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Abstract

Cities having hot weather conditions results in geo-
metrical distortion, thereby adversely affecting the perfor-
mance of semantic segmentation model. In this work, we
study the problem of semantic segmentation model in adapt-
ing to such hot climate cities. This issue can be circum-
vented by collecting and annotating images in such weather
conditions and training segmentation models on those im-
ages. But the task of semantically annotating images for
every environment is painstaking and expensive. Hence,
we propose a framework that improves the performance
of semantic segmentation models without explicitly creat-
ing an annotated dataset for such adverse weather varia-
tions. Our framework consists of two parts, a restoration
network to remove the geometrical distortions caused by
hot weather and an adaptive segmentation network that is
trained on an additional loss to adapt to the statistics of the
ground-truth segmentation map. We train our framework
on the Cityscapes dataset, which showed a total IoU gain
of 12.707 over standard segmentation models. We also ob-
serve that the segmentation results obtained by our frame-
work gave a significant improvement for small classes such
as poles, person, and rider, which are essential and valu-
able for autonomous navigation based applications.

1. Introduction
In computer vision literature, the task of understanding

the semantics of the scene is achieved by semantic seg-
mentation. Formally, we define semantic segmentation as
a method of classifying each pixel into its object category.
Cityscapes [3] is one of the widely used datasets for training
semantic segmentation models in an autonomous navigation
based setting. The images of Cityscapes have been captured
from road scenes from different cities of Germany, which
have relatively colder and clear weather. Now, for instance,
if we train a semantic segmentation model on the Cityscapes
dataset and deploy it in places having extremely hot weather
conditions such as Dubai, then the trained model finds hard
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Figure 1: (a) Natural atmospheric turbulent images curated
from the internet. The zoomed patches show the geomet-
rical distortion caused by atmospheric turbulence. (b) A
simulated atmospheric turbulent image of the Cityscapes
dataset. (c)-(d) Performance of DeepLabV3 [2] and our pro-
posed method on the turbulent image.

to keep its optimal performance and give poor segmenta-
tion results, as shown in Figure 1(c) (even though the roads



may look similar). This phenomenon happens due to the
geometrical distortion caused by hot weather into the in-
put image shown in Figure 1(a). Hence, it becomes neces-
sary for us to ponder upon the problem of adapting seman-
tic segmentation models in such weather variations due to
the change in geographical location. This condition, espe-
cially variations caused by hot weather, is also referred to
as atmospheric turbulence [44] as it affects the atmospheric
parameters such as the refractive index between an object
and a camera. In the remaining paper, we interchangeably
use atmospheric turbulence and hot weather conditions for
convenience. The problem of semantic segmentation model
to generalize for hot weather can be bypassed by collected
data, especially in such weather conditions and training a
model on the collected images. However, collecting and
annotating images for such atmospheric conditions is an ex-
tremely tedious task, which is time consuming and very ex-
pensive.

In this paper, we propose a solution to improve seman-
tic segmentation model performance in hot weather with-
out explicitly creating an annotated dataset. The proposed
framework consists of two networks: Restoration network
and Segmentation network. The restoration network is
specifically intended to minimize the geometrical distortion
caused by atmospheric turbulence in an image. We could
have used existing machine learning methods [24, 37] for
restoring images from atmospheric turbulence. But, these
methods suffer from two significant limitations: (i) none
of the methods works for single image restoration, and (ii)
considerable variation in an atmospheric parameter cannot
be handled by these methods. To overcome these issues, we
train our restoration model on a large scale dataset, having
images with varying atmospheric parameters for better gen-
eralization. At inference time, the trained restoration net-
work can perform single image restoration. The architec-
ture of our restoration network is adapted from the widely
used image-to-image translation network [13]. Addition-
ally, we introduce Channel Attentive Multi-Scale Residual
Block (CA-MSRB), which learns local multi-scale features
along with the inter-dependencies between residual chan-
nels using an attention mechanism.

The restored images obtained from the restoration net-
work are passed to the segmentation network. The segmen-
tation network consists of a DeepLabV3 [2] model, which
is trained on multi-class cross-entropy loss between seg-
mentation colormap of the restored image and ground-truth
segmentation colormap. To make our semantic segmen-
tation model more adaptive to the turbulent environment,
we additionally use CORAL loss [30] between the restored
image segmentation colormap and the non-turbulent image
segmentation colormap got from pre-trained DeepLabV3
model. By using the additional loss, there is further im-
provement in segmentation results, and the domain gap be-

tween restored and non-turbulent segmentation colormap
reduces. Our method shows significant improvement in seg-
mentation results on the Cityscapes dataset, particularly for
small classes (Figure 1) like poles, person, and, rider which
are essential and valuable classes in autonomous navigation.

