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Abstract

Graphics Processor Units are used for many general purpose pro-
cessing due to high compute power available on them. Regular,
data-parallel algorithms map well to the SIMD architecture of cur-
rent GPU. Irregular algorithms on discrete structures like graphs are
harder to map to them. Efficient data-mapping primitives can play
crucial role in mapping such algorithms onto the GPU. In this paper,
we present a minimum spanning tree algorithm on Nvidia GPUs
under CUDA, as a recursive formulation of Borůvka’s approach for
undirected graphs. We implement it using scalable primitives such
as scan, segmented scan and split. The irregular steps of superver-
tex formation and recursive graph construction are mapped to prim-
itives like split to categories involving vertex ids and edge weights.
We obtain 30 to 50 times speedup over the CPU implementation
on most graphs and 3 to 10 times speedup over our previous GPU
implementation. We construct the minimum spanning tree on a 5
million node and 30 million edge graph in under 1 second on one
quarter of the Tesla S1070 GPU.

1 Introduction

Modern Graphics Processing Units (GPUs) provide high computa-
tional power at low costs. The latest GPUs, for instance, can deliver
close to 1 TFLOPs of compute power at a cost of around $400. The
GPU has a general, data-parallel programming interface through
CUDA and the recently adopted OpenCL standard [Munshi 2008].
GPUs have become the affordable and accessible computing co-
processors.

The GPUs implement a data parallel architecture, with a common
kernel simultaneously processing a number of data instances. To-
day’s GPUs are also massively mulithreaded with thousands of
threads in flight simultaneously. Such a model is best suited to
process independent data instances. Providing global mapping or
ordering to elements distributed in such a scale is a challenge in
processing less regular data on these architectures. The memory
model and thread scheduling are complex. Suboptimal implemen-
tations suffer severe performance penalties as a result. A non-expert
programmer can get good performance only if efficient data map-
ping primitives are used. Primitives such as scan [Sengupta et al.
2007; Dotsenko et al. 2008], sort, and reduce are available for this
purpose. Reduction of irregular steps into a combination of such
primitives is critical to gain performance on the GPUs.

Minimum spanning tree (MST) computation on a general graph is

an irregular algorithm. The best sequential time complexity for
MST is O(Eα(E, V )), given by Chazelle, where α is the func-
tional inverse of Ackermann’s function [Chazelle 2000]. Borůvka’s
approach to the MST problem takes O(ElogV ) time [Boruvka
1926]. Several parallel variations of this algorithm have been pro-
posed [King et al. 1997]. Chong et al. [Chong et al. 2001] report
an EREW PRAM algorithm with O(logV ) time and O(V logV )
work. Bader et al. [Bader and Cong 2005] provide an algorithm for
symmetric multiprocessors with O((V + E)/p) lookups and lo-
cal operations for a p processor machine. Chung et al. [Chung and
Condon ] efficiently implement Borůvka’s approach on an asyn-
chronous distributed memory machine by reducing communication
costs. Dehne and Götz implement three variations using the BSP
model [Dehne and Götz 1998]. Blelloch [Blelloch 1989] formu-
lates MST using the scan primitive. A GPU implementation using
CUDA is also reported [Harish et al. 2009], using irregular kernel
calls. We, on the other hand exploit parallel data mapping primi-
tives available on the GPU.

Borůvka’s approach finds the minimum weighted outgoing edge at
each vertex and merges connected vertices into supervertices (Fig-
ure 1). Merging is an irregular operation as multiple vertices are
assigned to a single supervertex.

Each Vertex finds the min weighted edge 

to another vertex
Vertices are merged into disjoint 

components called supervertecies

Superverticies are treated as vertices for next 

level of recursion Terminates when one supervertex remains

Cycle making edges are explicitly removed from the MST in each iteration.

Figure 1: Steps of Borůvka’s approach to MST

We formulate Borůvka’s approach in a recursive framework, with
each step implemented using a series of basic primitives. In each
iteration, we reconstruct the supervertex graph which is given as
an input to the next level of recursion. We use the segmented scan
[Sengupta et al. 2007] to find the minimum weighted outgoing edge
from each vertex. We then merge vertices into supervertices us-
ing split and scan primitives. We use a scalable split primitive for
this [Patidar and Narayanan 2009]. A simple kernel then elimi-
nates the cycles. Another split/scan pair is used to remove duplicate
edges and to assign supervertex numbers. The main contribution of
this work is the recursive formulation of Borůvka’s approach for
undirected graphs as a series of general primitive operations. We
compute the minimum spanning tree of a 5M vertex and 30M edge
graph in under one second on a quarter of a Tesla S1070U.



