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Abstract— Compact representation of geometry using a suit-
able procedural or mathematical model and a ray-tracing mode
of rendering fit the programmable graphics processor units
(GPUs) well. Several such representations including parametric
and subdivision surfaces have been explored in recent research.
The important and widely applicable category of the general
implicit surface has received less attention. In this paper, we
present a ray-tracing procedure to render general implicit
surfaces efficiently on the GPU. Though only the fourth or
lower order surfaces can be rendered using analytical roots,
our adaptive marching points algorithm can ray-trace arbitrary
implicit surfaces without multiple roots, by sampling the ray at
selected points till a root is found. Adapting the sampling step size
based on a proximity measure and a horizon measure delivers
high speed. The sign-test can handle any surface without multiple
roots. The Taylor-test that uses ideas from interval analysis can
ray-trace many surfaces with complex roots. Overall, a simple
algorithm that fits the SIMD architecture of the GPU results in
high performance. We demonstrate the ray-tracing of algebraic
surfaces up to order 50 and non-algebraic surfaces including a
Blinn’s blobby with 75 spheres at better than interactive frame
rates.

Index Terms— Ray-Tracing, Implicit Surfaces, GPU Rendering

I. I NTRODUCTION

Current Graphics Processor Units (GPUs) are optimized to
render polygons. Programmable vertex, geometry, and pixelstages
have made it widely applicable beyond polygon rendering. Ray-
tracing is of particular interest as each fragment effectively han-
dles an imaging ray. Surfaces defined procedurally or implicitly
can be rendered directly using ray-tracing on the GPUs, if the
resulting functional form can be solved on the fragment processor.

Implicit and procedural geometry are important in computer
graphics. They are compact and can be evaluated on the fly. Im-
plicit geometry is defined by an equationS(x, y, z) = 0. Different
forms of S(·) are possible. An algebraic surface is defined as the
roots of the polynomialS(x, y, z) =

X

m

amximyjmzkm = 0 and

its order ismax
m

(im +jm +km). Non-algebraic surfaces can be of
different functional forms. Implicit surfaces are popularin fluid
simulation, scientific computing, weather modeling, etc. They are
often used to visualize high-dimensional data after fittingthem
with a suitable implicit function.

Polygonization is the most common method of rendering
implicit surfaces [1]. Dynamic implicit surfaces with changing
topology poses great challenges to this process. The implicit form
allows compact and exact definition of surfaces. Convertingthem
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to triangles or particles compromises on both compactness and
exactness. Exactness can be retained by the use of large numbers
of small triangles, but at the loss of compactness. Direct rendering
using ray tracing performed on the GPU can retain both. The
computing power of the GPUs grows at over double the rate
predicted by Moore’s law, while the bandwidth from the CPU
to the GPU is lagging behind seriously. Thus, compact repre-
sentations that are light on communications and ray-tracing like
techniques that are heavy on computations will suit them ideally.
General, recursive ray-tracing is difficult on the GPUs. Simple
algorithms that fit their restricted architecture will havehigher
performance than those that are efficient on a general purpose
processor. Computationally simple methods for ray-tracing are
needed for today’s GPUs due to their constrained architecture and
SIMD (Single Instruction, Multiple Data) programming model.

Ray-tracing is an application ideally suited to the high com-
puting and low memory performance of multicore and manycore
architectures [2]. Woop et al. argue for a programmable ray-
tracing unit much like the GPUs and show an implementation
using FPGAs for real time rendering [3]. Whitted and Kajiya
propose using only procedural elements in a graphics pipeline
to match the high computation power and the low external
bandwidth of the GPUs [4]. Our work strongly endorses this line
of thinking by extending exact and high-quality ray-tracing to a
large class of arbitrary implicit surfaces on the GPUs. Modeling
using procedural or implicit techniques and rendering using ray-
tracing is likely to be important components of high performance
graphics in the future.

In this paper, we explore real-time ray-tracing of arbitrary
implicit surfaces on a modern GPU, beyond the low-order alge-
braic and simple non-algebraic surfaces reported in the literature.
The basic idea is to reduce the surfaceS(x, y, z) = 0 to the
form Ff (t) = 0 using the ray equation for the fragmentf ,
where t is the ray-parameter. Each fragment can then solve for
t and perform per-pixel lighting, shadowing, etc., based on the
exact intersection for simple surfaces. Solution to the equation
Ff (t) = 0 depends on its form. Interactive ray-tracing has been
achieved only for lower order implicit surfaces. These include
algebraic surfaces up to order 4 using analytical roots on the
GPU [5] and selected algebraic surfaces and some non-algebraic
surfaces using interval-analysis and affine-arithmetic onthe GPU
[6]. We introduce theadaptive marching points(AMP) algorithm
which samples each ray int to find the first solution of the
equation S(x, y, z) = S(p(t)) = 0. The sampling step size
adapts to the distance to the surface and the closeness to a
silhouette. This method matches the SIMD architecture of the
GPUs and can handle arbitrary implicit surfaces. We show that
simple and seemingly non-promising algorithms that suit the
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Fig. 1. Ray-traced Blinn’s blobby with 75 spheres with environment-mapping and shading (35 fps), Chmutov dodecic with four light sources (215 fps), and
Barth decic with one light source (573 fps).

architecture well can deliver very high performance on the GPUs.
Our method finds the exact intersections on algebraic and general
implicit surfaces when multiple roots are not present. A root-test
inspired by interval analysis can find the correct intersections for
multiple roots on several surfaces. We show results on several
algebraic surfaces of order up to 50 and non-algebraic surfaces
like superquadrics, sinusoids, and blobbies with exact lighting
and shadowing at significantly better than real-time rates.Our
technique can handle dynamic surfaces also since it evaluates the
equation directly in each frame without any preprocessing.Figure
1 presents some of the surfaces ray-traced using our method.

