltage following a given list of contingencies. For large
power systems, due to the time constraint involved in real-
time operation, those contingency cases which are poten-
tially harmful to the system must be identified and detailed
analysis are carried out for these cases alone. This process of
selecting the contingencies according to their severity is
referred to as contingency selection.

Over the years a number of algorithmic contingency
selection methods have been proposed to speed up the
process of contingency analysis. They can be broadly clas-
sified into two categories: sensitivity-based ranking methods
[1,2] and screening methods [3,4]. Ranking methods utilize
an approximate system-wide scalar performance index (PI)
to quantify the severity of each contingency. The PI is used
to rank all the contingencies. Screening methods use
approximate or partial network solutions. Some of the solu-
tions suggested include DC load flow, one iteration of AC
load flow, local solution methods, etc. Sensitivity-based
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ranking methods are efficient but vulnerable to misrankings,
while screening methods are accurate but inefficient.

Recently, artificial neural networks (ANN) have been
proposed as tools for contingency screening and ranking
[5-9]. Most of the authors have used feedforward neural
networks with sigmoidal nonlinearities, for model develop-
ment. Any continuous function can be approximated to
within an arbitrary accuracy by carefully choosing the para-
meters in the network provided the network structure is
sufficiently large. But the shortcoming of this network is
that it takes long time for training. Also, feedforward
network with sigmoidal activation function in the hidden
nodes has no inherent ability to detect the outliers. Even
though training is done in off-line, short training time is
preferred as one may have to retrain the networks on a
regular basis as the topology or the system condition
changes. Outliers can occur in practice, because it is hard
to produce a complete training set representing all possible
operating conditions of a power system.

In this paper, we propose radial basis function (RBF)
networks [10] to capture the nonlinear relationship between
the pre-contingency system state and the post-contingency
severity level following a contingency. RBF networks take
less time for training and the distance-based activation func-
tion used in the hidden nodes gives the ability to detect the
outliers during estimation.

Input feature selection plays an important role in ANN-
based approaches. Various statistical methods have been
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Fig. 1. Schematic representation of the learning stage.

proposed for feature selection in contingency selection
models. Pang et al. [11] used class separation capability
(secure/insecure) of the variables as the criterion to select
the input features of their statistical security classifier. The
following index was used to measure the interclass-
distance:

p | = m] (1)
O 4 gD
where m!® and m" are the mean of the variable i for the

l

secure and insecure class and o> and o are their
variances. In Refs. [5,9] also the authors have used the
same interclass-distance measure for feature selection in
their ANN-based contingency selection models. Ghosh
and Chowdhury [7] used the correlation coefficient between
the input variables and the output severity measure to select
the input features for their feedforward neural network
model.

The interclass-distance measure assumes Gaussianity in
the input domain. If a variable x has normal or Gaussian
distribution, its distribution is completely characterized by
its mean and variance. If this assumption is not true, serious
errors may occur in feature selection. Also, methods based
on linear dependence (like correlation) cannot measure arbi-
trary relations between the independent and dependent vari-
ables. In this paper, we propose mutual information [12]
between the dependent and independent variables as the
criterion to select the input features of the RBF networks.

S)

2. Proposed methodology for contingency selection

The proposed method for contingency selection is based
on RBF neural networks. The objective is to estimate the
severity levels for each contingency. The study presented in
this paper focuses on single line outages. The severity of a

contingency to line overload is expressed by the following
scalar PI:
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where SP*" is the post-contingency MVA flow in line 7, S

the MV A rating of line /, N, the no of lines in the system and
m is the integer exponent.

The contingencies can then be ranked according to the
order of their severity. Following a contingency, any line
which is overloaded will make a contribution of greater than
unity to the PI, whereas a line whose flow is below its rating
will make a contribution of less than unity. A small value of
m in Eq. (2) would result in ‘masking effect’ and a very high
value of m may cause the final ordering to become worse
due to increased nonlinearity [7]. For the IEEE 30-bus
system considered in this paper, we have fixed the value
of m as 5. These PI values will be used as target values
for the ANN during training.

