Real-Time Ray-Tracing of Implicit Surfaces on the
GPU

Jag Mohan Singh and P J Narayank&lember, IEEE
Centre for Visual Information Technology,
International Institute of Information Technology(lllTiHyderabad, India

Abstract— Compact representation of geometry using a suit-
able procedural or mathematical model and a ray-tracing moa
of rendering fit the programmable graphics processor units
(GPUs) well. Several such representations including paragtric
and subdivision surfaces have been explored in recent reseh.
The important and widely applicable category of the general
implicit surface has received less attention. In this paperwe
present a ray-tracing procedure to render general implicit
surfaces efficiently on the GPU. Though only the fourth or
lower order surfaces can be rendered using analytical roots
our adaptive marching points algorithm can ray-trace arbitrary
implicit surfaces without multiple roots, by sampling the ray at
selected points till a root is found. Adapting the sampling &p size

based on a proximity measure and a horizon measure delivers

high speed. The sign-test can handle any surface without ntiple
roots. The Taylor-test that uses ideas from interval analyis can
ray-trace many surfaces with complex roots. Overall, a simfg
algorithm that fits the SIMD architecture of the GPU results in
high performance. We demonstrate the ray-tracing of algebaic
surfaces up to order 50 and non-algebraic surfaces includim a
Blinn’s blobby with 75 spheres at better than interactive frame
rates.

Index Terms— Ray-Tracing, Implicit Surfaces, GPU Rendering

. INTRODUCTION

Current Graphics Processor Units (GPUs) are optimized
render polygons. Programmable vertex, geometry, and ptages
have made it widely applicable beyond polygon renderingy-R
tracing is of particular interest as each fragment effetyivnan-
dles an imaging ray. Surfaces defined procedurally or irtplic

can be rendered directly using ray-tracing on the GPUs, &f t

resulting functional form can be solved on the fragment pssor.

Implicit and procedural geometry are important in computefr
graphics. They are compact and can be evaluated on the fly. |

plicit geometry is defined by an equatisiiz, y, z) = 0. Different

forms of S(-) are possible. An algebraic surface is defined as t

roots of the polynomialS(z,y, z) = Y _ ama'y’ 2" =0 and

a

fie

to triangles or particles compromises on both compactnass a
exactness. Exactness can be retained by the use of largeersimb
of small triangles, but at the loss of compactness. Diraudeeng
using ray tracing performed on the GPU can retain both. The
computing power of the GPUs grows at over double the rate
predicted by Moore’s law, while the bandwidth from the CPU
to the GPU is lagging behind seriously. Thus, compact repre-
sentations that are light on communications and ray-ttadke
techniques that are heavy on computations will suit theralide
General, recursive ray-tracing is difficult on the GPUs. 8in
algorithms that fit their restricted architecture will hakégher
performance than those that are efficient on a general perpos
processor. Computationally simple methods for ray-trgcave
needed for today’s GPUs due to their constrained architeetnd
SIMD (Single Instruction, Multiple Data) programming made

Ray-tracing is an application ideally suited to the high eom
puting and low memory performance of multicore and manycore
architectures [2]. Woop et al. argue for a programmable ray-
tracing unit much like the GPUs and show an implementation
using FPGAs for real time rendering [3]. Whitted and Kajiya
propose using only procedural elements in a graphics pipeli
to match the high computation power and the low external
bandwidth of the GPUs [4]. Our work strongly endorses thig i
of thinking by extending exact and high-quality ray-tragito a
k%rge class of arbitrary implicit surfaces on the GPUs. Minde
using procedural or implicit techniques and rendering gisey-
tracing is likely to be important components of high perfame
graphics in the future.

In this paper, we explore real-time ray-tracing of arbirar

Ii1mplicit surfaces on a modern GPU, beyond the low-order -alge

braic and simple non-algebraic surfaces reported in teealitire.
The basic idea is to reduce the surfagér,y,z) = 0 to the
orm Iy (t) 0 using the ray equation for the fragmett
wheret is the ray-parameter. Each fragment can then solve for
and perform per-pixel lighting, shadowing, etc., based loa t

exact intersection for simple surfaces. Solution to theaéiqn
Fy(t) = 0 depends on its form. Interactive ray-tracing has been

. . m -
its order ismax(im + jm + km). Non-algebraic surfaces can be ofachieved only for lower order implicit surfaces. These el

different functional forms. Implicit surfaces are popularfluid
simulation, scientific computing, weather modeling, etieey are
often used to visualize high-dimensional data after fittihgm
with a suitable implicit function.

algebraic surfaces up to order 4 using analytical roots @n th
GPU [5] and selected algebraic surfaces and some non-aigebr
surfaces using interval-analysis and affine-arithmeti¢clenGPU
[6]. We introduce theadaptive marching pointéAMP) algorithm

Polygonization is the most common method of renderinghich samples each ray in to find the first solution of the

implicit surfaces [1]. Dynamic implicit surfaces with chging
topology poses great challenges to this process. The iinfaion
allows compact and exact definition of surfaces. Converttiregn

Email: jagmohan@research.iiit.ac.in, pjn@iiit.ac.in

equation S(z,y, 2) S(p(t)) = 0. The sampling step size
adapts to the distance to the surface and the closeness to a
silhouette. This method matches the SIMD architecture ef th
GPUs and can handle arbitrary implicit surfaces. We show tha
simple and seemingly non-promising algorithms that sué th

Fig. 1. Ray-traced Blinn’s blobby with 75 spheres with eamiment-mapping and shading (35 fps), Chmutov dodecic waitin fight sources (215 fps), and
Barth decic with one light source (573 fps).

architecture well can deliver very high performance on thJS. complex functions. Our implementation of Mitchell’s methiay-
Our method finds the exact intersections on algebraic andrgkn traced surfaces up to order 5 at interactive frame rates ®G#U
implicit surfaces when multiple roots are not present. Atfiest using the exact interval extension [17]. Surfaces beyoni#rob
inspired by interval analysis can find the correct inteligst for could not be ray-traced robustly due to the difficulty in theerval
multiple roots on several surfaces. We show results on akveextension. Sub-intervals, branch and bound schemes gogtids,
algebraic surfaces of order up to 50 and non-algebraic sesfa etc., have been used to increase the reliability of intelpasled
like superquadrics, sinusoids, and blobbies with exadttiiy methods. Knoll et al. achieve 30 fps on a superquadric ang6 fp
and shadowing at significantly better than real-time ra@sr on a few sextic surfaces using the CPU and the SSE hardware
technique can handle dynamic surfaces also since it eeslubé [16], 121 fps on a quartic surface, 88 fps on a sextic surfaxck a
equation directly in each frame without any preprocesdiigure 16 fps on a decic surface using affine arithmetic based extens
1 presents some of the surfaces ray-traced using our method.on GPU [6].

