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Abstract—In this work, we propose an online handwriting
solution, where the data is captured with the help of depth sen-
sors. Users may write in the air and our method recognizes it in
real time using the proposed feature representation. Our method
uses an efficient fingertip tracking approach and reduces the
necessity of pen-up/pen-down switching. We validate our method
on two depth sensors, Kinect and Leap Motion Controller. On a
dataset collected from 20 users, we achieve a recognition accuracy
of 97.59% for character recognition. We also demonstrate how
this system can be extended for lexicon recognition with reliable
performance. We have also prepared a dataset containing 1,560
characters and 400 words with the intention of providing common
benchmark for handwritten character recognition using depth
sensors and related research.

I. INTRODUCTION

As computing devices get seamlessly integrated into our
daily lives, the need for natural and intuitive interfaces (HCI) to
interact with them becomes critical. These devices rarely use a
mouse or keyboard and employs natural interfaces like gesture
and speech instead. Natural interfaces using depth sensors like
kinect are getting popular for gesture recognition [1, 2, 3, 4],
sign language recognition [5], signature based authentication
systems [6], and computer games. Wachs et al. [7] also talks
about vision based hand-gesture applications, which include
medical systems and assistive technologies, crisis management
and disaster relief, entertainment and human-robot interaction.
The main challenge in such interfaces lies in terms of respon-
siveness, accuracy, user adaptability and intuitiveness. Using
fingers to interact with a computer is probably the most natural
way in these applications that does not force users to touch
a specific device or to wear special sensors, while allowing
unrestricted use.

Interfaces that use air based writing has evolved a lot in the
recent years. Bunke et al. [8] and Fink et al. [9] used multiple
cameras, whereas [4, 5, 10, 11] used depth sensors for gesture
and handwriting recognition. Lee and Lee [12] proposed the
use of a skin color model to track the hand and fingertips
whereas Oikonomidis et al. [13] models the hand using a
multi-camera setup. Liwicki and Everingham [5] have worked
on recognizing words from video, where words are finger
spelled using the British Sign Language(BSL). Encouraged by
the success of these initial approaches, researchers are now
tackling the problem of unrestricted writing in air without the
use of any sign language. Tian ef al. [6] proposed KinWrite,
which is a handwriting based authentication system using
Kinect.

Feng et al. [10] has proposed a real time fingertip tracking
system, which is the most relevant work to our proposed
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Fig. 1: User writes freely in front of a depth sensor (here
Kinect). Our approach processes the trajectory and recognizes
it in real time.

solution. They used Gaussian Mixture Model (GMM) and K-
means on each input frame for fingertip tracking. They used
elastic mesh features for each sample and a Modified Quadratic
Discriminant Function (MQDF) to recognize the character.
Zhang et al. [11] proposed an approach that uses a combined
model for depth, background and skin color for fingertip
tracking. Murata and Shin [14] implemented an alphanumeric
character recognition system based on Kinect writing. Their
recognition is based on palm’s graffiti. However, these systems
either use external character recognition devices or lack real-
time support. Most of these systems require pen-up/pen-down
switching. Many researchers who worked on these kind of
systems proposed supervised indication methods that explicitly
commands the system to open, write or close the system.
Murata and Shin [14] used hand gestures whereas Lee and
Lee [12] have proposed fingertip actions to command Kinect
to start or stop.

The main contribution of this work is a representation of
the handwritten data that is robust in presence of the noise in
the depth images. The proposed normalization approach makes
the features independent of user’s writing speed and scale.
With this, we eliminate the lag between an event occurrence
and the system response, while using minimal number of
frames for processing. By capturing the system properties like
speed and direction, the system is made more natural and
intuitive. Using these properties we overcome the necessity
of pen-up/pen-down gestures to determine the beginning and
end of a meaningful input. We evaluate the effectiveness of
our representation using SVM and DTW based classifiers. We
also demonstrate that our method can be used as a basis for
many real world applications by providing them with reliable
recognition performance. Our method is tested on the dataset
collected from 20 users, with varied experimental conditions
and two different depth sensors.

