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Abstract—Many computer vision tasks require efficient eval-
uation of Support Vector Machine (SVM) classifiers on large
image databases. Our goal is to efficiently evaluate SVM clas-
sifiers on a large number of images. We propose a novel Error
Space Encoding (ESE) scheme for SVM evaluation which utilizes
large number of classifiers already evaluated on the similar data
set. We model this problem as an encoding of a novel classifier
(query) in terms of the existing classifiers (query logs).

With sufficiently large query logs, we show that ESE per-
forms far better than any other existing encoding schemes. With
this method we are able to retrieve nearly 100% correct top-k
images from a dataset of 1 Million images spanning across 1000
categories. We also demonstrate application of our method in
terms of relevance feedback and query expansion mechanism
and show that our method achieves the same accuracy 90 times
faster than exhaustive SVM evaluations.

I. INTRODUCTION

With the advent of sophisticated features like SIFT [8],
representations like Bag of Words [14] and powerful classi-
fiers like Support Vector Machine (SVM), it is now possible
to capture the visual content more effectively. This is often
modeled as visual categorization. Most of the successful
categorization schemes use SVMs, where the category (query)
is represented as a hyperplane (w) which separates images
of a specific category from the rest of the images. We are
interested in efficient evaluation of linear SVM classifiers
over a large set of images that returns k highest scoring (top-k)
images as a result. Problems such as discriminative mining of
concepts [13], incremental learning for interactive vision [12],
large scale image retrieval [7] etc. often require evaluation of
multiple SVM classifiers on large datasets.

Exhaustively evaluating query w on a large database is
computationally inefficient. It becomes even more difficult
as the number of categories grow rapidly. Even for linear
SVMs, it takes O(md) operations to evaluate a query on the
database of m images represented by d dimensional features.
As many state of the art feature representations have very high
dimensions (e.g. Bag of Words), we are interested in exploring
an evaluation scheme whose computational complexity is
independent of d without compromising the accuracy.

One approach to reduce the SVM evaluation time is prun-
ing of the images to retrieve top-k results [10]. Although the
method works very well in case of binary features, it doesn’t
perform well on popular real or integer valued features. Song
et al. [15] proposed sparselet model based on sparse coding

Fig. 1: Conceptual View of our Approach. The idea is to rep-
resent a new query (SVM hyperplane) in terms of previously
evaluated queries (wq =

∑p
i=1 αiwi). Then, pre-computed

rank lists can be efficiently merged to retrieve results. Thus,
we avoid evaluating SVM query on entire database which is
computationally intensive task.

of the part filters. The number of classes to be considered in
such a setting is still quite limited, and often known apriori.
Raval et al. [11] proposed a method to learn eigen queries
using principal component analysis and used them for efficient
image retrieval. However, this method fails to handle queries
which are not in the span of the limited number of eigen
vectors considered.

With explorations in large visual hierarchies of concepts,
semantic relationship in feature space has become very im-
portant [4]. We argue that evaluation of certain classifiers
(categories) can give us useful information about evaluation
of novel (both related and distant) categories. In this work,
we approximate the new query classifier with the help of a
set of already evaluated similar classifiers. The motivation
behind our work is in the long tail distribution of categories
(queries) [17]. With very few distinct queries, one can answer
similar new queries without much computation. For example,
even though two queries “mountain” and “hills” are different,
one can be approximated by another without significantly
affecting their results. Also, there may be cases where the
result of a new query can be easily computed using the results
of few related existing queries. For example, results of a
query “garden” can be computed using queries like “flowers”,
“lawn”, “plants” etc. We also address the problem of rare
queries which are very different from those in the query logs.