The AMP algorithm delivers high performance on the GPUSs, Iterative root finding methods are used widely to solve ganer
but can work on the CPU also. We ray-trace many of thes@plicit equations in one variable. Analytical solutionsist
surfaces on the CPU, but the rendering time varies from 1lr&kcdor polynomials of order four or lower; only iterative solois
for cubic surfaces to tens of seconds for algebraic surfates exist for higher order polynomials [18] and other implicitrins.
order 20 and above. While this is the only reported renderingerative methods critically depend on good initializatiof the
of such high order surfaces on the CPU, the far from real-timeots, which is difficult for complex equations. An alterivatis
speeds make it unattractive as an option. The simplicityhef tto bracket the roots to an interval tnand then solve it using an
algorithm, on the other hand, fits the architecture of the GPitérative technique [19], [20]. Interval arithmetic havis@been
well, and extracts up to 70% of its peak FLOPS. used [21], [22], which are more robust at critical regionsod¥l

Section Il reviews the previous work related to the topicthid of these methods cannot be implemented easily on the SIMD
paper. Section Il presents the adapting marching pointhate architecture of the GPUs, however. Ray-tracing has beepteda
Results of our algorithm on different algebraic and noreblgic to the GPU for general polygonal models. Purcell et al. perés
surfaces is presented in Section IV. Conclusions and dfimet multipass ray tracing [23] and Carr et al. combined CPU and
for future work are presented in Section V. Appendix pres¢hé GPU computations for recursive ray tracing [24]. These mesh
equations of the implicit surfaces used in the paper alorthh wiwork for general objects but are slow. Spheres and otherriguad
simple screenshots. primitives were ray-traced on the GPU using per-fragment ra

quadric intersection and optimized bounding boxes [25§],[2
Il. RELATED WORK [27]. Adamson et al. performed ray intersections with local

Implicit surfaces can be converted to triangulated modstsr p polynomial approximation inside a sphere for large polyaon
to rendering them using traditional graphics [1]. The margh models [28]. Hadwiger et al. ray-cast implicit surfaces e
cubes algorithm can be used to create polygonal models fram a regular volume grid using adaptive sampling and itegati
implicit functions [7]. A high-performance marching tefiedron refinement [29]. Loop and Blinn showed resolution independe
package was released on the GPU recently [8]. Triangulatisendering of quadratic and cubic-spline curves on the GRY) [3
increases the size and the bandwidth needs of the repréeantaand extended it to render piecewise algebraic surfaces iquith
and goes against the strengths of the GPU. order [5]. Seland and Dokken rendered algebraic surfaces up

Ray-tracing of implicit surfaces is about finding the smstlle to order five on the GPU [31] by computing the blossom of
positive root of an appropriate equation in the ray-par@metthe function with respect to each ray as a univariate Beimste
t. Hanrahan demonstrated ray tracing of algebraic surfages polynomial. This will not extend easily to higher order surés
to the fourth order [9]. Wald et al. achieved interactive raps the complexity of computing coefficients of the univariat
tracing of RBF implicits using a specialized intersectitgosithm polynomial increases rapidly with its degree. Our methodpse
[10]. Kajiya reduces ray tracing of spline surfaces to a glyb the process simple to match the GPU by not evaluating the
convergent method [11]. Interval-analysis has also beed figr complex univariate polynomials.
robust root isolation by many [12], [13], [14], [15], [16]. ikthell Sampling points along the ray and looking for intersectiens
isolates the root using repeated bisections till the imtleim ¢ a simple and intuitive way to isolate the smallest positigetr
contains a single root [12]. Reliable interval-extensjdmswvever, This approach has been used for procedural hypertextu@s [3
are difficult to compute for large intervals in the domain o&nd other implicit surfaces [33], [34]. Kalra and Barr rageted

LG-implicit surfaces using Lipschitz constants [33]. Haged GPU’s interpolation hardware to evaluate the coefficieritthe
variable step sizes in sphere tracing based on a geomedtande polynomial by sending a symmetric tensor of rask- 1 with
function evaluated at the current point [34]. The Lipschiteory (gff) unique elements from the vertex shader for each vertex of
or geometric distances do not extend easily to complex sesfa the tetrahedron [5]. While this method is very clever, itIviigé
however. We follow the point sampling approach, but chamge tcomputationally expensive for higher-order polynomiasdd?)
step size using simpler measures that suit the GPU. elements need to be sent for each vertex for an algebraiacgurf
Our method samples or searches along each ray till a stafporderd.
covers a root. Step size is adapted using the algebraicndista
tq the §urface and proximity to a Iocal_silhouette. We use g Adaptive Sampling of the Ray
simple interval-based test for root-containment for rdbess.
Our method works on arbitrary implicit surfaces with simpbets
since only samples of it are needed. While AMP can work on the
CPU as well as the GPU, its simplicity achieves high perfarcea
on the restricted parallel architecture of the GPU. Methods
involving interval analysis do not adopt to higher orderfaces Egye
easily due to the unavailability of robust interval extems.
Such methods are also slower due to the conditionalitiedién t
program that do not suit the GPU. We can ray-trace algebraic
surfaces of very high order — we show an order 50 surface
— and several non-algebraic surfaces at framerates UpVEHrdSgig 2. Marching points algorithm samples uniformly in thay parameter
100. We also handle dynamic implicit surfaces with no loss in The sign test identifies the first interval where the functzhanges sign

performance as the surface is evaluated directly in eamdraat the _end_points (dark_er shaded region On the |eft) SIganbfall as the
with no precomputations step size increases (right). Roots will be isolated in irdksr [A, B] and [B,

C] but not [A, C]

[1l. ADAPTIVE MARCHING POINTS ALGORITHM A balanced computation load and short and simple computa-

The points on the ray for a pixel or fragmeyitare given in tions are critical to good performance on the GPUs, giveir the
the parametric form bw(t) = 0 + th’ where t is the ray SIMD model. Methods that US@($7y7z) values are-likely tO be
parameter,0 the camera center, anf); the direction of the faster than those that usé(¢) values. An exceedingly simple
ray. Substituting forz, y, = from the ray equation into the surfaceroot-isolation scheme is to sample regularly along the ity t

equationS(z,y, z) = 0, we get the functionF;(t) crosses zero between successive samples. The
computation is low as onlys(t) = S(p(t)) needs to be evaluated
Fy(t) = 0. (1) at the sample points. Thimarching pointsscheme can be used

for arbitrary implicit surfaces, even those with difficukrivatives

or for general piecewise algebraic surfaces without déviga at
npoundaries [17]. The performance of the algorithm depenus o
the marching or sampling step-size. The optimal step-siag m
differ from one surface to another.