We now describe the fingertip segmentation technique (Sec.
II), followed by the character recognition solution. Section IV
provides the details of the dataset with recognition results.
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Fig. 2: Detection of fingertip from depth image: (a) Depth map
captured by Kinect, (b) Segmented user from the depth image,
(c) Segmented arm region and (d) Segmented finger-hand part.

II. SEGMENTATION

Fingertip segmentation is the first step to form a trajectory
from the user’s hand motion. This involves a series of steps
beginning with user segmentation from the depth image. Depth
images are captured with the minimum assumption that there
is no obstacle between the sensor and user body. For user
segmentation, Feng et al. [10] used an user ID map provided
by OpenNI to remove surrounding background. Their method
is based upon the common observations on writing and hand-
torso relationships. A histogram with a single peak indicates
that the hand is close to body and one with two peaks models
the hand and torso when user writes with hand holding up
front. In [10], to segment the hand region, the depth histogram
is characterized into each of the above models using single
Gaussian model and two-component Gaussian mixture model
respectively. Since hand region is always in front of the body
while writing, hand pixels belong to the Gaussian component
with smaller mean.

In the segmented hand region, K-means clustering algo-
rithm is used to separate the finger-hand and hand-arm parts.
It is a basic assumption that hand is in the front region of entire
body during writing. Hence, the hand-arm cluster should have
the largest depth value (that is far away from depth camera). In
this way, cluster with the maximum depth sample is regarded
as the hand-arm cluster and other one as the finger-hand cluster.
The K value is 2 because the main interest is to separate the
finger part from non-finger part. As shown in Fig 2(d), finger-
hand part is the cluster centered at the least depth.

For user segmentation, we perform image slicing with
known depth threshold. Unlike Feng er al. [10] we do not
distinctly apply different Gaussian fitting for hand region
segmentation on all the frames. This segmentation is only
required for the first frame. Since length of arm is sufficiently
high, the difference in the depth of the hand region and the
body region is sufficient enough to be used as a threshold
for the consecutive frames. For the consecutive frames, depth
can be used to segment the hand region directly as shown in
Fig 2(c). Inspired by hand-forearm segmentation in [10], we
employ a clustering algorithm, K-means, to identify finger part.
Feng et al. [10] applied K-means on all the collected frames.
Applying K-means on all the frames to segment the finger-
hand part is computationally expensive. We apply K-means on
first frame to calculate the maximum depth in which finger-
hand or the hand-arm part lies. For each consecutive frames,
we use this depth as the threshold to segment the finger-hand

part.
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where X s, is the set of points lying in the finger-hand cluster,
X» is the set of all points in the body-region, D(x) is the
depth value of point z and x4, is the one of the points from
hand-arm cluster with maximum depth.

After getting finger-hand part we are interested in fingertip.
During writing, index finger always points out. Therefore,
fingertip is the farthest point in finger-hand region from the
central point in the hand-arm region. We then connect these
points to form a trajectory which represents a meaningful
input. We discuss the trajectory formation from these data
points in section III.
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Fig. 3: (a) Motion of the segmented hand while writing,
(b) Red marker shows the bunch of points recognized as
fingertip(c) Each straight line represents a vector.

III. RECOGNITION

For air based writing system, we need a representation
which can be adapted to use the state-of-the-art techniques
to recognize the character with this system also. For most of
the online handwriting character recognition systems, features
are generated as time series data. With this motive, we use the
spatial information of the time series data as the generalized
feature representation for the character recognition techniques
which are discussed in detail in following sections.