We propose an efficient technique to evaluate linear SVMs
on large image databases by exploiting the history of the
previous SVM evaluations. The complexity of our algorithm



is independent of the dimensionality of data (d). Intuitively,
we transform the query from d dimensional feature space to p
dimensional concept space. Here p� d, because the number
of distinct concepts needed to approximate a novel query are
very less [17]. The knowledge of these concepts (classifiers)
can be gained through previous queries (query logs). Results
(rank lists) of a set of classifiers in query logs are precomputed
on the database. To evaluate a novel query, we first transform
the query into concept space by representing it in terms
of known classifiers (basis classifiers). Then, result (rank
list) of the novel query is efficiently computed by merging
precomputed rank lists of basis classifiers (see Figure 1). The
proposed approach can be categorized as a special kind of
ensemble method [18].

II. EFFICIENT EVALUATION OF LINEAR SVMS

We propose fast and scalable evaluation of SVM classi-
fiers on a large number of images. We start with an assumption
that the system has enough access to reasonably large query
logs, i.e. a large set of popular queries from the past.

A. Query Logs and Indexing

As a running example, we consider a database which con-
tains 1500 images from 20 categories of Caltech256 [6]. The
database is called Var20 and is described in [3]. We use dense
SIFT [8] based Bag of Words representation with a vocabulary
size of 1K visual words. We consider the query logs as a set
of n distinct SVM classifiers W = {w1, . . . ,wn}. All these
classifiers are evaluated on the entire database which contains
m images x1, . . . ,xm. The SVM scores, sij = wi

Txj,
are the confidence of the jth image about the ith concept.
We initialize the query logs with 5K classifiers built for 10
categories. These classifiers are built using linear SVM [2]
by randomly selecting 20 positive images and 100 negative
images. Similarly, we generate 800 queries, out of which 500
are either duplicate or almost same (Repeated Queries) and
rest 300 are the ones for which similar queries are present in
the query logs (Frequent Queries). For the rest 10 categories,
we generate another 200 queries for which there are no similar
queries available in the query log (Rare Queries).

B. Representation of Novel Queries

Given a novel query wq, we want to represent it as a
linear combination of existing queries.

wq =

p∑
i=1

αiwi (1)

In such a setting, there are many questions to be answered.
How to select p? How do we obtain a set of useful wi for
a given query? How do we compute αi? For efficiency, we
want p to be small and α to be sparse. The optimal α can
then be found by solving the below problem.

minimize
α

||wq −
p∑
i=1

αi.wi||

(a) Frequent Queries (b) Rare Queries

Fig. 2: Comparison of approximation error using various
methods. In case of frequent queries all LSE, OMP and RRM
gives similar results. But in case of rare queries RRM gives
far better approximation compared to LSE/OMP.

The approximation error Err is defined as

Err = (wq −
p∑
i=1

αi.wi)
T (wq −

p∑
i=1

αi.wi) (2)

Various popular methods like Least Squared Error (LSE) [16]
or Orthogonal Matching Pursuit (OMP) [9] solve this problem
optimally. However, in our case we also need to select useful
set Wp from W . Thus, the above objective function will
change as shown below.

minimize
α,Wp

||wq −
p∑
i=1

αi.wi||,wi ∈Wp

Many approximate solutions exist to solve this problem by
fixing Wp. For example, one might apply principal com-
ponent analysis (PCA) on query logs and fix Wp as top
eigen vectors [11]. Instead of PCA, other methods like linear
discriminant analysis (LDA) [5] can also be used to achieve
the same goal. However, in all these methods Wp is computed
independently of the query wq and the same Wp is used
to approximate all future queries. This generalization results
into poor approximation1 for many queries which are out
of span of Wp. We claim that a new query can be better
approximated using similar queries from the past. Therefore,
we find the suitable Wp for every query based on the p
nearest neighbours of wq from the query logs (W). Selecting
nearest neighbours results into smaller coefficients (during
approximation) which leads to faster convergence.

Since we fix Wp, the problem becomes that of minimizing
α, which can be solved using techniques like LSE/OMP as
discussed above. As the dimensionality d of the space could
be much higher than the concepts present in the database (i.e.
p� d), this approximation could be very poor. One direction
to reduce the error rate is to increase p as shown in Figure 2.
This draws an interesting conclusion; if similar queries exist
in the query log, the approximation is more accurate. While
for completely different queries, the approximation could be
very poor due to lack of representative basis classifiers in the
query neighbourhood.