Figure 2: The graph representation

2 Graph representation and primitives

We represent the graph in the standard compress adjacency list for-
mat. We pack edges of all vertices into an array E with each vertex
pointing to the starting index of its edge-list, Figure 2. We create
this representation in each recursive iteration for the supervertex
graph. Weights are stored in array W with an entry for every edge.

Primitives like sort and scan have become fundamental to algorithm
analysis. Many primitives have been ported to the GPU including
scan, segmented scan, reduce, sort [Sintorn and Assarsson 2008]
and split. In our MST implementation we use three parallel prim-
itives: scan, segmented scan and split. We utilize CUDPP library
implementation [Sengupta et al. 2007] for scan and segmented scan.
We use split operation to bring together the vertices to be merged
into supervertices and to remove duplicate edges between super-
vertices for recursive application. We use the implementation given
in [Patidar and Narayanan 2009].

Figure 3: Record, key, and start bit for split primitives

Split is a function that partitions an input relation into a number of
categories and has a wide use in databases, data structure building
and distributed data mapping. Efficient split can be a fundamental
building block to many applications. We use a scalable and effi-
cient implementation of split that can handle a wide range of record
sizes and key lengths. The variation of split we use has the form
split(list[], R, K, S) which splits the list of R-byte records using a
K-bit key starting at bit S of the record (Figure 3). Splitting time
scales linearly with the number of records and key size. We use a
split on a 64-bit record with a 32-bit key and another on a 64-bit
record with a 64-bit key in the algorithm presented in this paper.
Figure 4 summarizes the performance of the split primitive. More
details can be seen at [Patidar and Narayanan 2009] and the code is
available at http://cvit.iiit.ac.in/resources.
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64M 76 155 189 291 376 767 568 858 1167
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Figure 4: Performance of split for different key/record sizes and
lists. X-axis represents combinations of key-size/record size.

Figure 5: Segments based on difference in u, MarkSegments()

3 Minimum spanning tree algorithm

The Borůvka’s approach is summarized in Figure 1. Each vertex of
the graph finds the minimum weighted edge to the minimum out-
going vertex. Cycle making edges are removed and the remaining
edges are added to the output. Vertices of each disjoint compo-
nent is combined into a supervertex, which acts as a vertex for the
next iteration. The process terminates when exactly one superver-
tex remains. Let array V be the vertex-list, E the edge-list, and W
the weight-list. The output of our implementation is a list of edges
present inMST.

3.1 Marking the MST edges

Finding minimum weighted edge: Each vertex u finds the min-
imum outgoing edge to another vertex v using a segmented min
scan. We append the weight to the vertex ids v, with weights placed
on the left. Weights are assumed to be small, needing 8-10 bits,
leaving 22-24 bits for v. The resulting integer array X is scanned
with a flag array F specifying the segment. We use a kernel that runs
over edges to compute F . It marks the first edge in the continuous
edge list for each u as shown in Figure 5. This operation, called
MarkSegments(), is used at other places of the algorithm also. The
segmented min scan on X returns the minimum weighted edge and
the minimum outgoing vertex v for every vertex u. The index of
this edge is stored in the temporary array NWE.

Figure 6: Cycles can only result between two vertices

Finding and removing cycles: Each vertex u has an outgoing
edge assigned to it in the previous step. Since there are |V | vertices
and |V | edges, we can expect at least one cycle to be formed. De-
tecting and removing cycles is crucial. The cycles in an undirected
case can only result between exactly two vertices, as each vertex is
given a unique id initially and the minimum of (weight, v) is chosen
by the segmented scan (Figure 6). We use this property to eliminate
cycles. We create a successor array S using the NWE array to hold
the outgoing v for each u (Figure 7). Vertices with S(S(u))= u
form cycles. The edge from the lower of u and S(u) is removed
from NWE and its successor is set to itself (Figure 8). Remaining
vertices mark their selected edges in the output MST array.

Figure 7: Creating the successor array



Figure 8: Updating successors of cycle forming vertices

3.2 Graph construction

Merging vertices: Vertices combine to form a supervertex next.
The vertices whose successors are set to themselves are represen-
tatives for each supervertex. Other vertices should point to their
respective representative vertex. We employ pointer doubling to
achieve this. Each vertex sets its value to its successor’s succes-
sor, converging after log(l) steps, where l is longest distance of
any vertex from its representative (Figure 9). We iteratively set
S(u)=S(S(u)) until no further change occurs in S.

Figure 9: Pointer doubling gets to the representative vertex

Assigning ids to supervertices: Each vertex of a supervertex
now has a representative, but they are not numbered in order. The
vertices assigned to a supervertex are also not placed in order in the
successor array. We next bring all vertices of a supervertex together
and assign new unique ids to supervertices. We form a size |V | list
L of 64 bit values with the vertex id to the right and its representa-
tive vertex id to the left. L is split using the representative vertex id
as the key. This results in vertices with same representatives coming
together as shown in Figure 10. This, however, does not change the
ids of representative vertices. We create a flag to mark the bound-
aries of representative vertices usingMarkSegments() as mentioned
in Section 3.1. A scan of the flag assigns new supervertex ids (Fig-
ure 10). These values are stored in an array C.

