Domain focused Named Entity Recognizer for Tamil using Conditional Random Fields

First Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3
e-mail@domain

Second Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3
e-mail@domain

Abstract
In this paper, we present a domain focused Tamil Named Entity Recognizer for tourism domain. This method takes care of morphological inflections of named entities (NE). It handles nested tagging of named entities with a hierarchical tagset containing 106 tags. The tagset is designed with focus to tourism domain. We have experimented building Conditional Random Field (CRF) models by training the noun phrases of the training data and it gives encouraging results.

1 Introduction
Named Entity Recognition (NER) is the task of identifying and classifying the entities such as person names, place names, organization names etc, in a given document. Named entities play a major role in information extraction. NER has been a defined subtask in Message Understanding Conference (MUC) since MUC 6. A well performing NER is important for further level of NLP techniques.

Many techniques have been applied in Indian and European languages for NER. Some of them are rule based system (Krupka and Hausman, 1998), which makes use of dictionary and patterns of named entities, Decision trees (Karkaletsis et al., 2000), Hidden Markov Model (HMM) (Biker, 1997), Maximum Entropy Markov Model (MEMM) (Borthwick et al., 1998), Conditional Random Fields (CRF) (Andrew McCallum and Wei Li, 2003) etc. In short, the approaches can be classified as rule-based approach, machine learning approach or hybrid approach.

For Indian languages, many techniques have been experimented by different people. MEMM system for Hindi NER (Kumar and Pushpak, 2006) gave an average F1 measure of 71.9 for a tagset of four named entity tags.

NER has been done generically and also domain specific where a finer tagset is needed to describe the named entities in a domain. Domain specific NER is common and has been in existence for a long time in the Bio-domain (Settles 2004) for identification of protein names, gene names, DNA names etc.

We have developed a domain specific hierarchical tagset consisting of 106 tags for tourism domain. We have used Conditional Random Fields, a machine learning approach to sequence labeling task, which includes NER.

Section 2 gives a brief introduction to Conditional Random Fields (CRF). Section 3 discusses the nature of named entities in Tamil, followed by section 4 describing the tagset used in tourism domain. Section 5 describes how we have presented the training data to build CRF models and how we have handled nested tagging. Sections 6 and 7 explain the experiments and results. The paper is concluded in section 8.

2 Conditional Random Fields (CRF)
Conditional Random Fields (CRF) (Lafferty et al., 2001) is a machine learning technique. CRF overcomes the difficulties faced in other machine learning techniques like Hidden Markov Model (HMM) (Rabiner, 1989) and Maximum Entropy Markov Model (MEMM) (Berger et al., 1996).
HMM does not allow the words in the input sentence to show dependency among each other. MEMM shows a label bias problem because of its stochastic state transition nature. CRF overcomes these problems and performs better than the other two. HMM, MEMM and CRF are suited for sequence labeling task. But only MEMM and CRF allows linguistic rules or conditions to be incorporated into machine learning algorithm.

Lafferty et al, define Conditional Random Fieds as follows: “Let $G = (V,E)$ be a graph such that $Y = (Y_v)_{v \in V}$, so that Y is indexed by the vertices of G. Then (X,Y) is a conditional random field in case, when conditioned on X, the random variables Y_v obey the Markov property with respect to the graph: $p(Y_v|X,Y_w,w \neq v) = p(Y_v|X,Y_w,w \sim v)$, where $w \sim v$ means that w and v are neighbors in G”.

Here X denotes a sentence and Y denotes the label sequence. The label sequence y which maximizes the likelihood probability $p_\theta(y|x)$ will be considered as the correct sequence, while testing for new sentence x with CRF model Θ. The likelihood probability $p_\theta(y|x)$ is expressed as follows.

$$p_\theta(y|x) \propto \exp \left(\sum_{e \in E,k} \lambda_k f_k(e,Y_e|x) + \sum_{v \in V,k} \mu_k g_k(v,Y_v|x) \right)$$

where λ_k and μ_k are parameters from CRF model θ and f_k and g_k are the binary feature functions that we need to give for training the CRF model. This is how we integrate linguistic features into machine learning models like CRF.