To improve the approximation for rare queries, we propose
a different technique of query approximation – Recursive

1For the same number of basis classifiers approximation error (Err) using
PCA is more than 4 times the Err using our method.



Algorithm 1 Recursive Residual Minimization (RRM)

Input: Query wq, error threshold ε, #Neighbours l
Output: Approximated Query w′q

1: w′q = 0
2: r = wq

3: while ||r|| ≥ ε do
4: wi = Neighbours(r), i = 1 → l, where wi is ith

nearest neighbour of r
5: Find αi such that ||r −

∑l
i=1 αi.wi|| is minimized

6: r = r −
∑l
i=1 αi.wi

7: w′q = w′q +
∑l
i=1 αi.wi

8: end while

Residual Minimization (RRM). RRM solves the above min-
imization problem by finding best w and its corresponding
coefficient together. The idea is to minimize the error by
recursively approximating the residue r (difference between
query and its approximation) with its l nearest neighbours,
where l � p. For a given query wq finding approximated
query w′q using RRM is outlined in Algorithm 1.

We compare the approximation process with (i) LSE (ii)
OMP and (iii) RRM in Figure 2. For a frequent query,
all three methods give low approximation error, which is
obvious since the representative classifiers are available in
the query log. But when the query is rare, most of the basis
classifiers are unrepresentative as they are usually very far
from the query in the feature space. Therefore, both LSE and
OMP can not guarantee an optimal solution with the nearest
neighbours. In our scheme, instead of relying on neighbours
of the query (as they can be very far), we find the neighbours
of residues and using them we approximate the residues
recursively. This recursion process is guaranteed to converge
since at each step we are minimizing the approximation error
Err. Hence, for rare queries our scheme achieves very low
approximation error. However, for frequent queries LSE/OMP
performs slightly better than RRM because it considers all
neighbours at once and find globally optimal solution.

To take advantage of both the methods we consider a
novel technique called Error Space Encoding (ESE). ESE
chooses the optimum approximation method on the fly based
on the error as shown in Algorithm 2. ESE ensures low
approximation error Err by selecting a method apt for the
nature of the query. At the same time it avoids unnecessary
computations required for optimization.

C. Evaluation of Novel Queries

Once, wq is approximated using ESE, the SVM score for
any image xj can be efficiently computed using query logs
and precomputed scores (Section II-A) as shown below.

sqj = wq
Txj =

p∑
i=1

αiwi
Txj =

p∑
i=1

αisij

The scoring requires dot product of two p dimensional
vectors – coefficients (α) and precomputed scores (s). Ex-
haustive evaluation of SVM requires dot product of two

Algorithm 2 Error Space Encoding (ESE)

Input: Query wq, distance thresholds ε1 and ε2, #Basis
Classifiers p, #Neighbours l

Output: Approximated Query w′q
1: w = nearest neighbour of wq from the indexed query log
2: dist = ||w −wq||
3: if dist < ε1 then
4: w′q = w
5: else if dist < ε2 then
6: Find p nearest neighbours of wq from query log
7: Use LSE/OMP to find w′q by solving Equation 1
8: else
9: Use RRM to find w′q (Algorithm 1)

10: end if

d dimensional vectors. Thus, we gain O(dp ) speedup by
approximating query using p basis classifiers.

When we encounter an extremely rare query which is
out of span of query logs, we add it to the query logs as
it represents a completely new concept. Due to such active
learning we can compute the scores for future queries much
efficiently. Similarly we remove the least frequent classifiers
from query logs periodically. This process of active learning
does not require any additional computation and hence can be
performed on the fly. Thus we develop a complete solution
leading to Life-long Learning.