The AMP algorithm delivers high performance on the GPUs,
but can work on the CPU also. We ray-trace many of these
surfaces on the CPU, but the rendering time varies from 1 second
for cubic surfaces to tens of seconds for algebraic surfacesof
order 20 and above. While this is the only reported rendering
of such high order surfaces on the CPU, the far from real-time
speeds make it unattractive as an option. The simplicity of the
algorithm, on the other hand, fits the architecture of the GPU
well, and extracts up to 70% of its peak FLOPS.

Section II reviews the previous work related to the topics ofthis
paper. Section III presents the adapting marching points method.
Results of our algorithm on different algebraic and non-algebraic
surfaces is presented in Section IV. Conclusions and directions
for future work are presented in Section V. Appendix presents the
equations of the implicit surfaces used in the paper along with
simple screenshots.

II. RELATED WORK

Implicit surfaces can be converted to triangulated models prior
to rendering them using traditional graphics [1]. The marching
cubes algorithm can be used to create polygonal models from
implicit functions [7]. A high-performance marching tetrahedron
package was released on the GPU recently [8]. Triangulation
increases the size and the bandwidth needs of the representation.
and goes against the strengths of the GPU.

Ray-tracing of implicit surfaces is about finding the smallest
positive root of an appropriate equation in the ray-parameter
t. Hanrahan demonstrated ray tracing of algebraic surfaces up
to the fourth order [9]. Wald et al. achieved interactive ray
tracing of RBF implicits using a specialized intersection algorithm
[10]. Kajiya reduces ray tracing of spline surfaces to a globally
convergent method [11]. Interval-analysis has also been used for
robust root isolation by many [12], [13], [14], [15], [16]. Mitchell
isolates the root using repeated bisections till the interval in t

contains a single root [12]. Reliable interval-extensions, however,
are difficult to compute for large intervals in the domain of

complex functions. Our implementation of Mitchell’s method ray-
traced surfaces up to order 5 at interactive frame rates on the GPU
using the exact interval extension [17]. Surfaces beyond order 5
could not be ray-traced robustly due to the difficulty in the interval
extension. Sub-intervals, branch and bound schemes, octree grids,
etc., have been used to increase the reliability of interval-based
methods. Knoll et al. achieve 30 fps on a superquadric and 6 fps
on a few sextic surfaces using the CPU and the SSE hardware
[16], 121 fps on a quartic surface, 88 fps on a sextic surface and
16 fps on a decic surface using affine arithmetic based extension
on GPU [6].

Iterative root finding methods are used widely to solve general
implicit equations in one variable. Analytical solutions exist
for polynomials of order four or lower; only iterative solutions
exist for higher order polynomials [18] and other implicit forms.
Iterative methods critically depend on good initialization of the
roots, which is difficult for complex equations. An alternative is
to bracket the roots to an interval int and then solve it using an
iterative technique [19], [20]. Interval arithmetic have also been
used [21], [22], which are more robust at critical regions. Most
of these methods cannot be implemented easily on the SIMD
architecture of the GPUs, however. Ray-tracing has been adapted
to the GPU for general polygonal models. Purcell et al. performed
multipass ray tracing [23] and Carr et al. combined CPU and
GPU computations for recursive ray tracing [24]. These methods
work for general objects but are slow. Spheres and other quadric
primitives were ray-traced on the GPU using per-fragment ray-
quadric intersection and optimized bounding boxes [25], [26],
[27]. Adamson et al. performed ray intersections with local
polynomial approximation inside a sphere for large polygonal
models [28]. Hadwiger et al. ray-cast implicit surfaces defined
on a regular volume grid using adaptive sampling and iterative
refinement [29]. Loop and Blinn showed resolution independent
rendering of quadratic and cubic-spline curves on the GPU [30]
and extended it to render piecewise algebraic surfaces up tofourth
order [5]. Seland and Dokken rendered algebraic surfaces up
to order five on the GPU [31] by computing the blossom of
the function with respect to each ray as a univariate Bernstein
polynomial. This will not extend easily to higher order surfaces
as the complexity of computing coefficients of the univariate
polynomial increases rapidly with its degree. Our method keeps
the process simple to match the GPU by not evaluating the
complex univariate polynomials.

Sampling points along the ray and looking for intersectionsis
a simple and intuitive way to isolate the smallest positive root.
This approach has been used for procedural hypertextures [32]
and other implicit surfaces [33], [34]. Kalra and Barr ray-traced
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LG-implicit surfaces using Lipschitz constants [33]. Hartused
variable step sizes in sphere tracing based on a geometric distance
function evaluated at the current point [34]. The Lipschitztheory
or geometric distances do not extend easily to complex surfaces,
however. We follow the point sampling approach, but change the
step size using simpler measures that suit the GPU.

Our method samples or searches along each ray till a step
covers a root. Step size is adapted using the algebraic distance
to the surface and proximity to a local silhouette. We use a
simple interval-based test for root-containment for robustness.
Our method works on arbitrary implicit surfaces with simpleroots
since only samples of it are needed. While AMP can work on the
CPU as well as the GPU, its simplicity achieves high performance
on the restricted parallel architecture of the GPU. Methods
involving interval analysis do not adopt to higher order surfaces
easily due to the unavailability of robust interval extensions.
Such methods are also slower due to the conditionalities in the
program that do not suit the GPU. We can ray-trace algebraic
surfaces of very high order – we show an order 50 surface
– and several non-algebraic surfaces at framerates upwardsof
100. We also handle dynamic implicit surfaces with no loss in
performance as the surface is evaluated directly in each frame
with no precomputations.

III. A DAPTIVE MARCHING POINTS ALGORITHM

The points on the ray for a pixel or fragmentf are given in
the parametric form byp(t) = O + tDf , where t is the ray
parameter,O the camera center, andDf the direction of the
ray. Substituting forx, y, z from the ray equation into the surface
equationS(x, y, z) = 0, we get

Ff (t) = 0. (1)

The smallest, real, positive solution fort gives the point of
intersection of the ray with the object. Each fragment shader can
independently find the root using a suitable method. The normal
of the surface at the point of intersection can also be computed as
the gradient~∇S(x, y, z) for exact lighting and shadows of simple
implicit surfaces.