It is possible to train a single network to estimate the PI
values of all the contingencies by taking the system state
variables as the input and the system severity levels as the
output of the network. But, as the dimension of the input
vector increases, the number of basis functions (hidden
layer nodes) required to approximate the given function
rises exponentially [10]. Such large networks are inefficient
and sensitive to over fitting and exhibit poor performances.
So, the problem of estimating the post-contingency severity
level using ANN is decomposed into several networks, with
each one dealing with one contingency. While training a
network dedicated to a contingency, the localized nature
of contingencies could be exploited in the form of dimen-
sion reduction through proper feature selection.

The schematic representation of the learning stage of the
model for PI estimation is shown in Fig. 1. For model devel-
opment, a large number of training data is generated through
off-line power system simulation. Pre-contingency state
power flows are the input to the models and the PI value
following a contingency is the output of the model. A
mutual information-based feature selection technique is
applied to identify the relevant attributes from the set of
system state variables for each contingency model. By
selecting only the relevant variables as input features and
excluding irrelevant ones, higher performance is expected
with smaller computational effort. The selected input
features and the output are normalized between 0 and 1
and presented to the RBF networks for training. Once the
networks are trained, they are ready for contingency ranking
at various load conditions. The details of mutual informa-
tion-based feature selection and the architecture and training
of RBF network are presented in the following sections.

3. Feature selection

One of the important issues in ANN-based approach is the
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proper selection of input features to the model. The problem
of feature selection is stated as follows: given an initial set of
n features, find the subset with k < n features that is ‘maxi-
mally informative’ about the output.

As most of the contingencies are localized in nature, all
the variables in the input vector may not exert equal influ-
ence on the post-contingency PI values. Irrelevant and
redundant attributes in the input not only complicate the
network structure, but also degrade the performance of the
networks. By selecting only the relevant variables as input
features and excluding irrelevant ones, higher performance
is expected with smaller computational effort. This section
presents the details of input feature selection based on
mutual information.

3.1. Definition of mutual information

Consider a stochastic system with input X and output Y.
Let the discrete variable X has N, possible values and Y has
N, possible values. Now the initial uncertainty about Y is
given by the entropy H(Y) which is defined as [13]

N,

y

p;log p; 3)
1

H(Y) = —
J

where p; = P(Y = y;) is the probability of occurrence of the
event Y = y;. The amount of uncertainty remaining about
the system output Y after knowing the input X is given by the
conditional entropy H(Y|X) which is defined as

N, N,
H(Y[X) = — ZP:’ (iji log pji) 4)
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where p; = P(X = x;) is the probability of occurrence of the
event X = x; and p;; is the conditional probability for output
y; given the input x;. Now the difference H(Y) — H(Y|X)
represents the uncertainty about the system output that is
resolved by knowing the input. This quantity is called the
mutual information between the random variables X and Y.
Denoting it by 1(Y;X), we may thus write

1(Y;X) = H(Y) — H(Y|X) ®)

The mutual information is therefore the amount by which
the knowledge provided by the feature vector decreases the
uncertainty about the output.

3.2. Selecting the features with the mutual information

Mutual information between two random variables
measures the amount of common information contained in
these variables. The problem of selecting input features
which contain much of the information of output can be
solved by computing the mutual information between each
variable and output and selecting those variables having
higher mutual information values.

To compute mutual information the probability distribu-
tion function of variables is needed which in practice is not

known and the best we can do is to use the histogram of the
data. The steps involved in calculating the mutual informa-
tion from the histogram of the data are given below:

1. Arrange all the PI values in the descending order and
divide them into N, classes equally.

2. Calculate the initial entropy using Eq. (3).

3. Sort the data points in the first input variable in the
descending order. Divide the sorted patterns into N,
groups equally.

4. Compute the conditional entropy, given the input vector
1 using Eq. (4) and calculate the mutual information
using Eq. (5).

5. Repeat steps 3 and 4 for the remaining variables also.

4. RBF networks

RBF network is a class of single hidden layer feed
forward neural network [10,14]. The input nodes pass
the input to the hidden nodes directly and the first layer
connections are not weighted. The transfer functions in
the hidden nodes are similar to the multivariate Gaussian
density function
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where w; is the vector determining the center of basis
function ¢; and o; are their widths. Each RBF unit has a
significant activation over a specific region determined by p;
and o;; thus each RBF represents a unique local neighbor-
hood in the input space.

The connections in the second layer are weighted and the
output nodes are linear summation units. The value of the
kth output node y; is given by

h

Vi) =D widi(x) + wyg (7

J=1

where wy; is the connection weight between the output and
Jjth hidden node and wy is the bias term.