The worst case running time of this scheme is linear in the
number of steps in the total range in t. The step-size neebe to
) chosen so as to not miss any root. We can observe that laige ste
A. ComputingS(z,y, z) VS Fi(t) sizes suffice in empty space, but small steps are necessary ne

Root finding may need the values of the functiBp(t) and its the surface and near the silhouettes. @Haptive marching points
derivatives F'¢ (t), F{ (t), etc. The function can be evaluated fo(AMP) algorithm varies the step size based on the closeriess o
a givent using the univariate polynomial’,(¢) directly or using the point to the surface and to a silhouette. The step-siaalgh
the multivariate polynomiak(z,y,z) = S(p(t)) after computing be small near the surface and smaller near silhouettesré~Rju
(z,y,z) using the ray equation. The computational implications
of each could be very different. The expressibp(t) typically Geometric distances are reliable measures of proximity to
has many terms for higher order polynomials with coefficdenta surface but are surface dependent and are not available for
depending on the viewpoint and the ray. For example, a singlebitrary implicit surfaces. Lipschitz bounds have beeeduto
sixth order expression3y> of S(-) maps to(a + bt)3(c + dt)> estimate the optimum step size for efficient ray-tracing [§34].
in F¢(t) and expands to 16 terms for the 7 coefficients of th@aubin used the rati 5,(‘? as a measure for signed geometric
sixth order polynomial int, requiring 44 multiplications and 9 distance to the functiorF(tS [35]. However, it is useful only for
additions to evaluate. On the other handindy can be computed |ow-order algebraic surfaces and for points close to théasar
using 2 multiplications and 2 additions andy® using 5 more Defining geometric distance and Lipschitz bounds for aabjtr
multiplications. The Barth decic (Section 1V) can be evédga algebraic and non-algebraic surfaces is hard and will beigfut
using about 30 terms &X(p(t)) but needs to evaluate 1373 termsesearch direction for the future.
to compute all 11 coefficients of the tenth order polynonfiglt). Distance Adaptation: The magnitude ofS(z,y,z) gives the
The derivativeF(t) can be calculated using the gradient as thgigebraic distance from a point to the surface. We normalize
dot-productVS(z, y, z) - Dy. The situation is the same for theS(z,y, z) such that the highest coefficient of the top-order term is
univariate expressions of the derivatives. Loop and Blirse uunity and usesS(z,y, z)| as aproximity measuréhat is zero close

The smallest, real, positive solution far gives the point of
intersection of the ray with the object. Each fragment shade

independently find the root using a suitable method. The abr
of the surface at the point of intersection can also be coetpas
the gradientV S(z, y, z) for exact lighting and shadows of simple
implicit surfaces.

e

Fig. 4. Top row: Barth tenth order surface without silhoeettaptation (left) and with it (right). The zoomed views fie tmiddle show great reduction in
aliasing for the internal silhouettes. Bottom row: Supewdyic surface without (left) and with (right) silhouetteagdation with zoomed views in the middle.

Fig.

3. The step size is adapted to the distance to the sudgadethe
proximity to a silhouette. Region Il will have the largese size and the

region | will have the smallest, based on the proximity meas$i(x, y, z)|.

The step size is further reduced when the horizon condit®ririe (the
darkened region V) as the surface normal is nearly perpatatico the

viewing direction.

to the surface. The step-size can varies as a monotonicidiunct-l-
of it. In practice, we use a piecewise constant approximasiod

Fig. 5. Number of steps taken along each ray for a Barth terdbrsurface
for the AMP algorithm without silhouette adaptation (lefgyith it (middle)
and difference image scaled by 2 for legibility (right). Rer colour indicates
fewer steps.

Silhouette Adaptation: The view-dependent silhouettes represent
regions of close and multiple roots. It is important to sanpl
the ray finely near them. We do that by decreasing the step-siz
near the silhouettes. The derivative magnittpﬂ’?(tﬂ serves as a
horizon measurevhich is close to zero near internal and external
silhouettes of even complex implicit surfaces. As desdribar-
lier, F]’c(t) = VS(z,y,z) - Dy and can be computed efficiently.
he step size can be a monotonic functioﬂl@]’f(t)|. In practice,
we halve the step-size when the horizon conditjﬁlj’z(t)| <e

vary the step size _in qctaves, stgning with a bas_e s_;tep Sﬁzeié)satisfied (Algorithm 1). Thus, region V of Figure 3 will lav
b. The base step size is doubled if the current point is far AWV duced step sizes in order to render silhouettes wellv&Xigeet

from the surface and halved if close to it, using two thredbol

al. used the angle between the viewing direction and thesarf

71 and r». Different step sizes are used in regions of diﬁererﬁormal to control the step size while ray-tracing heightseon

colour/sh_ade shown in Figure 3. The thresholds are set tlm;edthe GPU [36]. Hadwiger et al. used a multiple of base sampling
the coefficients ofS().

Algorithm 1 Adaptive Marching Points (f,b)

1

=
o

© N OR®®DN

Find the intersectiong; and ¢. of the ray for fragmentf
with the near and far planes.

. Initialize s to the basic step sizk t to starting pointt
: while ¢ < t. do

Set the stepsize using Equation 2.
if rootExistsIn ¢, ¢ + s) then
Goto step 11 witht, ¢ + s] as the isolated interval
end if
t=t+s

: end while
: No isolated interval. Discard pixel
: Perform 10 bisections of the isolated interval,

half with the root in each.

rate for better quality near silhouettes for better qual&9].
Combining distance and silhouette adaptation, we fix the-ste
size in each iteration using the following formula

b/4 it [S(p(t)| < m and|VS(p(t)) - Dy| < 73
b/2 it S(p(t)| <m

2b if |S(p(t))| > 72

b otherwise

@)

where b is the base stepsize and, = and 75 are thresholds.
The root-containment test (Step 5, Algorithm 1) is alsoicait

to isolating roots and can be implemented in different wadygo
promising ones are the sign test and the Taylor test destribe
below.

Sign test:Root exists if the function changes sign between the
end points of the step, i.e., {S(p(¢;)) * S(p(tiy1)) < 0). This

keeping tr’t‘%st is simple to implement as only the function values at the

sample points are needed. It is a strict test that does ndupeo

Algorithm 2 ImplicitSurface Render (f)
CPU:

1. Setup equations in the shader program.
2: Send a dummy quad to the OpenGL pipeline.

Vertex Shader:

1. Pass through vertices and the camera center to the geometry
shader.

Geometry Shader:

1. Transform the quad to a screen-facing one and pass ray
direction to the vertices, the camera center, near, anddaep
distances to the pixel shader.

Fragment Shader:

1. Intersect each ray with the near and far planes to get theerang
[ts, te]-

2: Isolate and find the root using the AMP algorithm.

3: Shoot rays to light source and perform root-isolation for it

‘ If root is found, the point is under shadow.