Our Contributions:

� We propose an adaptive semantic segmentation frame-
work, which shows significant improvement in seg-
mentation accuracy in hot-weather conditions. This
framework bypasses the tedious task of semantic an-
notation on turbulent images.

� We use CORAL loss [30], as an additional loss to
train our semantic segmentation network, which im-
proves the segmentation accuracy and reduces the do-
main gap. Extensive experiments were conducted on
Cityscapes [3] dataset to show improvement in seg-
mentation accuracy, particularly for small classes.

� We proposed a restoration network for removing at-
mospheric turbulence in the images. Further, we also
improve the restoration capabilities of our network on
multi-scale, by introducing CA-MSRB block, which
achieves state-of-the-art performance over the general
image-to-image translation methods.

2. Related Work
Restoration In Atmospheric Turbulence: Removing

the phenomena of atmospheric turbulence from images has
been studied from the past few decades. Initial methods
used adaptive optics [24], which were purely motivated
by optics. These methods required precise experimental
set-up, which was mainly used for astronomical applica-
tions. Lucky imaging [6] was another widely used method
that relied on the probabilistic approach to restore images.
Multi-frame image restoration approaches [1, 43] by Lucky
imaging has also been proposed for enhancing the images
and videos degraded from turbulence by correcting the ge-
ometrical distortion and reducing the blur present in the
images. Frequency-based methods such as Fourier analy-
sis [40] were also used to restore the images.

Recent methods have started using a machine learning
approach to recover images from atmospheric turbulence.
Zhu et al. [44] proposed a restoration method that first sup-
presses the geometrical distortion of each frame by using
B-Spline built on non-rigid registration. After that, an im-
age is generated from the set of registered images by using
a temporal regression process. This regression process can
also be viewed as the convolution of images with space in-
variant near-diffraction-limited blur. At last, the final output
is produced by applying blind deconvolution on the regres-
sion output. However, this approach suffered from a signif-
icant limitation from the use of temporal mean to calculate



Figure 2: Overview of our framework: Our restoration networkG� takes the input turbulent imagesI t and gives the
restored imagesI r . To train the parameters of restoration network� , a linear combination of losses is minimized between the
restored and non-turbulent images. The restored images are further fed into the segmentation networkS� 1, which predicts the
segmentation colormapCr . The parameters of segmentation network� 1 is trained by calculating multi-class cross-entropy
loss betweenCr and ground-truth segmentation colormapCgt . Additionally, we take the logarithm of CORAL loss between
Cr and the predicted segmentation colormapC, which acts as an additional loss to train� 1. The segmentation colormapC
is obtained by passing non-turbulent imagesI into pre-trained segmentation networkS� 2, with �xed parameters� 2.

the reference image, which lead to poor image registration.
Xie et al. [38] proposed a method in which they overcome
this limitation. This method �rst constructs a reference im-
age using low-rank matrix decomposition on a set of in-
put frames. And, for the registration process, they used a
variational framework with a spatiotemporal regularization
which iteratively optimizes the reference image.

However, none of the methods discussed above can be
used to restore a single turbulent image as they require mul-
tiple turbulent images for restoration. Hence, we overcome
this drawback by proposing a deep learning-based restora-
tion model. Our restoration model requires only a single
turbulent image to restore itself.

Image-to-Image Translation Via Deep Learning: Re-
cent advancements in deep learning have drastically im-
proved the performance in vision problems, such as clas-
si�cation [11], segmentation [19], and detection [25]. An-
other powerful property of deep networks is that they can
learn to generate high dimensional non-linear data, such as
images and audio using generative models [31, 23]. Among
all the generative models, Generative Adversarial Network
(GAN) [8] is the most successful model, which is widely
used in image super-resolution [16], image impanting [39],
and image-to-image translation [13].