Removing edges and forming the new edge list: We shorten
the edge-list by removing self edges in the new graph. Each edge
looks at the supervertex id of both endpoints and removes itself if
same. For an edge from u to v, the supervertex id of v can be found
directly by indexing C using the value part of the split output of
v. The supervertex id of u requires another scan of size E, as the
vertex list does not store the original id of u explicitly. For this,

Figure 10: Bring vertices belonging to same each supervertex to-
gether using a split (left). Assign ids to supervertices using a scan.

we create a flag using the vertex list with a 1 placed in the location
to which the vertex u points in the edge-list (Figure 5). A scan of
the flag gives the original id for u, using which we can look up its
supervertex id in the C array.

Figure 11: Removing duplicate edges based on uvw split

Duplicate edges from one supervertex to another may exist in the
new set of edges even after removing edges belonging to the same
supervertex. We eliminate non-minimal duplicate edges between
supervertices to reduce the edge-list further. We use a split on the
remaining edge-list for this. We append the supervertex ids of u and
v along with weight w into a single 64-bit array UVW, consisting
of the new id of u (left 24 bits), the new id of v (next 24 bits) and
the weight w (right 16 bits). We apply a 64-bit split on UVW array
and pick the fist distinct entry for each uv combination. We create
a flag on the output of split, based on the difference in uv pair, us-
ing MarkSegments(). This gives the minimum weighted edge from
the supervertex of u to supervertex of v. A scan of the flag array
demarcating uv values returns the location of each entry in the new
edge-list. A simple compaction produces a new edge-list as shown
in Figure 11, removing duplicate edges. A corresponding weight
list is also created similarly. We also store the original edge id of
each edge while compacting entries into the new edge-list. This
is used while marking an edge in the output MST array in subse-
quent recursive applications. The edge-list and the weight-list thus
created act as inputs for the next recursive application of the MST
algorithm.

Constructing the vertex list: To create the vertex list, we need
the starting index for each supervertex in the new edge-list. A flag
based on difference in u can be created on the new edge-list us-
ing MarkSegments(). A scan of this flag gives us the index of the
location to which the starting index must be written (Figure 12).
Compacting these entries gives us the desired vertex-list.

3.3 Recursive invocation

The vertex, edge, and weight lists constructed represent the com-
pact graph of supervertices. The procedure described above can

Figure 12: Creating the vertex list using edge-list



now be applied recursively on it. Since all edges in the reduced
graph correspond to an edge in the original input graph, a mapping
is maintained through all the recursive invocations. This mapping is
used to mark a selected edge in the outputMST array. The recursive
invocations continue till we reach a single vertex.

3.4 The Algorithm

Algorithm 1 presents the complete, recursive MST algorithm as re-
ported in the previous section.

Algorithm 1 MST Algorithm

1: Append weight w and outgoing vertex v per edge into a list, X.
2: Divide the edge-list, E, into segments with 1 indicating the start

of each segment, and 0 otherwise, store this in flag array F.
3: Perform segmented min scan on X with F indicating segments

to find minimum outgoing edge-index per vertex, store inNWE.
4: Find the successor of each vertex and add to successor array, S.
5: Remove cycle making edges from NWE using S, and identify

representatives vertices.
6: Mark remaining edges from NWE as part of output in MST.
7: Propagate representative vertex ids using pointer doubling.
8: Append successor array’s entries with its index to form a list, L
9: Split L, create flag over split output and scan the flag to find

new ids per vertex, store new ids in C.
10: Find supervertex ids of u and v for each edge using C.
11: Remove edge from edge-list if u, v have same supervertex id.
12: Remove duplicate edges using split over new u, v and w.
13: Compact and create the new edge-list and weight list .
14: Build the vertex list from the newly formed edge-list.
15: Call the MST Algorithm on the newly created graph until a

single vertex remains.

4 Performance analysis

We test our algorithm using a quarter unit of Nvidia Tesla S1070
with 240 stream processors spread over 30 multiprocessors and
4096MB of device memory. Use an Intel Core 2 Quad, Q6600,
2.4GHz processor and the Boost C++ graph library compiled us-
ing gcc -O4 for CPU comparison. We show results on three types
of graphs from the Georgia Tech graph generator suite [Bader and
Madduri 2006] and on the DIMACS USA road networks [DIMACS
2006].

• Random Graphs: These graphs have a short band of degree
where all vertices lie, with a large number of vertices having
similar degrees.