4: Compute colour and depth using the position, normal, and

Fig. 6. Top row: Steiner, Cross Cap, Miter, Kiss and High Qilétte surfaces shadowing at the intersection point.
ray-traced using the AMP method with sign test. Multipletsoare missed by
it. Middle row: Surfaces shifted by 0.01 using AMP and sigst.té&kegion of
multiple roots tend to be fattened. Bottom row: Same sugfaeadered using

AMP and Taylor test. The performance is more robust for rplétroots. The most work is done for non-intersecting rays as the entire
range oft values need to be sampled.

false roots. It misses roots if an even number of roots ardién t IV. RESULTS

step, however. .
’ We could render algebraic surfaces up to order 50 robustl
Taylor test: This test checks if the function values and linear 9 b y

extensions of them enclose a zero. Interval arithmetic | b including all surfaces shown in the MathWorld site and saver
- : R . Wnon-algebraic and transcendental objects. Screenshotkesé
used for robust root finding and this test is inspired by it. e . . - .
. . . . urfaces appear in Appendix. The equations of the correpgn
use an interval extension employing the function valueshat t

.) . L surfaces is given in the Appendix. First, we display the aller
endpoints as well as the first order Taylor series approxonat ray-tracing algorithm and some of its implementation issue
of the function at the middle of the interval computed fronthoo
endpoints (Figure 2). This works adequately for moderatgtles .)
of intervals. The extension df in the intervallt;, ;1] is defined A ©Overall Algorithm and Implementation Issues

as F([t;, ti41]) = [min {p,q,7, s}, max {p,q,r,s}], where The overall pseudo code is given in Algorithm 2. The im-

b (et —ta) plementation is in OpenGL/GLSL for the SM4.0 architecture

q=F(t;)+ F'(t;) =5, p=F(ti), 3) of the Nvidia 280 GTX GPU. The following steps were used
r=F(ti41) — F’(ti“)w, s=F(tiy1) for efficiency. (a) The shaders for the function to evaludte t

expressionS(p(t)) and its gradient (if necessary) are synthesized

This test is slower than the sign test because of the demsabut . .
larger step-sizes can be used. This test can produce falt®, ro2! the fly by the CPU. The shaders are compiled on the fly in

but works robustly in practice and can handle multiple raoedl. any case. We also compu(p(¢)) and its gradient together in

. . function for faster evaluation as this will help in miiamng
The AMP scheme can, however, miss multiple roots or rodu8&® . .
P P egundant computations where they exist. (b) Products ctove

false roots based on the specific test used and the step sizé. dt te2 v2 22 45 13 3 ot imult |
comparison of different tests for multiple roots is showrFigure ar_fh.usi %c(;)mpuDe:t,y ’g ’f Y25 Zc.,hsmu aneoqsly
6. The sign test can miss the root when the interval contaiﬁ\g in the shaders. Dot products are used wherever posgitle

multiple roots. We can offset the surface by a small value Rx'lght screen-space and depth bounds improves the timirggigre

renderS(z, y,) — ¢ to alleviate problem (Figure 6). Though we e couldn’t take much advantage_ of this as the complex sesfac
are rendering a different surface, the results are clostse@ig we used cannot be bounded easily.

is similar to theS(z, y, z) < e test for roots used by sphere tracing)]

[34]. The Taylor test imitates interval extension and pres B- Rendering Times

robust results similar to the interval-based method (Fég8y}. Table | presents the frame rates of our algorithm on several
Figure 4 shows the effect of silhouette adaptation. Thesiglgan algebraic and non-algebraic surfaces with and without ehad
at the silhouettes reduces sharply with silhouette adaptat rays on an Nvidia 280 GTX for a resolution 8f2x512. (See our
The superquadrics have the most challenging silhouettdbeas technical report for timings on Nvidia 8800 GTX [17]). Retsul
surface is notC'! continuous. The aliasing effects can be seeare given for ray-tracing with and without shadow-rays. Giva
occasionally on these surfaces on the video. Figure 5 shiogvs tays start from each point and perform the root-isolatiomgis
number of iterations used for each pixel as a measure of teeactly the same algorithm. The bisection to get the exauttiso
work done for the Barth decic surface. The extra effort néar t not necessary as we only need to know if there is an intemsecti
silhouettes can be observed when silhouette adaptatioseid. u Our rendering times are better than work reported in theditee

for higher order surfaces and very competitive for loweresrd f"\,\
ones. We also obtain real-time results on surfaces much mc J H
complicated than have been reported before. The best ezpor (

effort by Knoll et al. achieve a frame rate of 121 on a quarti L
surface, 88 on a sextic surface, and up to 108 on superqiédric o0

surfaces on the GPU [6]. They use interval or affine arithoeti o i i) o

hich may not easily extend to complex algebraic surfacabler Fig. 8 Dynamic objects: Two views of an evolving object with Blinn's
whi Yy ’ y " p 9 blobbies rendered at over 35 fps (left) and of twisting sgpedric rendered
[l shows comparison with the surfaces they use. Our methodaiSover 900 fps (right).
faster than their scheme and allows for simple extensiorveém e
higher order surfaces than used by them. Table Il shows the . _ .
rendering of different surfaces on the CPU. The renderimesi frame without affecting the performance in any way. Tempora
on CPU is slower by an orders of magnitude of that on GPEpherence can be used but the additional book-keeping slows
due to lack of parallelism. This shows that the AMP algorithrdlown the process in practice on the GPUs. Figure 8 shows a
is suited for GPU. Figure 7 shows screenshots of some of tf@v views a Blinn’s Blobby with 75 blobbies and a twisting
surfaces. superquadric. The topology of the blobby changes from each

being independent spheres to a single fused object as seen in
the video. We render the blobby at a framerate of 35 fps or more

and the superquadric at over 900 fps.
The performance of any GPU ray-tracing algorithm depends on

three aspects: the algorithmic complexity, the per-pixehputa- £ Varying step-size and thresholds
tional load, and the match with SIMD architecture of the GPUs . .
The base step-size and thresholds for adaptation are eglect

The adaptive marching points algorithm has a linear conifyléx .

the distance to the surface as the ray is sampled till a hits Reat baS(_ad on th? surface and has an impact on the correctness of
do not intersect with the surface are the most expensivehdits the Image. Figure g shows .the effect 0 f varying the.stepﬂrze
method [12] and others inspired by it use a recursive fortimia Bgrth Decic. Many mtersecﬂops are missed when using large
and have a logarithmic complexity, but suffer due to the nom2s and the effect appears I|ke. toothed edges O.f the suffae
availability of robust interval extensions for arbitranyréaces. The quality gets better as the step-size depreases. Simutalyethe
AMP method has low per-pixel computations as oSl y, z) frame rate also decreases as more intervals need to be.tested
and its gradient are evaluated. Root finding algorithms th pe effect of varying the thresholds used in Algorithm 1 iscal

use higher derivatives and the;(¢) formulation have higher show in Figure 9 in a Chmutov Octic surface. We sgt= 2

computations per pixel. The sampling approach also fits thES and; = 3 for this exploration. Larger steps are taken until
architecture of the GPU: Algorithm 1 has minimal divergeiice very close to the surface when the threshold is small andraleve

the shader code between fragments compared to intervat baggersecuons are missed, resuilting in artifacts. As treshold

methods [6], [17], which is key to good performance on the gpyncreases, smaller steps are used and the quality imprbuest

The higher complexity is thus more than compensated by tﬂée cost of rendering speed. There is also a trade-off betures

lighter computation load and good match with the architextu step-size gnd the threshold. If the step-size is smgll,hhghold
We explore the performance of our algorithm on the Chmutoh s less impact on the results. The accompanying video shows