A. Character Formation

Fingertip point found from the above step is not a single
point but a set of points as shown in Fig 3(b). This results in a
sparse representation of the writing, if the points are connected
to form a trajectory. This is due to the reason that bunch of
points lie at same depth from z,,,, due to low resolution
images provided by Kinect. We solve this problem by selecting
only the mean point among the bunch of points. These set of
points result in a discontinuous trajectory. Separation between
the two points and the level of discontinuity strongly depends
upon the speed of writing and the frame capturing rate of the
kinect. We overcome this problem by using the vector algebra
for the points. For each sample, we now get only spatial
location to which fingertip is pointing which is represented
as (z;,y;). We draw the trajectory by combining all these
points as shown in Fig 3(c). Points are joined by drawing
a vector between the adjacent points such that trajectory
contains N vectors starting from frame f = 0 to f = N
with vectors vq, Vs, ..., vN. This trajectory is represented as
T ={v;:vi=(x; —xi—1,Yi — Yi—1)}- The length of these
vectors depend upon the writing speed and the frame rate.



Fig. 4: Character samples from the dataset using Kinect. The dataset contains lowercase English alphabets and words. Each
character is written as a continuous trajectory without pen-up/pen-down gestures.

Angle between the vectors depends upon the writing style of
the user. Using these vectors we calculate the speed of the user
as
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where M 41 is the number of frames per second and s, is the
length of trajectory traversed between time ¢ — 1 to ¢. We call
the portion of the trajectory as meaningful input if the speed
rises from zero and ends at zero. This eliminates the necessity
of pen-up/pen-down gestures as discussed in Section I.

B. Data Sampling

After converting the points in the form of distinct N
vectors, samples are equidistantly sampled into ns vectors,
where ng is the sampling rate. This way we solve the problem
of the variable length data from different users with different
speeds. We use d, as the sampling distance and find the set
of k consecutive vectors such that

[Vi| + [ve| + ...+ |vk| <ds < |vi|+ |Va| + ...+ [Vkt1]
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These k vectors are then added up to obtain vg;

Vi =Vi+Va+...+ Vg 4)

Vectors Vsi,Vs2,...,Vsn, are ns sampled vectors. These
vectors represent character features.

C. Normalization and Spatial Features

It is a common observation that people write differently
with different characteristics, some write very short and some
very long characters. After sampling we have n, vectors with
variable lengths because |vsi| is not equal to the sampling
distance d,. To bring all these data to one common scale, we
normalize the vectors such that each vector has equal length
and reconstruct the trajectory with new spatial coordinates. To
normalize the data, we first find the angles between all the
adjacent vectors as 6; = arccos(V; - vi_1) and get a sequence
of IV +1 angles. We then start with the spatial location xg, yo
and reconstruct the character with vectors of length [,. We
get the sequence of N + 1 spatial coordinates as xz;,y; =
xi—1 + g cos(6;),yi—1 + losin(6;)

Each character is different, since we start every character
with common point xg, yo. The center of gravity is inconsistent
as it varies with the shape of the character. To place the data on

the common bounding box, we translate the spatial coordinates
by z’,y’ such that

N
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where X and Y, are the fixed center of gravity for the
system. We translate each spatial coordinate by z’, ¢y’ such that
their center of gravity becomes X, Y. We then construct the
feature vector F of length 2(N + 1) such that
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These features are used for character recognition using
standard classifiers like Support Vector Machine (SVM) and
Dynamic Time Warping (DTW).

Trajectory formation can be easily extended from single
input to multiple inputs. We extend the character trajectory
formation to word trajectory. Each word is written with an
assumption that the system recognizes each character sepa-
rately. For this, we assume that the user writes each character
discontinuously as shown in Fig 3(b). Ending of a character
and beginning is detected when speed 0 < s; < €, where
€ is some constant. Similarly, word end is detected when
s¢ = 0. We then extract features for each character separately
as discussed earlier. We then use edit distance approach to find
the closest match between the predicted word from all words
in the pre-defined lexicon.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Experimental Data

To evaluate the performance of our approach, we created a
dataset, ‘Dataset for AIR Handwriting’(DAIR)1 which consists
of lowercase English alphabets (as shown in Fig 4). Microsoft
Kinect sensor is used to capture the color and depth image
having 480 x 640 resolution at 30 fps. The dataset is created
using 20 subjects, where each user stands straight in front of
the sensor and writes in the air with one finger out. Users are
allowed to write at their own speed and writing style. Dataset
contains two sections DAIR I and DAIR II. DAIR I consists of
1248 character samples from 16 users by taking 3 samples per
character per user. DAIR II consists of words from a lexicon of
length 40. Words in the lexicon are taken from the names of
most populous cities and vary in length from 3 to 5. It contains
400 words which totals to 1490 characters.