• R-MAT: Large number of vertices have small degree with a
few vertices having large degree. This model is best suited to
large represent real world graphs.

• SSCA#2: These graphs are made of random sized cliques
of vertices with a hierarchical distribution of edges between
cliques based on a distance metric.

Our recursive algorithm has two basic steps: marking edges and
graph construction. Graph construction requires a few additional
arrays and increases the memory requirements. This limits the size
of the graph that can be handled on the current GPUs. CUDPP
segmented min scan works only on integer inputs. Weights and
vertex ids need to be packed into a single 32-bit entry, restricting
their ranges. We show results for graphs up to 5M vertices with
30M edges with a maximum weight range 1 to 1K.

We compare our results with a previous implementation from our
group given in [Harish et al. 2009]. We achieve a speed up of 2 to 3
for random and SSCA#2 graphs, and of 8 to 10 for R-MAT graphs.
We achieve a speed up of nearly 30 to 50 times over the CPU on
all graph models. The speed up over the previous implementation
is due the use of scans and split instead of irregular atomic oper-
ations for marking MST edges. In the previous implementation,
each vertex wrote the minimum weighted edge to its supervertex
id atomically in the global memory, resulting in a serialization of
clashes. The marking of MST edges per vertex was linear in the
previous implementation, resulting in load imbalances and thread
divergence. Segmented scan reduces this to a logarithmic step.

Figure 13(a) presents results on varying graph sizes for the random
graph model. The speedup is due to elimination of the atomic op-
erations at a single location in global memory. Figure 13(b) shows
the behavior on varying degree for the random graphs with 1M ver-
tices. Because segmented scan is a logarithmic operation, we see
only a small increase in the time with increasing degree. Figure
13(c) shows the times on varying sizes of R-MAT graphs. We gain
a speed up of nearly 50 over CPU and 8-10 over the previous imple-
mentation. Segmented scan finds the minimum weighted outgoing
edge quickly even if there is large variation in segment sizes as in
case of R-MAT graphs. Varying the degree of R-MAT graph for a
1M vertex graph shows a similar speed gain (Figure 13(d)). Fig-
ures 13(e) and 13(f) show results on the SSCA#2 graph model for
different numbers of vertices and degree respectively. We achieve a
speed up of nearly 30 times over the CPU implementation and 3-4
times over previous implementation.

USA Vertices Edges Time in ms

Graphs CPU GPU1 Our GPU
New York 264K 733K 780 76 39

San Fransisco 321K 800K 870 85 57
Colorado 435K 1M 1280 116 62
Florida 1.07M 2.7M 3840 261 101

Northwest USA 1.2M 2.8M 4290 299 124
Northeast USA 1.52M 3.8M 6050 383 126

California 1.8M 4.6M 7750 435 148
Great Lakes 2.7M 6.8M 12300 671 204
USA-East 3.5M 8.7M 16280 1222 253
USA-West 6.2M 15M 32050 1178 412

Table 1: Results on the ninth DIMACS challenge graphs, weights
in range 1 − 1K. Times in Milliseconds

Table 1 summarizes experiments on the ninth DIMACS challenge
USA road network graphs. Since the segmented min scan requires
vertex id and weights to be packed into 32 bits, we reduce the
weights from 1 − 300K to range 1 − 1K for these graphs. A speed
up of nearly 20 times over CPU for and nearly 3 times over the
previous implementation was observed for our implementation for
these graphs.

5 Conclusions and future work

In this paper, we presented a formulation of the MST problem into
a recursive, primitive-based framework for the GPU. Optimized
primitives can provide high speedups on such architectures. We
achieved a speedup of nearly 50 times over the CPU and 8-10 times
over the best GPU implementation. The recursive formulation is
implemented on the GPUs, with the CPU used to synchronize the
recursion. The use of efficient primitives to map the irregular as-
pects of the problem to the data-parallel architecture of these mas-

1Comparison with GPU implementation given in [Harish et al. 2009]
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(a) Random graphs with varying vertices
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(b) 1M Random graph with varying degree
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(c) RMAT graphs with varying vertices
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(d) 1M RMAT graph with varying degree
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(e) SSCA2 graphs with varying vertices

6 12 18 24 30
10

2

10
3

10
4

10
5

average degree per vertex, number of vertices 1 million

L
o

g
 P

lo
t 

o
t 

ti
m

e
 t

a
k
e

n
 i
n

 m
ill

is
e

c
o

n
d

s SSCA2 CPU

SSCA2 GPU
1

SSCA2 GPU

(f) 1M SSCA2 graph with varying degree

Figure 13: Experiments on varying sizes and varying degree for three types of graph

sively multithreaded architectures is central to the high performance
obtained. We are likely to see more general graph algorithms im-
plemented using such primitives in near future.
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Certain Minimal Problem) (in Czech, German summary). Práce
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