A. ComputingS(x, y, z) vs Ff (t)

Root finding may need the values of the functionFf (t) and its
derivativesF ′

f (t), F ′′
f (t), etc. The function can be evaluated for

a givent using the univariate polynomialFf (t) directly or using
the multivariate polynomialS(x, y, z) = S(p(t)) after computing
(x, y, z) using the ray equation. The computational implications
of each could be very different. The expressionFf (t) typically
has many terms for higher order polynomials with coefficients
depending on the viewpoint and the ray. For example, a single
sixth order expressionx3y3 of S(·) maps to(a + bt)3(c + dt)3

in Ff (t) and expands to 16 terms for the 7 coefficients of the
sixth order polynomial int, requiring 44 multiplications and 9
additions to evaluate. On the other hand,x andy can be computed
using 2 multiplications and 2 additions andx3y3 using 5 more
multiplications. The Barth decic (Section IV) can be evaluated
using about 30 terms asS(p(t)) but needs to evaluate 1373 terms
to compute all 11 coefficients of the tenth order polynomialFf (t).
The derivativeF ′

f (t) can be calculated using the gradient as the
dot-product ~∇S(x, y, z) · Df . The situation is the same for the
univariate expressions of the derivatives. Loop and Blinn use

GPU’s interpolation hardware to evaluate the coefficients of the
polynomial by sending a symmetric tensor of rankd − 1 with
`

d+2
d−1

´

unique elements from the vertex shader for each vertex of
the tetrahedron [5]. While this method is very clever, it will be
computationally expensive for higher-order polynomials as O(d3)

elements need to be sent for each vertex for an algebraic surface
of order d.

B. Adaptive Sampling of the Ray

Fig. 2. Marching points algorithm samples uniformly in the ray parameter
t. The sign test identifies the first interval where the function changes sign
at the endpoints (darker shaded region on the left). Sign test will fail as the
step size increases (right). Roots will be isolated in intervals [A, B] and [B,
C] but not [A, C]

A balanced computation load and short and simple computa-
tions are critical to good performance on the GPUs, given their
SIMD model. Methods that useS(x, y, z) values are likely to be
faster than those that useFf (t) values. An exceedingly simple
root-isolation scheme is to sample regularly along the ray till
the functionFf (t) crosses zero between successive samples. The
computation is low as onlyFf (t) = S(p(t)) needs to be evaluated
at the sample points. Thismarching pointsscheme can be used
for arbitrary implicit surfaces, even those with difficult derivatives
or for general piecewise algebraic surfaces without derivatives at
boundaries [17]. The performance of the algorithm depends on
the marching or sampling step-size. The optimal step-size may
differ from one surface to another.

The worst case running time of this scheme is linear in the
number of steps in the total range in t. The step-size needs tobe
chosen so as to not miss any root. We can observe that large step-
sizes suffice in empty space, but small steps are necessary near
the surface and near the silhouettes. Theadaptive marching points
(AMP) algorithm varies the step size based on the closeness of
the point to the surface and to a silhouette. The step-size should
be small near the surface and smaller near silhouettes (Figure 3).

Geometric distances are reliable measures of proximity to
a surface but are surface dependent and are not available for
arbitrary implicit surfaces. Lipschitz bounds have been used to
estimate the optimum step size for efficient ray-tracing [33], [34].
Taubin used the ratioF (t)

|F ′(t)|
as a measure for signed geometric

distance to the functionF (t) [35]. However, it is useful only for
low-order algebraic surfaces and for points close to the surface.
Defining geometric distance and Lipschitz bounds for arbitrary
algebraic and non-algebraic surfaces is hard and will be a fruitful
research direction for the future.
Distance Adaptation: The magnitude ofS(x, y, z) gives the
algebraic distance from a point to the surface. We normalize
S(x, y, z) such that the highest coefficient of the top-order term is
unity and use|S(x, y, z)| as aproximity measurethat is zero close
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Fig. 4. Top row: Barth tenth order surface without silhouette adaptation (left) and with it (right). The zoomed views in the middle show great reduction in
aliasing for the internal silhouettes. Bottom row: Superquadric surface without (left) and with (right) silhouette adaptation with zoomed views in the middle.

Fig. 3. The step size is adapted to the distance to the surfaceand the
proximity to a silhouette. Region III will have the largest step size and the
region I will have the smallest, based on the proximity measure |S(x, y, z)|.
The step size is further reduced when the horizon condition is true (the
darkened region V) as the surface normal is nearly perpendicular to the
viewing direction.

to the surface. The step-size can varies as a monotonic function
of it. In practice, we use a piecewise constant approximation and
vary the step size in octaves, starting with a base step size of
b. The base step size is doubled if the current point is far away
from the surface and halved if close to it, using two thresholds
τ1 and τ2. Different step sizes are used in regions of different
colour/shade shown in Figure 3. The thresholds are set basedon
the coefficients ofS().

Algorithm 1 Adaptive Marching Points ( f, b)
1: Find the intersectionsts and te of the ray for fragmentf

with the near and far planes.
2: Initialize s to the basic step sizeb; t to starting pointts
3: while t < te do
4: Set the stepsizes using Equation 2.
5: if rootExistsIn (t, t + s) then
6: Goto step 11 with[t, t + s] as the isolated interval
7: end if
8: t = t + s

9: end while
10: No isolated interval. Discard pixel
11: Perform 10 bisections of the isolated interval, keeping the

half with the root in each.

Fig. 5. Number of steps taken along each ray for a Barth tenth order surface
for the AMP algorithm without silhouette adaptation (left), with it (middle)
and difference image scaled by 2 for legibility (right). Darker colour indicates
fewer steps.