Thttp://cvit.iiit.ac.in/resources/OnlineHandwritingRecognition



Fig. 5: Labels represent the predicted and expected characters/words in each pair. Each pair has the input trajectory and trajectory
after normalization respectively. (a) samples correctly classified, (b) mis-classified samples, (c) correctly classified words.

We also experimented our approach using Leap Motion
Controller(LMC). 312 character samples have been collected
from 4 other users on LMC. Data from left-handed user has
been captured to analyze different users, which was only a
part of testing dataset. The distance between the user and
the Kinect is typically in the range of [1.5, 2.5] meters. We
alternated two Kinect sensors for data collection and did not
differentiate samples collected by different Kinect sensors to
validate that our algorithm is insensitive to individual Kinect
sensors. Summary of dataset division is shown in Table I.

DAIR I DAIR I1(Words) DAIR II(char) Leap Motion
Samples 1248 400 1490 312

TABLE I: Summary of the experimental dataset(DAIR).

B. Recognition

For user segmentation, depth threshold is set to 1500 in
each sample. Xy, Yy is taken as origin for normalization. Av-
erage time to write a character is 1-2 seconds. Sampling rate is
set to n, = 32 which is consistent with the frame rate at which
depth image is captured. We take normalized length of vectors,
lp = 100. [y scales the spatial coordinates and hence an
increase in [ increases the inter-class variation. Thus, [y should
be very high than the sampling distance d; so that it ensures
the separation between the close characters distinctively after
normalization. It gives 66 dimensional feature vector F for
each sample.

Trained on all Trained on 10 Trained on Left- Words

subjects subjects handed subject
LIBSVM | 97.59 96.36 96.15 97.76
DTW 97.60 95.94 96.15 99.61
MQDF 91.35 89.95 88.4 96.05
Feng[10] 73.72 61.75 73.07 73.82

TABLE II: Character and Word recognition results. We found
that features proposed in this work give reliable performance
with most of the state-of-the-art-classifiers. We also compare
our method to the method proposed by Feng et al. [10].

In first experiment, DAIR I is randomly divided into training
and testing set by 2:1 for each user, such that it contains 832

and 416 samples respectively. We trained a SVM classifier
(L1BSVM implementation) with RBF kernel (y = 1.0). A 5-
fold cross validation has been performed on the data, which
resulted in an accuracy of 97.59%. Recognition accuracy for
this dataset with different approaches is shown in Column 2 of
Table II. In second experiment, the training data had samples
from 10 subjects and testing was done for rest of the users.
Accuracy for this division is shown in Column 3 in Table II.

Some of the character recognition results are shown in
Fig 5(a). Our method uses a constant length for normalizing
the trajectory and reconstructs bad samples into good ones.
It is observed that the user’s writing style in air is different
from the normal handwriting. It is difficult to trace the same
line on character in air. Our approach tends to improve these
type of characters by normalizing with constant length and
reconstructing them into good samples. As shown in Fig 5(a),
shape of sample ‘k’ improved after normalization. Similarly
the sample labeled as ‘j° looks close to some of the ‘y’ samples
before normalization due to the writing style of the user in air.
After normalization, the reconstructed character is correctly
classified as ‘j’.