D. Speedup

The proposed ESE technique intelligently chooses the
optimal method out of Nearest Neighbour (NN), LSE and
RRM such that it maximizes both accuracy and speedup.
Thus, depending on the query, the speedup varies based on
the selected method. For example, if the query is very close
to one of the queries in the query log (less than ε1 distance
apart) the time to evaluate query is only that of finding
nearest neighbours from indexed query log. Hence, the overall
speedup over all queries is the ratio of the time taken by
exhaustive method to the time taken by the corresponding
methods.

According to power law distribution of queries [17], most
of the queries come from a small set of distinct queries
and they also repeat very often. For all such queries our
system gives very high speedup as it only requires to perform
nearest neighbour search over small number of basis classi-
fiers as opposed to exhaustively evaluating SVM over large
database. We simulate this scenario by evaluating previously
constructed 1000 queries and measure the overall speedup.
We find that ESE is 34 times faster than exhaustive SVM
evaluation with comparable accuracy. In addition to ESE
various pruning techniques like Subset Search [11] and Top-K
Ranking [10], can be used to achieve high speedup. However,
in this paper we focus only on the encoding scheme itself.

III. EXPERIMENTS

We evaluate the proposed methods on two image datasets
– Caltech256 [6] and Large Scale Visual Recognition Chal-
lenge 2010 (ImageNet) [1]. First, we measure the performance



Iterations Recall@10 Discrepancy
l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

10 58.1 61.8 69 0.31 0.29 0.20
30 73.2 89.2 91.9 0.18 0.05 0.03
50 86.2 93.8 96.5 0.09 0.02 0.02
80 90.9 96.9 99.1 0.03 0.02 0.006
100 94.8 98.9 99.2 0.02 0.009 0.004

TABLE I: Retrieval Quality of RRM using rare queries on
Var20. Increasing neighbourhood gives better approximation
as more relevant basis classifiers are being used for approxi-
mation. The low value of Discrepancy shows that incorrectly
retrieved images are actually part of the query concept.

with respect to various parameters on a smaller subset of
Caltech256 – Var20. Then, we show the scalability of our
approach by performing experiments on ImageNet. In case of
ImageNet, we use publicly available features – dense SIFT [8]
with histogram of Bag of Words having vocabulary size of
1K. Finally, we discuss how our method can be useful for
various computer vision tasks like relevance feedback and
query expansion.

A. Performance Analysis

In this section, we analyze the performance of our method
on Var20. The database construction and query log generation
is described in Section II-A. In addition to the learned 5K
SVM hyperplanes, we use 5K randomly generated hyper-
planes to construct sufficiently large query log. The error
threshold ε1 and ε2 can be determined empirically by running
few frequent and rare queries on the training data. In our
experiments we set ε1 = 0.1 and ε2 = 0.3 and we use
cosine distance. In all our experiments we use k = 10
unless otherwise stated. We retrieve 2k images and then
perform SVM evaluation on those to retrieve top-k results.
The measurements used to evaluate the performance of our
methods are as follows.

Recall@top-k: We construct the truthset by exhaustively
evaluating query on all the images and retrieving top-k results.
Recall@top-k is the percentage of images from truthset that
are correctly retrieved by our method. Recall@top-k shows
how accurate our results are with respect to the baseline
(exhaustive evaluation of SVM query).

Discrepancy (Desc): We use discrepancy as a measure of
the quality of our top-k retrieved results. It is the difference
between the average distance from the query hyperplane of
the images in truthset and the images we retrieved. Having
low discrepancy shows that, even though retrieved results may
not be exactly same as truthset, they are comparable in terms
of their SVM scores.

Rare Queries: To see how our method (RRM) performs
on rare queries we run multiple rare queries on Var20 and
measure Recall@10 and Discrepancy. We vary the number
of basis classifiers p = iter × l by varying number of
iterations iter and the neighbourhood size l. The results
are summarized in Table I. Note, that increasing p results
into increase in Recall@10 which is obvious as more basis
classifiers are used to reduce the residues. With only 100

Fig. 3: Performance of ESE on more than 1 million images
with 1000 categories.

iterations and neighbourhood size of 3, RRM achieves 99.2%
Recall@10 with only 0.004 Discrepancy. The small number
of Discrepancy in results shows that the incorrectly retrieved
images are indeed part of a query concept and for all practical
purposes the method is as good as exact.