C. Performance: Discussion

14th order surface as a typical case. A normal view of tHae effect of varying the step-size and threshold more blear
surface from outside evaluated the surface equation on enage

70 times per ray when the sign test is used without shadows. v v v v
Maximum number was for the rays with no intersection. Over % 4 % é > < § 4

75 floating point operations are needed per evaluation of the AAAA
S(z,y, z), giving a computation load of 1.38 billion operations

per frame. The surface renders at about 460 fps on an Nvidi& GT

280. This translates to 635 GFLOPS of sustained computgtion

which is about 65% of the peak floating point performance of

the GPU. Though AMP algorithm works on the CPU also (see

Table Ill), the 1.38 GFLOP per frame makes its performana@ noFig. 9. Top row: Barth Decic with stepsizes 0.015 (573), 6.0801), 0.045
attractive. Each frame is rendered in about 9 seconds, gyigin (6222);”& 0()(5(7)8(5].4(1-8].?.6)3,)'Oégggg](iivgigzrduB?g(%CETSVgg)]?6?12;%:25;)—’105?1?19
performance of about 150 MFLOPS or about 3% of the pegk _ 171, Numbers in parenthesis give the FPS.
rating of the CPU.

D. Dynamic Implicit Objects F. Correctness and Robustness

A dynamic implicit object changes its form over time and are Interval Arithmetic approximates the convex hull of thefaoe,
challenging to render. The rayskip algorithm ray-tracesaigic which gets refined to the actual surface when the interval is
implicits by exploiting the temporal and spatial coherenEeay- smaller [6]. The AMP method searches for intersection whth t
implicit intersections [37]. Knoll et al. render dynamic piitits surface in discrete steps and can isolate any single rodt avit
as 4D implicits in an(z, y, z, t) space [16]. Our scheme ray-tracesmall-enough step size. Multiple roots pose challenged toet
the surface independently in each frame without any precorinding techniques, but the interval-based methods showemor
putations or subdivisions. Thus, the equation can changb eaobustness. The Taylor test is equivalent to central appraton

Fig. 7. Screenshots of (from left to right): Chmutov (50tlder), Chmutov 50 (zoomed), Nonlsol [8] and Sarti [12] suefac

of Interval Arithmetic (1A) when step-size is small and witherit freedom to choose whatever model they want for their data and

the correctness of 1A methods. use a uniform method for rendering. The performance of theito
order surfaces is significantly better than the higher oafers.
G. Limitations Whitted and Kajiya propose the use of fully procedural gieph

. to exploit the high compute power of the GPUs using the low
The performance of the AMP algorithm depends on the S'[eee(ternal bandwidth they possess [4]. We believe this willabe

size. The optimum step-size is surface dependent; the E$]drgirection in the high-performance graphics of tomorrownéml
and Hunt surfaces needed very small steps to work correstly .a 9n-p grap)

. ; - implicit surfaces are expressive and can be ray-tracedofashe
shown in Table I. A conservative step-size can produce cbrre . - :
. . GPUs using our scheme. Ray-tracing can produce exact images
results, but with a drop in speed.

The GPUs primarily support only single precision arithragti for simple implicit surfaces independent of the resolut@om can

This has not been a problem in the class of algebraic and n(%eﬁ(ploIt the high compute power of the GPUs effectively. licipl

. - . I procedural description of geometry provides high qualit
algebraic surfaces we explored. The computation of hlgheror.d\(/)\/ithout increasing the representational complexity. Sioiy of

![;]thy;gmilisé;:wgvf&gi\%sn toreks);iltds Orﬁg%ﬁﬁgﬁ;ﬁg?n?he underlying algorithm is critical to extracting high f.|smance
b g) from the SIMD architecture of the current GPUs.

orders greater than 18 have serious artifacts due to falss ro Overall, handling procedural and implicit geometry difgct

ngaril Whgn the Chebyshev polynomial equat|0n.s are evaluatgﬂ fast GPUs will be more common in the future. The GPUs
directly using the powers of,y, and z [17]. This was not

due to lower precision as the double precision implemeotati themselves may need to provide additional features in haneiw

on the CPU exhibits the same behavior. However, the problert’r?smake this easy. This can include higher precision aritiune

disappear when the iterative or the sinusoidal definitiohshe prog_rammable rasterizers, etc. Procedural elements e tm
L - . applied to other aspects such as textures, normals, shasling

Chebyshev polynomial is used. (See the Appendix for thatiter . . .

. . I We expect the GPUs will evolve to support this natively and
and sinusoidal definitions of the Chmutov surfaces.) Thélpra -
) efficiently.
is thus with the computation of higher powers of polynomials
which is a fact to be kept in mind when rendering comple

surfaces. The rendering speed suffers as the iterativeiaiah is Indiia for the partial financial support for this research ahddia

computationally expensive for higher orders. The com or generous equipment donations. We also acknowledge the

load is nearly a constant independent of the order using tpe - . . g .
sinusoidal formulation as seen in Table |. The direct evidna €lpful discussions with Charles Loop and Li-Yi Wei of Mistft

of the polynomial is the quickest for orders up to 18. Research. We also acknowledge the helpful discussionsRmith

Our algorithm had difficulty rendering some of extremal im-C' N. Kaul of IIIT. We thank the anonymous TVCG reviewers

plicit surfaces. Such surfaces have zero mean curvatureasnd for their suggestions that improved the paper.

very challenging to handle. We could render most other iaitpli

surfaces, though complex surfaces could exhibit numencsih-

bilities as described above. [1] J. Bloomenthal and K. Ferguson, “Polygonization of moanifold
implicit surfaces,” INSIGGRAPH '95 1995, pp. 309-316.

[2] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-level yratracing
V. CONCLUSIONS& FUTURE WORK algorithm,” ACM Trans. Graph.vol. 24, no. 3, pp. 11761185, 2005.

. ; icamd [3] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a prograhle ray
we pt_’es_ente_d. a scheme to ray-trace arbitrary algebralc n processing unit for realtime ray tracing®fCM Trans. Graph.vol. 24,
algebraic implicit surfaces on the GPU at very high framesat no. 3, pp. 434-444, 2005.

using the adaptive marching points method in this paper. Thg] T. Whitted and J. Kajiya, “Fully procedural graphicsfi HWWS '05:
. . . L Graphics hardwarg 2005, pp. 81-90.

roots; the .f'rSt'order interval bas.ed Tay!or'teSt for rm'?‘t!on [5] C. Loop and J. Blinn, “Real-time GPU rendering of piecesvialgebraic

extends this to many surfaces with multiple roots. The sicitgl surfacesACM Transactions on Graphicsol. 25, no. 3, pp. 664—670,

of the method is the key factor behind the high performance on 2006.

current GPUs. The limited-precision of current GPUs was not®! A- Knoll Y. Hijazi, A. Kensler, M. Schott, C. D. Hansennd H. Hagen,
Fast and robust ray tracing of general implicits on the GRIsjversity

a constraint even on higher order surfaces. The ability 6 ra o ytan (To appear Computer Graphics Forum), Tech. Rep. UUSC
trace such surfaces provides scientists and other prawit the 2007-014, 2007.

f&cknowledgments: We thank the Naval Research Board of

REFERENCES

(7]

(8]
El
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]
(33]

[34]

[35]

W. E. Lorensen and H. E. Cline, “Marching cubes: A highalesion
3d surface construction algorithm,” iIBIGGRAPH '87 ACM Press,
1987, pp. 163-169.