The depth images provided by Kinect sensor are usually
noisy and low quality. Due to this reason, characters which
are written very fast are distorted due to errors in fingertip
positions. Samples which are written in less than 2 seconds
are shown in Fig 5(b). Due to these distortions, total length
of trajectory increases. Hence, sampling rate goes wrong and
reconstructed character takes the shape of the other nearest
character. As shown in Fig 5(b), ‘b’, ‘h’, ‘a’ and ‘y’ are mis-
classified to their closest match as ‘p’, ‘b’, ‘q’, ‘g’ respectively.
Suitable superior depth sensors could alleviate this problem in
the future.

To demonstrate the utility of our handwriting recogni-
tion solution in a specific domain, we performed word level
recognition where each sample in DAIR II is tested against
the training sample of DAIR I. Each character in the word
is recognized independently using the proposed approach.
column 5, Table II shows the character level accuracy of words
using different classifiers. We then find the closest match for
the predicted word from the lexicon. We have achieved 100%
accuracy for word recognition as the vocabulary prepared is
limited in size and specific to a domain. As shown in Fig
5(c), characters predicted for the written word ‘diu’ is ‘dia’ but



since we have an advantage of pre-defined lexicon, it correctly
identifies its nearest match by edit distance approach as ‘diu’
with edit cost as 1. Similarly, the words ‘bhuj’ and ‘gaya’ are
predicted as ‘bhuy’ and ‘yaya’ respectively using character
recognition, but are classified correctly by finding their closest
match.

Noise in depth images from kinect tend to effect the accu-
racy of the method. Therefore, we experimented our method
on the dataset collected using LMC. It is accurate for small
finger movements and its high resolution differentiates it from
Kinect like devices which are more suitable for whole-body
tracking. These kind of sensors tend to provide comfort to the
user while writing. These samples are tested on DAIR 1 and
reported an accuracy of 98.72%. Fig 6. shows the comparison
between SVM classification results for each character for both
the devices. It is clear from the figure that the proposed
approach is independent of the device and gives high accuracy
in both cases. As it is observed that the air handwriting style
is different from the normal handwriting, we test our method
with the samples taken from a left-handed user, where the
training dataset DAIR I, does not contain any left hand user.
Accuracies are reported in column 4, Table II.

C. Discussions

We compare our approach to the method proposed by
Feng et al. [10] and Zhang et al. [11]. They used mean filter
on the fingertip trajectory and then applied MQDF character
classifier on 512 dimensional feature obtained after elastic
meshing method. We implemented the methods in [10, 11]
which reported an accuracy of 73.72% on our dataset. As
shown in Table II our approach increases the character and
word recognition accuracy by a promising amount.

Our approach resulted in an efficient implementation such
that it uses less time for pre-processing. It takes 6.89 seconds
which is significantly less than the approach in [10, 11]
which takes 76.36 seconds to recognize. The response time
is in coherence with the user writing speed which makes
the system more interactive. Thus, it enables users to write
at their own speed without any lag. It indirectly reduces the
number of frames required to process for character formation.
In this way, the character written at its natural speed will use
minimal number of frames to be processed. It is clear from
the recognition results that the character level solution can
be extended into word level recognition systems with 100%
accuracy.

V. CONCLUSION

Our work proposes a novel feature representation for the
handwritten data captured using depth sensors. Our objective
is to demonstrate a handwriting recognition solution on an
emerging HCI modality. There are many open issues both in
theory and usability that needs to be addressed in the future.
We also introduce a new dataset for air handwriting character
recognition research. It is developed with the intention of
providing a common benchmark for air handwriting character
recognition and allied research. The main characteristics of
dataset are the variety subjects like right handed and left
handed and diversity in terms of handwriting as we capture
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Fig. 6: Accuracy comparison of characters using Kinect and
LMC.

multiple samples of each character from every subject. We
also use leap motion controller to capture samples from a few
subjects. Based on the dataset prepared, the proposed algorithm
is tested and compared with existing approaches. By making
this database available to the research community, we hope to
encourage the exploration of many problems in the domain of
HCI.
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