Large Scale SVM Evaluation: To measure the scalability
of our method we scale our dataset Var20 by adding 1 million
images from ImageNet spanning across 1000 categories. We
also add 100K randomly generated hyperplanes to query log
to scale it accordingly. The results of top-50 retrievals are
shown in Figure 3. Even for such a large scale data we achieve
nearly 100% Recall@50 with only 300 basis classifiers.

B. Comparison

In this section we show how the proposed method per-
forms in comparison to the existing techniques. First, we
compare various approximation schemes in terms of their
retrieval quality. We evaluated 100 known queries and 100
unknown queries on Var20 using three methods LSE, RRM
and ESE. We vary the number of basis classifiers from 10
to 100 to measure the Recall@10 as shown in Figure 4.
The figures shows that both RRM and ESE give consistently
high Recall@10 compared to LSE for the same number of
basis classifiers. Also, ESE achieves slightly better Recall@10
as it dynamically selects either LSE or OMP to gain low
approximation error.

Next, we compare ESE with recent technique of approx-
imation through eigen queries [11]. The method approxi-
mate the query using LSE, which performs poorly on rare
queries (as shown in Section II-B). On the other hand our
method approximates the repeated queries with the nearest
query in query logs without extra computations. We compare
our method with [11] on Var20 dataset by executing 100
frequent and 100 rare queries. We vary the number of ba-
sis classifiers/eigen queries and compute average Recall@10
over all queries. With same number of basis classifiers and
eigen queries, ESE achieves 20% more Recall@10 com-
pared to [11]. Also, updating eigen queries to incorporate
rare queries is computationally intensive task because eigen
decomposition has to be performed on entire set of basis
classifiers. While, in case of ESE the updating process is



Fig. 4: Comparison of retrieval quality of various encoding
methods on Var20. ESE performs consistently better than both
LSE and RRM by ensuring minimum approximation error.

as simple as adding rare queries directly to the set of basis
classifiers and does not require any additional computation.

Finally, we compare our method with Top-K Ranking [10].
The idea behind Top-K Ranking is to compute partial SVM
scores at each step and update upper and lower bounds of
the SVM scores for every image. Based on updated bounds
the images which can not be in top-k results are pruned at
every iteration. Although, Top-K Ranking is generic and can
be applied to any kind of features, it is efficient only for binary
features. We show that in case of real/integer valued features
the pruning rate is very slow because of the slow updates
on bounds in each iteration. On the database of 1500 images
(Var20) with 1K dimensional features, our method is 10 times
faster than Top-K Ranking and achieves 100% accuracy in
terms of Recall@10. The speedup is due to the fact that, on
an average Top-K Ranking accesses 970 dimensions out of
1K and the pruning rate is very slow in each iteration due
to real valued features. Note, that Top-K Ranking is an exact
solution while ours is an approximate one.

C. Analysis of Query Approximation

Since, we represent query classifier as a linear combination
of the basis classifiers, several questions may arise - What ba-
sis classifiers are used to represent a specific query classifier?
How well we can represent a query? In this section, we give
qualitative results and try to answer these questions.

We use ImageNet as it has many categories with hierar-
chical category structure which gives intuitive meaning to the
representation. We use a subset of ImageNet hierarchy which
comes under Vehicle category as shown in Figure 5a. The
query log contains classifiers for every category under Vehicle.
Next, we construct a novel query which represents a category
Car, by selecting positive images from every sub-category
of Car and negatives from other categories. The constructed
query is approximated by both LSE and ESE. The high valued
coefficients with their respective basis classifiers are shown
in Figure 5b. We can see from the figure that both LSE and
ESE give higher weights to the classifiers which belongs to

Method Precision@10 Time
iter1 iter3 iter5 (second)

Exhaustive 70 78.33 81.66 0.0271
ESE 70 78.33 81.66 0.0003

TABLE II: Performance of Query Expansion using ESE on
Var20 dataset. ESE is 90 times faster than exhaustive SVM
evaluation while achieving same accuracy.

the sub-categories of Car. This is intuitive because query is
made of images from those categories so in turn it is broken
down into those categories. Note, that ESE has slightly better
approximation compared to LSE, as in case of LSE Pickup
Truck is used to approximate the query. However, the weight
assigned to it is relatively low.