S. Green, Y. Urlasky, and E. Hart, “Nvidia OpenGL SDK isdsace ex-
traction using marching tetrahedra,” http://developedia.com/, 2007.
P. Hanrahan, “Ray tracing algebraic surfaces,SiGGRAPH '831983,
pp. 83-90.

. Wald and H.-P. Seidel, “Interactive Ray Tracing of iftoBased

Models,” in Proceedings of 2005 Symposium on Point Based Graphics

2005.

J. T. Kajiya, “Ray tracing parametric patches,"SIGGRAPH '821982,
pp. 245-254.

D. P. Mitchell, “Robust ray intersection with intervarithmetic,” in
Proceedings on Graphics interface '90990, pp. 68-74.

T. Duff, “Interval arithmetic recursive subdivisiorff implicit functions
and constructive solid geometn8IGGRAPH Comput. Graphvol. 26,
no. 2, pp. 131-138, 1992.

O. Caprani, L. Hvidegaard, M. Mortensen, and T. ScheeidRobust
and ecient ray intersection of implicit surfacefkliable Computing
vol. 6, no. 1, pp. 9-21, 2000.

J. Florez, M. Sbert, M. A. Sainz, and J. Vehi, “Improvitige interval
ray tracing of implicit surfaces,” irfComputer Graphics International
2006, pp. 655-664.

A. Knoll, Y. Hijazi, C. D. Hansen, |. Wald, and H. Hagerinteractive
ray tracing of arbitrary implicit functions,” irProceedings of the 2007
Eurographics/IEEE Symposium on Interactive Ray TracR@D7.

J. M. Singh and P. J. Narayanan, “Real-time ray-tracafgimplicit
surfaces on the GPU,” International Institute of InforroatiTechnology,
Tech. Rep. 2007-72, 2007.

J. F. Blinn, “How to solve a cubic equation, part 1: Theygé of the
discriminant,” IEEE Comput. Graph. Applvol. 26, no. 3, pp. 84-93,
2006.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. Rarfnery,
Numerical Recipes in C: The Art of Scientific Computin@ambridge
University Press, 1992.

F. Rouillier and P. Zimmermann, “Efficient isolation g@blynomial's
real roots,”J. Comput. Appl. Math.vol. 162, no. 1, pp. 33-50, 2004.
E. Hansen and W. WalsteBlobal Optimization Using Interval Analysis
Marcel Dekker, 2003.

R. Krawczyk, “Newton-algorithmen zur bestimmung youllstellen mit
fehlerschranken,Computing vol. 4, pp. 187-201, 1969.

T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Regcing on
programmable graphics hardware.” 8iGGRAPH '02 2002, pp. 703—
712.

N. A. Carr, J. D. Hall, and J. C. Hart, “The ray engine,”Rmoceedings

of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware Eurographics Association, 2002, pp. 37-46.

R. Toledo and B. Levy, “Extending the graphic pipelinéhwmnew gpu-
accelerated primitives,” INRIA, Tech. Rep., 2004.

C. Sigg, T. Weyrich, M. Botsch, and M. Gross, “GPU-basaygtcasting

of quadratic surfaces,” ifProceedings of Eurographics Symposium on

Point-Based Graphics 200&006, pp. 59-65.
S. M. Ranta, J. M. Singh, and P. J. Narayanan, “GPU O&jeat

Proceedings of ICVGIPser. Lecture Notes in Computer Science, vol.

4338. Springer, 2006, pp. 352-363.

A. Adamson and M. Alexa, “Ray tracing point set surfgtes SMI '03:
Proceedings of the Shape Modeling International 2008Vashington,
DC, USA: IEEE Computer Society, 2003, p. 272.

M. Hadwiger, C. Sigg, H. Scharsach, K. Buhler, and M. €&rd‘Real-
time ray-casting and advanced shading of discrete isamsfa in
Eurographics 20052005, pp. 303-312.

C. T. Loop and J. F. Blinn, “Resolution independent eurendering
using programmable graphics hardwa®CM Transaction on Graphics
vol. 24, no. 3, pp. 1000-1009, 2005.

J. Seland and T. Dokken, “Real time algebraic surfacialization,”
in Supercomputing '06 Workshop: General-Purpose GPU Comguiti
Practice And Experience2006.

K. Perlin and E. M. Hoffert, “Hypertexture,” iiSIGGRAPH '89 1989,
pp. 253-262

D. Kalra and A. H. Barr, “Guaranteed ray intersectionghwmplicit
surfaces,” inSIGGRAPH '89 ACM Press, 1989, pp. 297-306.

J. C. Hart, “Sphere tracing: a geometric method for théatiased ray
tracing of implicit surfaces.”The Visual Computerol. 12, no. 10, pp.
527-545, 1996.

G. Taubin, “Distance approximations for rasterizingplicit curves,”
ACM Trans. Graph.vol. 13, no. 1, pp. 3-42, 1994.

[36] F. Policarpo, M. M. Oliveira, and J. L. D. Comba, “Reatfe relief

mapping on arbitrary polygonal surface®\CM Trans. Graph.vol. 24,
no. 3, pp. 935-935, 2005.

E. de Groot and B. Wivill, “Rayskip: faster ray tracing onplicit
surface animations,” iGRAPHITE '05: Proceedings of the 3rd interna-
tional conference on Computer graphics and interactivehtégues in
Australasia and South East AsiaACM Press, 2005, pp. 31-36.