The training in RBF networks can be decomposed quite
naturally and the learning is done in three sequential stages
as against the single optimization procedure followed in
backpropagation network training. The first stage of the
learning consists of determining the unit centers w; by the
K-means clustering algorithm, (see Appendix A). Next, we
determine the unit widths o; using a heuristic approach that
ensures the smoothness and continuity of the fitted function.
The width of any hidden node is taken as the maximum
Euclidean distance between the identified centers. Finally,
the weights of the second layer connections are determined
by linear regression using a least-squares objective function.

RBF networks can be viewed as an alternative tool for
learning in neural networks. While RBF networks exhibit
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Fig. 2. IEEE 30-bus test system.

the same properties as backpropagation networks such as
generalization ability and robustness, they also have the
additional advantage of fast learning and ability to detect
outliers during estimation.

5. Simulation results

To demonstrate the applicability of the proposed RBF
network-based approach for contingency ranking, IEEE
30-bus system shown in Fig. 2 is selected as the test system.
The transmission line parameters, generator ratings and base
load condition are given in Ref. [15]. The system has six
generators and 41 transmission lines. Forty single line
outages except lines 25-26 are chosen for contingency
analysis. The various steps involved in developing and eval-
uating the system for contingency ranking and selection are
presented below.

5.1. Training data generation

In machine learning approaches training data is the only
available information to build the model, and so they should
represent the complete operating conditions of the system.
For contingency analysis model development, input—output
patterns are generated as per the following procedure:

(a) First, a range of situations is generated by randomly

perturbing the load at all buses between 70 and 140% of
their base case value and by adjusting the generator
output in proportion to the output in the base case
condition.

(b) For each load-generation pattern pre-contingency line
flows are obtained by solving the load flow equations
using Newton—Raphson algorithm.

(c) Also, for each load-generation pattern, the single line-
outages specified in the contingency list are simulated
sequentially and their PI values evaluated by conducting
AC load flow.

Based on the above simulation procedure, a training set
consisting of 750 input—output pairs was created. Addition-
ally, a test set of 250 data pairs was generated in order to
evaluate the learning and generalization abilities of the
networks. In all the 1000 patterns it was noticed that the
PIyya values are very low for 31 contingencies. These
contingencies are not considered for model development
and the models are developed for the remaining nine cases
alone.

5.2. Feature selection

Pre-contingency line flows in all the lines are chosen as
the input to the networks and they are 41 in number. The PI
corresponding to a contingency is the output of the network.
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Fig. 3. Mutual information for variables in model 1-3.

To select the input features of each model, input feature
space is partitioned into five and the output is divided into
three groups. Mutual information of each variable with
respect to the output is evaluated following the steps
given in Section 3.2. For illustration, the mutual information
between the input variables and the output for contingency
model 1-3 is shown through a bar graph in Fig. 3. From this
figure it is evident that only a few variables are having
significant information to estimate the PI, and the remaining
variables have very less amount of information. The first
few variables that have high mutual information value are
selected as features to train the networks. The features
selected for satisfactorily training the networks are given
in Table 1.

5.3. Data normalization

The first stage of RBF network learning is the identifica-
tion of the cluster centers through K-means clustering algo-
rithm, which uses Euclidean distance as a measure of
dissimilarity. Distance norms are sensitive to variations in
the numerical ranges of the different features. For example,
the Euclidean distance assigns more weighting to features

Table 1
Results of RBF networks

with wide ranges than to those with narrow ranges. To
overcome this problem, input data is normalized before
presenting it to the clustering algorithm. The input data is
normalized between 0 and 1 using
X — Xpi
o = O ) )
(xmax - xmin)

where xp;, and x.,,, are the minimum and maximum of the
variable x. Similarly, output data is also normalized between
0 and 1.

5.4. Network training and evaluation

For the prediction of PI for each line outage, separate
RBF network is trained. The selected variables after normal-
ization are presented to the network. Twenty iterations of
the clustering algorithm followed by linear regression are
performed to estimate the parameters of the network. As the
value of £ is not known in advance, a trial-and-error proce-
dure is followed to select the optimum number of basis
functions.