The categories which are similar to the query category
are given higher weights and dissimilar ones are given lower
weights. In case of queries which are out of span of the
query log, the approximation may be poor. Those cases can be
handled by adding rare query into the query log without any
overhead. Thus, the proposed system is designed to adapt to
the trending queries by continuously learning, and improving
the performance (both in accuracy and time) significantly.

D. Relevance Feedback and Query Expansion

Relevance feedback is a popular mechanism to narrow
down the gap between retrieved and intended results. Often
user provides feedback by specifying correct images in the
retrieved results. Based on the feedback the system modifies
the search query and provides refined results to the user.
Usually many feedback iterations with such refinement are
required to capture the real intent of the user. On every iter-
ation, the modified query is evaluated on the entire database
which is very time consuming. We propose an efficient
relevance feedback mechanism using ESE to efficiently refine
the results of a modified query.

If wi is the query in ith iteration, then δw = wi −wi−1
is an update in ith iteration. We can model this δw as a
residue in our method. This will allow us to efficiently eval-
uate wi, just by computing approximation of δw and using
precomputed scores of wi−1. The advantage of evaluating δw
instead of wi, is that the modification ||δw|| on every iteration
will be much smaller than ||wi||. This will enable accurate
approximation with very less number of basis classifiers p
which will in turn result into high speedup.

We tested ESE in the relevance feedback framework using
a subset of ImageNet hierarchy which comes under Vehicle
category. The results of four selected iterations with their
ranked list is shown in Figure 6. The initial query is generated
by randomly selecting positive images of various car types and
negatives images which do not belong to any sub-category
of car. We simulate the user’s feedback where user intends
to retrieve images of Race Car. At every iteration we keep
adding 5 images of a Race Car for this purpose. With only 10
iterations we were able to get Race Car in all top-k results.
It is 50 times faster than exhaustive evaluation over all 10
iterations as it uses only 10 basis classifiers in each iteration.



(a) ImageNet Hierarchy (b) Query Approximation

Fig. 5: Figure 5a shows the subset of ImageNet hierarchy used for the experiments. Figure 5b shows an example of a Query
Approximation for a specific category of Car. The query category Car is approximated by the classifiers of its sub-categories.

Fig. 6: Relevance Feedback using ESE. We show top-5 results
for few iterations, where 5 positive images are added in
each iteration. The top-k results on every iteration change
according to the specified feedback for intended category
Race Car.

The proposed method ESE can also be used in more
general setting of Query Expansion (QE). Instead of user
feedback, QE uses top-k retrieved results of every iteration to
refine the query. In each iteration, top-k results are considered
to be correct and added as positive examples of the query.
For the same reason explained above, ESE can be used to
efficiently perform QE as the change in every iteration will
be very small resulting into high speedup with comparable
accuracy. We use various categories from Var20 dataset as
queries and perform QE using ESE. Total 5 iterations are
performed for every query and in each iteration 5 top ranked
images are added as positive examples. Results averaged over
all queries are summarized in Table II. While we achieve same
accuracy for both ESE and exhaustive evaluation, ESE is 90
times faster than the baseline method.

IV. CONCLUSIONS

We achieve faster evaluation of novel SVM queries with
high accuracy using past SVM queries. We propose RRM
encoding scheme which gives near exact approximation even
for rare queries. We also introduce a complete encoding
scheme, ESE giving “best-of-all” performance. We get nearly
100% correct images in top-k, much faster than exhaustive
evaluation. We also show contribution of our method towards
important applications such as Large Scale SVM Evaluations,
Relevance Feedback and Query Expansion.
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