Surface Stepsize Sign Test Taylor Test
[order] NS T S NS T S
Algebraic Surfaces
Chmutov [50] 0.01 65 41 41 30
Chmutov [22] 0.01 160 71 113 49
Chmutov [18] 0.01 344 | 170 || 194 | 144
Chmutov [14] 0.01 457 287 262 | 224
Chmutov [12] 0.01 462 | 295 280 | 232
Sarti [12] 0.015 380 | 130 200 | 104
Barth [10] 0.015 573 | 252 286 | 176
Chmutov [9] 0.015 521 234 334 | 187
Endrass [8] 0.01 244 167 215 | 102
Nonisol [8] 0.01 1035 | 578 548 | 386
Chmutov [8] 0.02 1053 | 575 622 | 413
Chmutov [7] 0.02 787 256 545 | 228
Labs [7] 0.015 | 595 | 235 || 311 | 157
Chmutov [6] 0.02 1289 | 712 717 | 539
Hunt [6] 0.01 152 | 134 78 62
Barth [6] 0.02 836 | 377 557 | 247
Heart [6] 0.02 840 703 477 | 436
Kleine [6] 0.02 1024 | 356 633 | 287
High Silhouette[6] 0.02 1143 | 814 655 | 523
Dervish [5] 0.02 814 288 466 | 229
Kiss [5] 0.02 1297 | 644 774 | 573
Peninsula [5] 0.03 1349 | 590 832 | 489
Steiner [4] 0.02 1210 | 953 678 | 540
Cassini [4] 0.02 1147 | 517 699 | 371
Tooth [4] 0.03 1500 | 684 871 | 521
Piriform [4] 0.02 1450 | 1349 831 | 781
Cross-Cap[4] 0.02 1200 | 948 606 | 530
Miter [4 0.02 1660 | 1140 891 | 645
Kummer [4 0.02 1400 | 436 823 | 371
Goursat [4 0.04 1700 | 930 1014 | 700
Cushion [4 0.02 880 587 460 | 358
Nordstrands [4] 0.03 945 281 596 | 249
Cayley [3] 0.03 | 16519 | 481 || 844 | 405
Clebsch [3] 0.03 940 264 633 | 212
Ding-Dong [3] 0.03 | 1924 | 943 || 1188 | 739
Non-Algebraic Surfaces
Chmutov 50 0.01 207 124 145 87
Chmutov 22 0.01 217 130 152 91
Chmutov 18 0.01 244 147 171 | 102
Chmutov 14 0.01 254 152 178 | 106
Torus 0.04 1650 | 915 922 | 628
Superquadric 0.02 900 751 394 | 366
Blobby 0.05 1226 | 509 780 | 418
Blinn’s Blobby 0.05 1304 | 1022 691 | 620
Scherk 0.03 1112 | 449 718 | 390
Diamond 0.04 1300 | 309 983 | 272
TABLE |

Surface Knoll et al. [6] AMP using Sign Test

8800 GTX 8800 GTX [280 GTX
Steiner 38 233 487
Teardrop 121 195 408
Tangle 71 216 451
Barth Sextic 88 132 249
Kleine 101 187 350
Mitchell 60 194 363
Barth Decic 16 103 225
Superquadric 108 170 282

TABLE I

COMPARISON OF FRAME RATES FOR DIFFERENT SURFACES USING
KNOLL'S METHOD AND THEAMP METHOD ON COMMON SURFACES FOR
A 1024 x 1024 WINDOW ON THE SAMEGPU NvIDIA 8800 GTXAND ON

NvIDIA 280 GTX.

FRAME RATES FOR ALGEBRAIC AND NONALGEBRAIC SURFACES FOR
OUR ALGORITHM FOR A512 X 512 WINDOW ON AN NVIDIA 280 GTX,
WITHOUT SHADOW (NS COLUMNS) AND WITH SHADOW (S COLUMNS).

THE ORDER OF ALGEBRAIC SURFACES APPEARS WITHIN SQUARE
BRACKETS. THE STEPSIZE IS ALSO SHOWN

Surface AMP using sign test
[Order] CPU 280 GTX
Ding Dong [3] 987 0.52
Nordstrands[4] | 3160 1.05
Torus[4] 2674 0.60
Dervish[5] 4152 1.23
Kiss [5] 3647 0.77
Chmutov [6] 5371 0.77
Heart [6] 5027 1.19
Chmutov [8] 6853 0.95
Barth [10] 7969 1.75
Chmutov [18] 9562 2.90
Chmutov 50 27875 4.83
(Non Algebraic)

TABLE Il

RENDERING TIMES IN MILLISECONDS FOR A RESOLUTION 0512 X 512

ON THE CPUUSINGAMP WITH SIGN TEST

APPENDIXI
SURFACES EQUATIONS AND SCREEN-SHOTS
Cubic Surfaces
1) Ding-Dong: z2 + 32 = z(1 — 2?).
2) Clebsch:81(z3 + % + 23) — 189(22(y + 2) + v (x + 2) +
22(x+y))+bdayz+126(zy +yx +x2) — 9z +y% +22) —
Iz +y+2)+1=0.
3) Cayley: —5(a2(y + 2) + y%(x + 2) + 22(z + y)) + 2(zy +
yx 4+ xz) = 0.
Quartic Surfaces

1) Torus: (22 +y% + 22 + R? —r?)?2 —4R%(2? + y?) = 0.

2) Nordstrands: 25(z(y + z) + v3(z + 2) + 23(z + v)) +
50(:02y2 + 222 + mzzz) — 125(:02yz + y2zz + myzZ) —
4(zy + yx + xz) + 60zyz = 0.

3) Cushion: 2222 — 2* — 2222 + 223 + 22 — 22 — (2?2 — 2)? —
vt — 2222 — 4222 + 222 + 42 = 0.

4) Goursat:z* +y* + 24 —1=0.

5) Kummer:z? + y* + 2% — 2% — 2 — 22 — 2%y% — 222 —
22?2 +1=0.

6) Miter: 422(2? + ¢ + 22) — (1 —y? — 22) = 0.

7) Cross Capidz?(z2 + 42 + 22 +2) + 2 (2 + 22— 1) =0.

8) Piriform: 2% — 23 + %2 + 22 = 0.

9) Tooth:z* + y* +2* — 22 —y2 - 22 =0.

10) Cassini: ((z 4+ a)? + v*)((z — a)? + y?) = 22 wherea is

the radius of the circle.
11) Steiner:z?y? + 2222 + y22% — 2zyz = 0.
Quintic Surfaces
1) Peninsula:z® 4+ y3 + 25 — 1 =0.
2) Kiss: 22 + 9% = z(1 — 2%).
3) Dervish:64(z—1)(z* —42° — 1022y? — 42 + 162 — 20zy> +
5yt +16—20y%) —5a(22—a) (4(z®+y%+22)+(1+3V5))? =

0 wherea = /5 — /5.

Sextic Surfaces

1) Barth: 4(¢a® —y?)(¢°y> — 2%)(¢%2° —2%) — (1+2¢) (2 +
y?+22—1)% = 0 whereg = (1++/5)/2 is the golden ratio.
Hunt: 4(z% +y? + 2% —13)% + 27322 + 4% - 422 —12)2 = 0
Kleine: (22 + % + 22+ 2y — 1)(z® + > + 22 — 2y — 1)% —
82%] + 16x2(x? + y2 + 2% — 2y — 1) = 0 represents a 3D
impression of the Kleine bottle.
Chmutov: Tg(z) + Ts(y) + Te(z) = 0 where Tg(x)
2% (3—4x2)? -1 = 322° 482" +182? —1 is the Chebyshev
polynomial of the first kind of degree 6.

5) Heart: (222 + 2y% + 22 — 1) — 0.1222% — 4223 = 0.