Silhouette Adaptation: The view-dependent silhouettes represent
regions of close and multiple roots. It is important to sample
the ray finely near them. We do that by decreasing the step-size
near the silhouettes. The derivative magnitude|F ′

f (t)| serves as a
horizon measurewhich is close to zero near internal and external
silhouettes of even complex implicit surfaces. As described ear-
lier, F ′

f (t) = ~∇S(x, y, z) · Df and can be computed efficiently.
The step size can be a monotonic function of|F ′

f (t)|. In practice,
we halve the step-size when the horizon condition|F ′

f (t)| ≤ ǫ

is satisfied (Algorithm 1). Thus, region V of Figure 3 will have
reduced step sizes in order to render silhouettes well. Olievera et
al. used the angle between the viewing direction and the surface
normal to control the step size while ray-tracing height-fields on
the GPU [36]. Hadwiger et al. used a multiple of base sampling
rate for better quality near silhouettes for better quality[29].

Combining distance and silhouette adaptation, we fix the step-
size in each iteration using the following formula

s =

8

>

>

<

>

>

:

b/4 if |S(p(t))| ≤ τ1 and |~∇S(p(t)) · Df | ≤ τ3
b/2 if |S(p(t))| ≤ τ1
2b if |S(p(t))| > τ2
b otherwise

(2)

where b is the base stepsize andτ1, τ2 and τ3 are thresholds.
The root-containment test (Step 5, Algorithm 1) is also critical
to isolating roots and can be implemented in different ways.Two
promising ones are the sign test and the Taylor test described
below.
Sign test:Root exists if the function changes sign between the
end points of the step, i.e., if(S(p(ti)) ∗ S(p(ti+1)) < 0). This
test is simple to implement as only the function values at the
sample points are needed. It is a strict test that does not produce
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Fig. 6. Top row: Steiner, Cross Cap, Miter, Kiss and High Silhouette surfaces
ray-traced using the AMP method with sign test. Multiple roots are missed by
it. Middle row: Surfaces shifted by 0.01 using AMP and sign test. Region of
multiple roots tend to be fattened. Bottom row: Same surfaces rendered using
AMP and Taylor test. The performance is more robust for multiple roots.

false roots. It misses roots if an even number of roots are in the
step, however.
Taylor test: This test checks if the function values and linear
extensions of them enclose a zero. Interval arithmetic has been
used for robust root finding and this test is inspired by it. We
use an interval extension employing the function values at the
endpoints as well as the first order Taylor series approximation
of the function at the middle of the interval computed from both
endpoints (Figure 2). This works adequately for moderate lengths
of intervals. The extension ofF in the interval[ti, ti+1] is defined
as F̃ ([ti, ti+1]) = [min {p, q, r, s}, max {p, q, r, s}], where

q = F (ti) + F ′(ti)
(ti+1−ti)

2 , p = F (ti),

r = F (ti+1) − F ′(ti+1)
(ti+1−ti)

2 , s = F (ti+1)
(3)

This test is slower than the sign test because of the derivatives but
larger step-sizes can be used. This test can produce false roots,
but works robustly in practice and can handle multiple rootswell.

The AMP scheme can, however, miss multiple roots or produce
false roots based on the specific test used and the step size. A
comparison of different tests for multiple roots is shown inFigure
6. The sign test can miss the root when the interval contains
multiple roots. We can offset the surface by a small value to
renderS(x, y, z) = ǫ to alleviate problem (Figure 6). Though we
are rendering a different surface, the results are close. Offsetting
is similar to theS(x, y, z) ≤ ǫ test for roots used by sphere tracing
[34]. The Taylor test imitates interval extension and produces
robust results similar to the interval-based method (Figure 6).
Figure 4 shows the effect of silhouette adaptation. The aliasing
at the silhouettes reduces sharply with silhouette adaptation.
The superquadrics have the most challenging silhouettes asthe
surface is notC1 continuous. The aliasing effects can be seen
occasionally on these surfaces on the video. Figure 5 shows the
number of iterations used for each pixel as a measure of the
work done for the Barth decic surface. The extra effort near the
silhouettes can be observed when silhouette adaptation is used.

Algorithm 2 ImplicitSurface Render ( f)
CPU:

1: Setup equations in the shader program.
2: Send a dummy quad to the OpenGL pipeline.

Vertex Shader:
1: Pass through vertices and the camera center to the geometry

shader.

Geometry Shader:
1: Transform the quad to a screen-facing one and pass ray

direction to the vertices, the camera center, near, and far plane
distances to the pixel shader.

Fragment Shader:
1: Intersect each ray with the near and far planes to get the range

[ts, te].
2: Isolate and find the root using the AMP algorithm.
3: Shoot rays to light source and perform root-isolation for it.

If root is found, the point is under shadow.
4: Compute colour and depth using the position, normal, and

shadowing at the intersection point.

The most work is done for non-intersecting rays as the entire
range oft values need to be sampled.

IV. RESULTS

We could render algebraic surfaces up to order 50 robustly
including all surfaces shown in the MathWorld site and several
non-algebraic and transcendental objects. Screenshots ofthese
surfaces appear in Appendix. The equations of the corresponding
surfaces is given in the Appendix. First, we display the overall
ray-tracing algorithm and some of its implementation issues.

A. Overall Algorithm and Implementation Issues

The overall pseudo code is given in Algorithm 2. The im-
plementation is in OpenGL/GLSL for the SM4.0 architecture
of the Nvidia 280 GTX GPU. The following steps were used
for efficiency. (a) The shaders for the function to evaluate the
expressionS(p(t)) and its gradient (if necessary) are synthesized
on the fly by the CPU. The shaders are compiled on the fly in
any case. We also computeS(p(t)) and its gradient together in
one function for faster evaluation as this will help in minimizing
redundant computations where they exist. (b) Products of vectors
are used to computex2, y2, z2, x3, y3, z3, etc., simultaneously
within the shaders. Dot products are used wherever possible. (c)
Tight screen-space and depth bounds improves the timing greatly.
We couldn’t take much advantage of this as the complex surfaces
we used cannot be bounded easily.