3 Characteristics of Named Entities in Tamil

Unlike English, there is no concept of capital letters in Tamil and hence no capitalization information is available for named entities in Tamil. All named entities are nouns and hence are Noun Phrases. But not all Noun Phrases are Named Entities. Since named entities are noun phrases, they take all morphological inflections. This makes a single named entity to appear as different words in different places. By applying Morphological analysis on words, the root words of inflected Named Entities can be obtained. These roots will be uninflected Named Entities which is what is required in most applications. Some type of named entities like date, money etc, occur in specific patterns.

4 Named Entity Tagset used

The tagset which we use here for NER contains 106 tags related to each other hierarchically. This type of tagset is motivated from “ACE English Annotation Guidelines for Entities” developed by Linguistic Data Consortium. The tagset which we use is built in-house with focus to tourism domain.

4.1 Sample Tags

Sample tags from the entire tagset is shown below with their hierarchy.

1. Enamex
 1.1. Person
 1.1.1. Individual
 1.1.1.1. Family Name
 1.1.1.2. Title
 1.1.2. Group
2. Numex
3. Timex

Certain tags in this tagset are designed with focus to tourism and health domain, such as place, address, water bodies (rivers, lakes etc.), religious places, museums, parks, monuments, airport, railway station, bus station, events, treatments for diseases, distance and date.

The tags are assigned with numbers 1,2,3 for zeroth level, the tags with numbers 1.1, 1.11, 2.1 .2.4 and 3.1 ,3.7 for level-1 , the tags with numbers 1.1.1, 1.1.2, 1.2.1 etc as level-2 and the tags with numbers 1.1.1.1, 1.1.1.2, 1.2.4.1 etc for level-3 because they occur in the hierarchy in corresponding levels. We have 25 tags in level-1, 50 tags in level-2 and 31 tags in level-3.
4.2 Sample Annotation

Tamil (wx-notation):

\(<person>\) \(<city>\) mawurE \(</city>\) \(<individual>\)
manYi \(<familyname>\) Eyar \(</familyname>\)
\(</individual>\) \(<person>\) \(<city>\) ceVnYnYEkku
\(</city>\) vanwAr.

English equivalent:

\(<person>\) \(<city>\) Madhurai \(</city>\) \(<individual>\)
Mani \(<familyname>\) Iyer \(</familyname>\)
\(</individual>\) \(<person>\) came to \(<city>\) Chennai
\(</city>\).

5 NER using CRF

We used CRF++ (Taku Kudo, 2005), an open source toolkit for linear chain CRF. This tool when presented with the attributes extracted from the training data builds a CRF model with the feature template specified by us. When presented with the model thus obtained and attributes extracted from the test data, CRF tool outputs the test data tagged with the labels that has been learnt.

5.1 Presenting training data

Training data will contain nested tagging of named entities as shown in section 4.2. To handle nested tagging and to avoid ambiguities, we isolate the tagset into three subsets, each of which will contain tags from one level in the hierarchy. Now, the training data itself will be presented to CRF as three sets of training data. From this, we will get three CRF models, one for each level of hierarchy.

Example:
The sample sentence given in section 4.2 will be presented to CRF training for each level of hierarchy as follows:

Level-1:
\(<location>\) mawurE \(</location>\) \(<person>\)
manYi Eyar \(</person>\) \(<location>\) ceVnYnYEkku
\(</location>\) vanwAr.

Level-2:
\(<place>\) mawurE \(</place>\) \(<individual>\) manYi
Eyar \(</individual>\) \(<place>\) ceVnYnYEkku
\(</place>\) vanwAr.

Level-3:
\(<city>\) mawurE \(</city>\) manYi \(<familyname>\)
Eyar \(</familyname>\) \(<city>\) ceVnYnYEkku
\(</city>\) vanwAr.

Notice that the tags ‘location’ and ‘place’ are not specified in the input sentence. In the hierarchy, the ‘location’ tag is the parent tag of ‘place’ tag which is a parent tag of ‘city’ tag. Thus for the word “mawurE”, level-1 tag is ‘location’, level-2 tag is ‘place’ and level-3 tag is ‘city’.

5.2 Attributes and Feature Templates

Attributes are the dependencies from which the system can infer a phrase to be named entity or not. Features are the conditions imposed on these attributes. Feature templates help CRF engine to form features from the attributes of the training data. From the characteristics of named entities in Tamil, we see that it is only the noun phrases that are possible candidates for Named Entities. So we apply Noun Phrase Chunking and consider only noun phrases and train on them. The attributes that we arrived at are explained below:

1. Roots of words

 This is to ignore inflections in named entities. Here we take a window of 5 words and consider unigram, bigram and trigram combinations. This will capture the context in which a named entity will occur.