6) High Silhouette:z® — y® — 223y +y> =0
Septic Surfaces

1) Chmutov:T7(z) + T7(y) + T7(z) + 1 = 0 whereT7(z) =

2)
3)

4)

642" — 11225 + 562> — 7z is the Chebyshev polynomial of

the first kind of degree.
Labs: P — U, = 0 where P = 27 — 2125y% + 3523y* —
TayS 4+ 72((2%4y?)3 —82% (22 +4%) 2 +162% (22 +y?)) —6427,

o = (z+a5)((z + D@ + %) + a12® + asz? + azz +
ag)?a1 = (—12/7)a? —384/49a — 8/T,a0 = (—32/7)a? +
24/49 — 4,a3 = (—4)a® + 24/49a — 4,04 = (—8/T)a® +
8/49a — 8/7,a5 = 4902 — Ta + 50 anda = —0.14010685
Octic Surfaces

1) Nonisol: z® — y® — 22%y + 4> =0

2) Chmutov: Tg(x) + T(y) + Tz(z) = 0 where Tz(z) =

1282% — 2562° + 1602* — 3222 + 1.

2)

3)

10

Endrass:64(z% — 1)(y? — 1)(ab) — (c+ d + €)? = 0 where
a=@+y)?-2,b=(x—y)? -2 c=—-401—-vV2)(z? +

)2, d = 8(2 — v2)2% +2(2 — TV2)(2? +4?) ande =
—162% + 8(1 + 2v/2)2% — (1 — 12/2). Like many higher
order algebraic surfaces, the Endrass octic appears like a
collection of surfaces.

Nonic Surfaces

1

Chmutov:Ty(z) + To(y) + To(z) + 1 = 0 whereTy(x) =
2562° — 57627 + 432z — 1202 + 9z is the Chebyshev
polynomial of the first kind of degree 9.

Surfaces of order more than 10

1

2)

3)

Barth Decic: Barth decic is a tenth order surface with the
equation8(a? — ¢?y?)(y? — ¢*2?) (2% — ¢*2?) (2 +y* +
24— 20%y? — 22222 — 2y%2%) + 3+ 5¢)(2® 4+ 4 + 2% —
1)2(z% + 9% + 22 -2+ ¢)? = 0 where¢ = (1 + /5)/2 is
the golden ratio.

Sarti Dodecic:This surface which is of order twelve with
the equatior43 S —22 Q = 0, whereQ = (2% + 4%+ 2%+
1)° andsS = 33v/5(s; g+55 455.9)+19(s3 3453 4 +55)+
10893 4— 1481 0+251,1—651,2—35255,1+3361211 +48121314
with 11 = 2% + ¢ + 2 + 1,1y = 22y% + 22,13 = 2222 +
y2la = 2% + y?22 15 = wyz, s1,0 = li(lals + laly + I3la),
s10 = G(la+1l3+1), s12=0U(3+15+13), s234 =
15+ 15+ 13, s35 = 1313 £ 113, s, = 1314 £ 1313, si, =
13l + 1413, andss 1 = 12(l2 + I3 + 14).

Chmutov of Higher OrdersTy,(z) + Tn(y) + Tn(z) = 0
for n = 14, 18,22 and 50 and T}, is Chebyshev polynomial
of first kind of degreen.

Tn(z) can be definedteratively as:

1 if n=0
if n=1
otherwise

Tn(l’) = x
2aTn(x) — Th—1(x)

Tn(z) can be definedinusoidallyas:

cos(narccos(z)) x € [—1,1]
Th(z) = cosh(ncosh™t(z)) > 1
(=1)" cosh(ncosh™!(—z)) =< -1

A. Non-Algebraic Surfaces Equation

1
2)
3)
4)
5)

6)

Torus: (¢ — /22 +42)? + 222 = a2

Blinn's Blobby: °;¥ | i — 1.0 =0.

Blobby: 2 +y2 + 2% 4 sin(4x) — cos(4y) +sin(4z) — 1.0 = 0.
Scherk’s Minimal:exp(z) * cos(y) — cos(x) = 0.

Diamond: sin(z) *sin(y) *sin(z) + sin(z) * cos(y) * cos(z) +
cos(z) * sin(y) * cos(z) + cos(x) * cos(y) * sin(z) = 0.
Superquadrics: Superquadric surfaces are given by the
equation|z|™ + |y|™ + |z|™ — 1.0 = 0 for different values

of m. Fractional values produces concave sides. The shape
approximates a cube with rounded edges for high values of
m.

11

R R R R 2]

Chmutov [50] Chmutov [22] Chmutov [18] Chmutov [14] Sarti2J1 Barth [10] Chmutov [9]

(65) (160) (344) (457) (380) (573) (521)
l;i I;! '

Endreass [8] Chmutov [8] Nonlsol [8] Chmutov [7] Labs [7] Cutov [6] Hunt [6]

(244) (1053) (1035) (787) (595) (1289) (74)
Barth [6] High Silhouette [6] Heart [6] Kleine [6] Dervish [5 Kiss [5] Peninsula [5]
(836) (1143) (840) (1024) (814) (1297) (1349)
Steiner [4] Cassini [4] Tooth [4] Cross Cap [4] Miter [4] Kunem[4] Goursat [4]
(1210) (1147) (1500) (1200) (1660) (1400) (1700)

C ERA e

Cushion [4] Nordstrands [4] Piriform [4] Cayley [3] Clebs¢8] Ding-Dong [3]
(880) (945) (1450) (1519) (940) (1924)

Fig. 10. Pictures of various algebraic surfaces with theeowf the surface shown within square brackets and the FRfj tise adaptive marching points
algorithm shown within parenthesis forsd2 x 512 window.

O--sTUNE4

Chmutov 50 Torus Blinn’s Blobby Blobby Scherk Diamond Supedric
(207) (1650) (1304) (1226) (1112) (1300) (900)

Fig. 11. Pictures of the non-algebraic surfaces renderedsbhyith the FPS using the adaptive point sampling algoritiivargin parenthesis for a12 x 512
window.

Jag Mohan Singh recieved his B.Tech (Honours) and MS by Research in

Computer Science from the International Institute of Infation Technology
(INT), Hyderabad in 2005 and 2008 respectively. He was a bremof Centre
of Visual Information Technology (CVIT) from 2003 till 2008is research
interests include Computer Graphics and Computer VisiagisHcurrently a
Research Associate at Technische Universitate, Darmstadt

P J Narayanan is a Professor at the International Institute of Informatio
Technology (IlIT), Hyderabad and heads the Centre for \lisuformation
Technology. He got his B.Tech from IIT, Kharagpur in 1984 dng PhD
from the University of Maryland, College Park in 1992. He wasesearch
faculty member at the Carnegie Mellon University from 19996 where he
worked on the Virtualized Reality project. He headed the @oter Vision
and Virtual Reality group at the Centre for Artificial Intigiénce and Robotics
(CAIR), Bangalore from 1996 to 2000. He joined IlIT, Hydeaakin 2000 and
is currently its Dean of Research & Development. Prof. Narayn's research
interests include Computer Vision, Computer Graphics, @RdJ processing.
He was made the first CUDA Fellow by Nvidia in November 2008.

12