B. Rendering Times

Table I presents the frame rates of our algorithm on several
algebraic and non-algebraic surfaces with and without shadow
rays on an Nvidia 280 GTX for a resolution of512×512. (See our
technical report for timings on Nvidia 8800 GTX [17]). Results
are given for ray-tracing with and without shadow-rays. Shadow
rays start from each point and perform the root-isolation using
exactly the same algorithm. The bisection to get the exact root is
not necessary as we only need to know if there is an intersection.
Our rendering times are better than work reported in the literature
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for higher order surfaces and very competitive for lower order
ones. We also obtain real-time results on surfaces much more
complicated than have been reported before. The best reported
effort by Knoll et al. achieve a frame rate of 121 on a quartic
surface, 88 on a sextic surface, and up to 108 on superquadric-like
surfaces on the GPU [6]. They use interval or affine arithmetic,
which may not easily extend to complex algebraic surfaces. Table
II shows comparison with the surfaces they use. Our method is
faster than their scheme and allows for simple extension to even
higher order surfaces than used by them. Table III shows the
rendering of different surfaces on the CPU. The rendering times
on CPU is slower by an orders of magnitude of that on GPU
due to lack of parallelism. This shows that the AMP algorithm
is suited for GPU. Figure 7 shows screenshots of some of the
surfaces.

C. Performance: Discussion

The performance of any GPU ray-tracing algorithm depends on
three aspects: the algorithmic complexity, the per-pixel computa-
tional load, and the match with SIMD architecture of the GPUs.
The adaptive marching points algorithm has a linear complexity in
the distance to the surface as the ray is sampled till a hit. Rays that
do not intersect with the surface are the most expensive. Mitchell’s
method [12] and others inspired by it use a recursive formulation
and have a logarithmic complexity, but suffer due to the non-
availability of robust interval extensions for arbitrary surfaces. The
AMP method has low per-pixel computations as onlyS(x, y, z)

and its gradient are evaluated. Root finding algorithms that
use higher derivatives and theFf (t) formulation have higher
computations per pixel. The sampling approach also fits the SIMD
architecture of the GPU; Algorithm 1 has minimal divergencein
the shader code between fragments compared to interval based
methods [6], [17], which is key to good performance on the GPUs.
The higher complexity is thus more than compensated by the
lighter computation load and good match with the architecture.

We explore the performance of our algorithm on the Chmutov
14th order surface as a typical case. A normal view of the
surface from outside evaluated the surface equation on an average
70 times per ray when the sign test is used without shadows.
Maximum number was for the rays with no intersection. Over
75 floating point operations are needed per evaluation of the
S(x, y, z), giving a computation load of 1.38 billion operations
per frame. The surface renders at about 460 fps on an Nvidia GTX
280. This translates to 635 GFLOPS of sustained computations,
which is about 65% of the peak floating point performance of
the GPU. Though AMP algorithm works on the CPU also (see
Table III), the 1.38 GFLOP per frame makes its performance non-
attractive. Each frame is rendered in about 9 seconds, giving a
performance of about 150 MFLOPS or about 3% of the peak
rating of the CPU.

D. Dynamic Implicit Objects

A dynamic implicit object changes its form over time and are
challenging to render. The rayskip algorithm ray-traces dynamic
implicits by exploiting the temporal and spatial coherenceof ray-
implicit intersections [37]. Knoll et al. render dynamic implicits
as 4D implicits in an(x, y, z, t) space [16]. Our scheme ray-traces
the surface independently in each frame without any precom-
putations or subdivisions. Thus, the equation can change each

Fig. 8. Dynamic objects: Two views of an evolving object with75 Blinn’s
blobbies rendered at over 35 fps (left) and of twisting superquadric rendered
at over 900 fps (right).

frame without affecting the performance in any way. Temporal
coherence can be used but the additional book-keeping slows
down the process in practice on the GPUs. Figure 8 shows a
few views a Blinn’s Blobby with 75 blobbies and a twisting
superquadric. The topology of the blobby changes from each
being independent spheres to a single fused object as seen in
the video. We render the blobby at a framerate of 35 fps or more
and the superquadric at over 900 fps.

E. Varying step-size and thresholds

The base step-size and thresholds for adaptation are selected
based on the surface and has an impact on the correctness of
the image. Figure 9 shows the effect of varying the step-sizeon
Barth Decic. Many intersections are missed when using largestep
sizes and the effect appears like toothed edges of the surface. The
quality gets better as the step-size decreases. Simultaneously, the
frame rate also decreases as more intervals need to be tested.
The effect of varying the thresholds used in Algorithm 1 is also
show in Figure 9 in a Chmutov Octic surface. We setτ2 = 2τ1
and τ3 = 1

2τ1 for this exploration. Larger steps are taken until
very close to the surface when the threshold is small and several
intersections are missed, resulting in artifacts. As the threshold
increases, smaller steps are used and the quality improves,but at
the cost of rendering speed. There is also a trade-off between the
step-size and the threshold. If the step-size is small, the threshold
has less impact on the results. The accompanying video shows
the effect of varying the step-size and threshold more clearly.

Fig. 9. Top row: Barth Decic with stepsizes 0.015 (573), 0.025 (601), 0.045
(663) and 0.085 (806). Bottom row: Chmutov Octic withτ1 0.01 (1053), 0.009
(1160), 0.007 (1411), 0.0065 (1481) and 0.006 (1555) for each τ2 = 2τ1 and
τ3 = 1

2
τ1. Numbers in parenthesis give the FPS.