2. Their Parts of Speech (POS)

 This will give whether a noun is proper noun or common noun. POS of current word is considered.

3. Words and POS combined

 Present word combined with POS of previous two words and present word combined with POS of the next two words are taken as features.

4. Dictionary of Named Entities

 A list of named entities is collected for each type of named entities. Root words are checked against the dictionary and if present in the dictionary, the dictionary feature for the corresponding type of named entity is considered positive.

5. Patterns

 Certain types of named entities such as date, time, money etc., show patterns in their occurrences. These patterns are listed out. The current noun phrase is checked against each pattern. The feature is taken as true for those patterns which are satisfied by the current noun phrase.
6. Bigram of Named Entity label

A feature considering the bigram occurrences of the named entity labels in the corpus is considered. This is the feature that binds the consecutive named entity labels of a sequence and thus forming linear chain CRFs.

The CRF training described here is illustrated in Figure 1.

5.3 Presenting testing data

Test data will also be presented in a way similar to how we presented the training data. Test data is processed for Morph analysis, POS tagging, NP chunking and named entity annotation are done manually on the corpus. This corpus contains about 20k named entities. This corpus is split into two sets. One forms the training data and the other forms the test data. They consist of 80% and 20% of the total data respectively. CRF is trained with training data and CRF models for each of the levels in the hierarchy are obtained. With these models the test data is tagged and the output is evaluated manually.

7 Results

The results of the above experiment are as follows. Here, NE means Named Entity, NP means noun phrase.

Number of NPs in test data = 7922

There are totally 4059 NEs in the test data. All of them bear level-1 tags. Out of 4059 NEs, 3237
NEs bear level-2 tags and 727 NEs bear level-3 tags. The result from the system is shown in Table 1 and Table 2.

<table>
<thead>
<tr>
<th>Named Entity Level</th>
<th>Level-1</th>
<th>Level-2</th>
<th>Level-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of NEs in data</td>
<td>4059</td>
<td>3237</td>
<td>727</td>
</tr>
<tr>
<td>Number of NEs identified by NER engine</td>
<td>3414</td>
<td>2667</td>
<td>606</td>
</tr>
<tr>
<td>Number of NEs identified correctly</td>
<td>3056</td>
<td>2473</td>
<td>505</td>
</tr>
<tr>
<td>Precision %</td>
<td>89.51</td>
<td>92.73</td>
<td>83.33</td>
</tr>
<tr>
<td>Recall %</td>
<td>75.29</td>
<td>76.40</td>
<td>69.46</td>
</tr>
<tr>
<td>F1 measure %</td>
<td>81.79</td>
<td>83.77</td>
<td>75.77</td>
</tr>
</tbody>
</table>

Table 1. Evaluation of output from NER engine for each level

<table>
<thead>
<tr>
<th>Performance Measure</th>
<th>Value in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>88.52</td>
</tr>
<tr>
<td>Recall</td>
<td>73.71</td>
</tr>
<tr>
<td>F1 Measure</td>
<td>80.44</td>
</tr>
</tbody>
</table>

Table 2. Overall result from NER engine

The system performs well for domain focused corpus. It identifies inflected named entities efficiently by considering the root form of each word in noun phrases. The reason for good precision is that tagging is done only when the root word that it is seeing is already learnt from the training corpus or the context of the current word is similar to the context of the named entities that it has learnt from the training corpus.

When there are new named entities which are not in training corpus, CRF tries to capture the context and tags accordingly. In such cases irrelevant context that it may learn while training will cause problem resulting in wrong tagging. This affects the precision to some extent. When the named entities and their context are new to CRF, then they are most likely not tagged. This affects the recall.

8 Conclusion

We see that Conditional Random Fields is well suited for Named Entity recognition task in Indian languages also, where the inflection of named entities can be handled by considering their root forms. A good precision can be obtained by presenting only the noun phrases for both testing and training.

References

Kumar N, Pushpak Bhattacharyya. 2006. Named Entity Recognition in Hindi using MEMM.