After training, the generalization performance of the
networks are evaluated with the 250 test data. The results
of training and testing phase for all the nine models are
presented in Table 1. The results clearly show that the train-
ing of the RBF networks has been successful and the correct
estimation of PI has been achieved by the RBF network
even for previously unseen data.

Table 2 presents the PI values estimated for one particular
load condition with the ranking of the contingencies given
in the parenthesis. For comparison, the actual values of PI
calculated from AC load flow study are also presented. The
result shows the agreement between the actual ranking and
the ranking based on the output of the RBF networks.

5.5. Comparison with multilayer perceptron network

To compare the performance of the proposed RBF
network-based approach with the commonly used neural
network architecture, multilayer perceptron (MLP)
networks are developed to estimate the PI values. The
networks are trained with the conjugate gradient algorithm
[10] to reach the same error level achieved by the RBF

S. No. Line outage Selected features No. of basis functions Training time (s) Testing error (mse)
S;pl=1,2,...,41)
1 1-2 1,2,4,5 15 0.50 44%x107°
2 1-3 1,2,4,7 15 0.50 9.7%x107°
3 34 1,2,4,7 15 0.50 1.6x107°
4 2-5 1,5,8,9 20 0.70 52%1073
5 4-6 1,2,4,6,7,13 20 0.75 26%x1074
6 6-7 1,5,8,9 20 0.65 1.5%x107*
7 9-10 12,14,18,21,27,28 25 1.00 35x107%
8 19-20 2,14,18,22,23,24,25 35 1.40 39%107*
9 28-27 31,36,37,38,39,41 25 0.95 58x107*




392 D. Devaraj et al. / Electrical Power and Energy Systems 24 (2002) 387-395

Table 2
PI estimation

Table 3
Results of MLP networks

Line outage PI value Line outage  Hidden nodes  Training time (s)  Testing error (mse)
RBFN output Load flow result 1-2 8 9.1 9.6x107°
1-3 6 5.3 9.6x107°
1-2 16.00 (3) 15.92 (3) 3-4 6 5.4 96%x107°
1-3 6.40 (4) 6.41 (4) 2-5 8 17.7 93x107°
3-4 5.63 (5) 5.76 (5) 4-6 8 18.3 3.0x107*
25 40.27 (2) 40.73 (2) 6-7 6 155 15x107*
4-6 1.56 (8) 1.58 (8) 9-10 6 16.0 44x107*
6-7 172 (7) 175 (7) 19-20 6 16.2 20x107*
9-10 2.26 (6) 2.17 (6) 28-27 6 16.1 62x107*
19-20 0.47 (9) 0.53 (9)
28-27 44.40 (1) 48.54 (1)

networks during training. After training, the networks are
tested with the test data. The results of training and testing
for the MLP networks are presented in Table 3. Based on the
information presented in Tables 1 and 3, it is observed that
RBF networks take less time for training, but they require
more number of hidden nodes as compared to MLP
networks. Apart from that RBF network exhibits better
generalization performance than the MLP network in most
of the cases.

6. Conclusions

This paper has presented a neural network-based fast
contingency selection method for power system static-
security assessment. A set of RBF networks has been trained
to map the nonlinear relationship between the pre-contin-
gency operating state and the post-contingency security
indices. An effective feature selection method has been
proposed to reduce the dimension of the input patterns.
Simulation results on the IEEE 30-bus test system shows
the proposed RBF network-based approach that provides an
accurate estimation of post-contingency PI values for
various operating conditions. When compared with MLP
networks trained with backpropagation algorithm, the
proposed approach significantly reduces the development
time with improved estimation accuracy.

Appendix A
A.l. K-means clustering algorithm

The algorithm partition the data points x", n = 1,2, ..., N,
into K disjoint clusters C; containing N; data points, in such a

way as to minimize the sum-of-squares clustering function
given by

K
7= 3| -l (A1)
Jj=1 n€(;

where p; is the mean of the data points in cluster C;.

The algorithm iteratively determines the cluster centers
; as follows:

1. Initialize the cluster centers p;, j=1,2,---,K by
randomly selecting K data points from among all of the
data points.

2. Generate a new partition by assigning each pattern to its
closest cluster center.

3. Compute new cluster centers as the centroids of the clus-
ters.

4. Compute the cost function according to Eq. (A1). Stop if
either it is below a certain tolerance value or its improve-
ment over previous iteration is below a certain threshold,
otherwise go to step 2.
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