F. Correctness and Robustness

Interval Arithmetic approximates the convex hull of the surface,
which gets refined to the actual surface when the interval is
smaller [6]. The AMP method searches for intersection with the
surface in discrete steps and can isolate any single root with a
small-enough step size. Multiple roots pose challenges to all root
finding techniques, but the interval-based methods show more
robustness. The Taylor test is equivalent to central approximation
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Fig. 7. Screenshots of (from left to right): Chmutov (50th order), Chmutov 50 (zoomed), NonIsol [8] and Sarti [12] surfaces

of Interval Arithmetic (IA) when step-size is small and willinherit
the correctness of IA methods.

G. Limitations

The performance of the AMP algorithm depends on the step
size. The optimum step-size is surface dependent; the Endrass
and Hunt surfaces needed very small steps to work correctly as
shown in Table I. A conservative step-size can produce correct
results, but with a drop in speed.

The GPUs primarily support only single precision arithmetic.
This has not been a problem in the class of algebraic and non-
algebraic surfaces we explored. The computation of high order
polynomials, however, needs to be done carefully as numerical
instabilities can produce wrong results. The Chmutov surfaces of
orders greater than 18 have serious artifacts due to false roots
near±1 when the Chebyshev polynomial equations are evaluated
directly using the powers ofx, y, and z [17]. This was not
due to lower precision as the double precision implementation
on the CPU exhibits the same behavior. However, the problems
disappear when the iterative or the sinusoidal definitions of the
Chebyshev polynomial is used. (See the Appendix for the iterative
and sinusoidal definitions of the Chmutov surfaces.) The problem
is thus with the computation of higher powers of polynomials,
which is a fact to be kept in mind when rendering complex
surfaces. The rendering speed suffers as the iterative evaluation is
computationally expensive for higher orders. The computational
load is nearly a constant independent of the order using the
sinusoidal formulation as seen in Table I. The direct evaluation
of the polynomial is the quickest for orders up to 18.

Our algorithm had difficulty rendering some of extremal im-
plicit surfaces. Such surfaces have zero mean curvature andare
very challenging to handle. We could render most other implicit
surfaces, though complex surfaces could exhibit numericalinsta-
bilities as described above.

V. CONCLUSIONS& FUTURE WORK

We presented a scheme to ray-trace arbitrary algebraic and non-
algebraic implicit surfaces on the GPU at very high frame rates
using the adaptive marching points method in this paper. The
sign-test based root isolation suffices for surfaces with simple
roots; the first-order interval based Taylor-test for root isolation
extends this to many surfaces with multiple roots. The simplicity
of the method is the key factor behind the high performance on
current GPUs. The limited-precision of current GPUs was not
a constraint even on higher order surfaces. The ability to ray-
trace such surfaces provides scientists and other practitioners the

freedom to choose whatever model they want for their data and
use a uniform method for rendering. The performance of the lower
order surfaces is significantly better than the higher orderones.

Whitted and Kajiya propose the use of fully procedural graphics
to exploit the high compute power of the GPUs using the low
external bandwidth they possess [4]. We believe this will bea
direction in the high-performance graphics of tomorrow. General
implicit surfaces are expressive and can be ray-traced faston the
GPUs using our scheme. Ray-tracing can produce exact images
for simple implicit surfaces independent of the resolutionand can
exploit the high compute power of the GPUs effectively. Implicit
or procedural description of geometry provides high quality
without increasing the representational complexity. Simplicity of
the underlying algorithm is critical to extracting high performance
from the SIMD architecture of the current GPUs.

Overall, handling procedural and implicit geometry directly
on fast GPUs will be more common in the future. The GPUs
themselves may need to provide additional features in hardware
to make this easy. This can include higher precision arithmetic,
programmable rasterizers, etc. Procedural elements can also be
applied to other aspects such as textures, normals, shading, etc.
We expect the GPUs will evolve to support this natively and
efficiently.
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Surface Stepsize Sign Test Taylor Test
[order] NS S NS S

Algebraic Surfaces
Chmutov [50] 0.01 65 41 41 30
Chmutov [22] 0.01 160 71 113 49
Chmutov [18] 0.01 344 170 194 144
Chmutov [14] 0.01 457 287 262 224
Chmutov [12] 0.01 462 295 280 232

Sarti [12] 0.015 380 130 200 104
Barth [10] 0.015 573 252 286 176

Chmutov [9] 0.015 521 234 334 187
Endrass [8] 0.01 244 167 215 102
Nonisol [8] 0.01 1035 578 548 386
Chmutov [8] 0.02 1053 575 622 413
Chmutov [7] 0.02 787 256 545 228

Labs [7] 0.015 595 235 311 157
Chmutov [6] 0.02 1289 712 717 539

Hunt [6] 0.01 152 134 78 62
Barth [6] 0.02 836 377 557 247
Heart [6] 0.02 840 703 477 436
Kleine [6] 0.02 1024 356 633 287

High Silhouette[6] 0.02 1143 814 655 523
Dervish [5] 0.02 814 288 466 229

Kiss [5] 0.02 1297 644 774 573
Peninsula [5] 0.03 1349 590 832 489
Steiner [4] 0.02 1210 953 678 540
Cassini [4] 0.02 1147 517 699 371
Tooth [4] 0.03 1500 684 871 521

Piriform [4] 0.02 1450 1349 831 781
Cross-Cap[4] 0.02 1200 948 606 530

Miter [4] 0.02 1660 1140 891 645
Kummer [4] 0.02 1400 436 823 371
Goursat [4] 0.04 1700 930 1014 700
Cushion [4] 0.02 880 587 460 358

Nordstrands [4] 0.03 945 281 596 249
Cayley [3] 0.03 1519 481 844 405
Clebsch [3] 0.03 940 264 633 212

Ding-Dong [3] 0.03 1924 943 1188 739

Non-Algebraic Surfaces
Chmutov 50 0.01 207 124 145 87
Chmutov 22 0.01 217 130 152 91
Chmutov 18 0.01 244 147 171 102
Chmutov 14 0.01 254 152 178 106

Torus 0.04 1650 915 922 628
Superquadric 0.02 900 751 394 366

Blobby 0.05 1226 509 780 418
Blinn’s Blobby 0.05 1304 1022 691 620

Scherk 0.03 1112 449 718 390
Diamond 0.04 1300 309 983 272

TABLE I

FRAME RATES FOR ALGEBRAIC AND NON-ALGEBRAIC SURFACES FOR

OUR ALGORITHM FOR A512 × 512 WINDOW ON AN NVIDIA 280 GTX,

WITHOUT SHADOW (NS COLUMNS) AND WITH SHADOW (S COLUMNS).

THE ORDER OF ALGEBRAIC SURFACES APPEARS WITHIN SQUARE

BRACKETS. THE STEPSIZE IS ALSO SHOWN.

Surface Knoll et al. [6] AMP using Sign Test
8800 GTX 8800 GTX 280 GTX

Steiner 38 233 487
Teardrop 121 195 408
Tangle 71 216 451

Barth Sextic 88 132 249
Kleine 101 187 350

Mitchell 60 194 363
Barth Decic 16 103 225
Superquadric 108 170 282

TABLE II

COMPARISON OF FRAME RATES FOR DIFFERENT SURFACES USING

KNOLL’ S METHOD AND THE AMP METHOD ON COMMON SURFACES FOR

A 1024 × 1024 WINDOW ON THE SAMEGPU NVIDIA 8800 GTXAND ON

NVIDIA 280 GTX.

Surface AMP using sign test
[Order] CPU 280 GTX

Ding Dong [3] 987 0.52
Nordstrands[4] 3160 1.05

Torus[4] 2674 0.60
Dervish[5] 4152 1.23
Kiss [5] 3647 0.77

Chmutov [6] 5371 0.77
Heart [6] 5027 1.19

Chmutov [8] 6853 0.95
Barth [10] 7969 1.75

Chmutov [18] 9562 2.90
Chmutov 50 27875 4.83

(Non Algebraic)

TABLE III

RENDERING TIMES IN MILLISECONDS FOR A RESOLUTION OF512 × 512

ON THE CPUUSING AMP WITH SIGN TEST



10

APPENDIX I
SURFACES: EQUATIONS AND SCREEN-SHOTS

Cubic Surfaces

1) Ding-Dong: x2 + y2 = z(1 − z2).
2) Clebsch:81(x3 + y3 + z3) − 189(x2(y + z) + y2(x + z) +

z2(x+y))+54xyz+126(xy+yx+xz)−9(x2+y2+z2)−
9(x + y + z) + 1 = 0.

3) Cayley:−5(x2(y + z) + y2(x + z) + z2(x + y)) + 2(xy +

yx + xz) = 0.

Quartic Surfaces
1) Torus: (x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2) = 0.
2) Nordstrands:25(x3(y + z) + y3(x + z) + z3(x + y)) +

50(x2y2 + y2x2 + x2z2) − 125(x2yz + y2xz + xyz2) −
4(xy + yx + xz) + 60xyz = 0.

3) Cushion:z2x2 − z4 − 2zx2 + 2z3 + x2 − z2 − (x2 − z)2 −
y4 − 2x2y2 − y2z2 + 2y2z + y2 = 0.

4) Goursat:x4 + y4 + z4 − 1 = 0.
5) Kummer:x4 + y4 + z4 − x2 − y2 − z2 − x2y2 − y2z2 −

z2x2 + 1 = 0.
6) Miter: 4x2(x2 + y2 + z2) − y2(1 − y2 − z2) = 0.
7) Cross Cap:4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0.
8) Piriform: x4 − x3 + y2 + z2 = 0.
9) Tooth: x4 + y4 + z4 − x2 − y2 − z2 = 0.

10) Cassini: ((x + a)2 + y2)((x − a)2 + y2) = z2 wherea is
the radius of the circle.

11) Steiner:x2y2 + x2z2 + y2z2 − 2xyz = 0.

Quintic Surfaces

1) Peninsula:x2 + y3 + z5 − 1 = 0.
2) Kiss: x2 + y2 = z(1 − z4).
3) Dervish:64(x−1)(x4−4x3−10x2y2−4x2+16x−20xy2+

5y4+16−20y2)−5a(2z−a)(4(x2+y2+z2)+(1+3
√

5))2 =

0 wherea =
p

5 −
√

5.

Sextic Surfaces
1) Barth: 4(φ2x2−y2)(φ2y2−z2)(φ2z2−x2)−(1+2φ)(x2+

y2+z2−1)2 = 0 whereφ = (1+
√

5)/2 is the golden ratio.
2) Hunt: 4(x2 +y2+z2−13)3 +27(3x2 +y2−4z2−12)2 = 0

3) Kleine: (x2 + y2 + z2 + 2y − 1)(x2 + y2 + z2 − 2y − 1)2 −
8z2] + 16xz(x2 + y2 + z2 − 2y − 1) = 0 represents a 3D
impression of the Kleine bottle.

4) Chmutov: T6(x) + T6(y) + T6(z) = 0 where T6(x) =

2x2(3−4x2)2−1 = 32x6−48x4+18x2−1 is the Chebyshev
polynomial of the first kind of degree 6.

5) Heart: (2x2 + 2y2 + z2 − 1)3 − 0.1x2z3 − y2z3 = 0.
6) High Silhouette:x6 − y5 − 2x3y + y2 = 0

Septic Surfaces
1) Chmutov:T7(x) + T7(y) + T7(z) + 1 = 0 whereT7(x) =

64x7 − 112x5 + 56x3 − 7x is the Chebyshev polynomial of
the first kind of degree7.

2) Labs: P − Uα = 0 whereP = x7 − 21x5y2 + 35x3y4 −
7xy6+7z((x2+y2)3−8z2(x2+y2)2+16z4(x2+y2))−64z7,
Uα = (z + a5)((z + 1)(x2 + y2) + a1z3 + a2z2 + a3z +

a4)
2,a1 = (−12/7)α2 − 384/49α− 8/7,a2 = (−32/7)α2 +

24/49α − 4,a3 = (−4)α2 + 24/49α − 4,a4 = (−8/7)α2 +

8/49α − 8/7,a5 = 49α2 − 7α + 50 andα = −0.14010685

Octic Surfaces

1) Nonisol: x8 − y8 − 2x4y + y2 = 0

2) Chmutov: T8(x) + T8(y) + T8(z) = 0 where T8(x) =

128x8 − 256x6 + 160x4 − 32x2 + 1.

3) Endrass:64(x2 − 1)(y2 − 1)(ab) − (c + d + e)2 = 0 where
a = (x + y)2 − 2, b = (x − y)2 − 2, c = −4(1 −

√
2)(x2 +

y2)2, d = 8(2 −
√

2)z2 + 2(2 − 7
√

2)(x2 + y2) and e =

−16z4 + 8(1 + 2
√

2)z2 − (1 − 12
√

2). Like many higher
order algebraic surfaces, the Endrass octic appears like a
collection of surfaces.

Nonic Surfaces
1) Chmutov:T9(x) + T9(y) + T9(z) + 1 = 0 whereT9(x) =

256x9 − 576x7 + 432x5 − 120x3 + 9x is the Chebyshev
polynomial of the first kind of degree 9.

Surfaces of order more than 10
1) Barth Decic:Barth decic is a tenth order surface with the

equation8(x2 − φ4y2)(y2 − φ4z2)(z2 − φ4x2)(x4 + y4 +

z4 − 2x2y2 − 2x2z2 − 2y2z2) + (3 + 5φ)(x2 + y2 + z2 −
1)2(x2 + y2 + z2 − 2 + φ)2 = 0 whereφ = (1 +

√
5)/2 is

the golden ratio.
2) Sarti Dodecic:This surface which is of order twelve with

the equation243 S−22 Q = 0, whereQ = (x2 +y2 +z2 +

1)6 andS = 33
√

5(s−2,3+s−3,4+s−4,2)+19(s+
2,3+s+

3,4+s+
4,2)+

10s2,3,4−14s1,0+2s1,1−6s1,2−352s5,1+336l25l1+48l2l3l4
with l1 = x4 + y4 + z4 + 1, l2 = x2y2 + z2, l3 = x2z2 +

y2, l4 = x2 + y2z2, l5 = xyz, s1,0 = l1(l2l3 + l2l4 + l3l4),
s1,1 = l21(l2 + l3 + l4), s1,2 = l1(l22 + l23 + l24), s2,3,4 =

l32 + l33 + l34, s±2,3 = l22l3 ± l2l23, s±3,4 = l23l4 ± l3l24, s±4,2 =

l24l2 ± l4l22, ands5,1 = l25(l2 + l3 + l4).
3) Chmutov of Higher Orders:Tn(x) + Tn(y) + Tn(z) = 0

for n = 14, 18, 22 and50 andTn is Chebyshev polynomial
of first kind of degreen.
Tn(x) can be definediteratively as:

Tn(x) =

8

<

:

1 if n = 0

x if n = 1

2xTn(x) − Tn−1(x) otherwise

Tn(x) can be definedsinusoidallyas:

Tn(x) =

8

<

:

cos(n arccos(x)) x ∈ [−1, 1]

cosh(n cosh−1(x)) x > 1

(−1)n cosh(n cosh−1(−x)) x < −1

A. Non-Algebraic Surfaces Equation

1) Torus: (c −
p

x2 + y2)2 + z2 = a2.

2) Blinn’s Blobby:
PN

i=1
r2

i

||x−ci||2+ǫ
− 1.0 = 0.

3) Blobby:x2+y2+z2+sin(4x)−cos(4y)+sin(4z)−1.0 = 0.
4) Scherk’s Minimal:exp(z) ∗ cos(y) − cos(x) = 0.
5) Diamond:sin(x)∗sin(y)∗sin(z)+sin(x)∗cos(y)∗cos(z)+

cos(x) ∗ sin(y) ∗ cos(z) + cos(x) ∗ cos(y) ∗ sin(z) = 0.
6) Superquadrics:Superquadric surfaces are given by the

equation|x|m + |y|m + |z|m − 1.0 = 0 for different values
of m. Fractional values produces concave sides. The shape
approximates a cube with rounded edges for high values of
m.
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Chmutov [50] Chmutov [22] Chmutov [18] Chmutov [14] Sarti [12] Barth [10] Chmutov [9]
(65) (160) (344) (457) (380) (573) (521)

Endreass [8] Chmutov [8] NonIsol [8] Chmutov [7] Labs [7] Chmutov [6] Hunt [6]
(244) (1053) (1035) (787) (595) (1289) (74)

Barth [6] High Silhouette [6] Heart [6] Kleine [6] Dervish [5] Kiss [5] Peninsula [5]
(836) (1143) (840) (1024) (814) (1297) (1349)

Steiner [4] Cassini [4] Tooth [4] Cross Cap [4] Miter [4] Kummer [4] Goursat [4]
(1210) (1147) (1500) (1200) (1660) (1400) (1700)

Cushion [4] Nordstrands [4] Piriform [4] Cayley [3] Clebsch[3] Ding-Dong [3]
(880) (945) (1450) (1519) (940) (1924)

Fig. 10. Pictures of various algebraic surfaces with the order of the surface shown within square brackets and the FPS using the adaptive marching points
algorithm shown within parenthesis for a512 × 512 window.

Chmutov 50 Torus Blinn’s Blobby Blobby Scherk Diamond Superquadric
(207) (1650) (1304) (1226) (1112) (1300) (900)

Fig. 11. Pictures of the non-algebraic surfaces rendered byus with the FPS using the adaptive point sampling algorithm given in parenthesis for a512×512
window.
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