However, general image-to-image translation model
such as PixelRNN [32], Pix2Pix [13] and CycleGAN [42]
learns the general mapping from one distribution to an-
other. This restricts the general image-to-image transla-
tion model to leverage the speci�c problem structure, which
could be effectively used for removing atmospheric turbu-

lence. We overcome this problem by proposing an image-
to-image translation which is specially intended to remove
atmospheric turbulence. Recently, Wuet al. [36] proposed
a method motivated from image stylization [7] to transfer
an image from one weather condition to another. They fur-
ther show improved semantic segmentation results on the
styled image. However, their method is not modeled to han-
dle signi�cant geometrical changes in an image. Whereas,
our method is speci�cally intended to work in geometrical
distortion caused by extreme atmospheric turbulence.

Channel Attention for CNNs: Channel attention can
be viewed as attending selectively on a speci�c part of the
entire information while ignoring the rest of the informa-
tion. In the context of CNNs, it can be interpreted as as-
signing selective weights to a feature map of a convolutional
layer rather than giving equal weights to all feature maps. J.
Hu et al. [12] introduced the concept of channel attention
in CNNs. Later, this concept further extended into various
vision applications, such as super-resolution [41], pose es-
timation [29], and action classi�cation [4]. Motivated by
wide applicability of channel attention in various vision ap-
plications, we build a CA-MSRB for use in our restoration
network.

3. Our Approach

In this section, we describe the formalization of our pro-
posed restoration model, followed by an improved segmen-
tation model. The formalization of our restoration frame-
work begins with a dataset consisting of turbulent images
I t = f I i

t : i = 1 :::ng and their corresponding non-turbulent



Figure 3: (a) Shows network architecture of our restoration network. The network takes the turbulent image and outputs the
corresponding restored image. In the �gure,k is the kernel size,n is the number of feature maps, and s is the stride in each
convolutional layer withp as padding. (b) Architectural details of proposed Channel Attentive Multi-Scale Residual Block
(CA-MSRB) used in the restoration network.

imagesI = f I i : i = 1 :::ng, whereI i 2 RN � M andn
is the total number of samples in the dataset. Then,I i

t is
passed through the restoration networkG� having learnable
parameters� . The output ofG� is the restored imageI i

r of
corresponding turbulent imageI i

t . The loss betweenI i
r and

I i is used to train the restoration network parameters. Af-
ter the restoration of turbulent images, we pass the restored
images to the segmentation framework. The segmentation
framework consists of two input heads. The �rst input head
takes the restored imageI i

r , which is passed through train-
able semantic segmentation networkS� 1 with trainable pa-
rameters� 1. Another input head takes the corresponding
non-turbulent imageI i of I i

r , which is passed through a pre-
trained networkS� 2 with �xed parameters� 2. Thereafter,
we minimize the second-order statistics between the pre-
dicted segmentation mapC i

r of S� 1 andCi of S� 2 which
makes theC i

r to adapt the domain statistics ofCi . Fig-
ure 2 shows an overview of our approach. In subsequent
subsections, we describe our restoration and segmentation
networks emphasizing the architectural details and losses
used in training the network.

3.1. Restoration Network

The architecture of our restoration network is motivated
by, Lediget al. [16] and Liet al. [18] with some signi�cant
architectural changes for better adaptation to our problem,
which is discussed below in detail along with the loss func-
tions.

Network Architecture: Our restoration network archi-
tecture consists of an input convolutional layer, upsampling
block, Channel Attentive Multi-Scale Residual Block (CA-
MSRB), downsampling block, and output convolutional
layer. The input convolutional layer projects input image
to feature space whose output after that passed through the
downsampling block. The downsampling blocks are com-
prised of 3 Group Normalization layer [35], 3 ReLU layer,
and 3 convolutional layers. We perform Group Normaliza-
tion rather than other normalization techniques as it gives
lower training loss on smaller batch sizes. The con�gura-
tion of each convolutional layer has a �lter size of4� 4 with
padding 1 and stride 2. After each convolutional layer in the
downsampling block, the number of output features dou-
bles. The downsampled features obtained from the down-
sampled block are passed through 8 CA-MSRB blocks.

The architecture of CA-MSRB is inspired by Huet
al. [12] and Liet al. [17]. The CA-MSRB consists of three
parts: multi-scale atmospheric distortion learning, channel
attention, and local residual learning. The multi-scale at-
mospheric distortion learning comprises of two bypass net-
works with convolutional kernel sizes of5 � 5 and3 � 3.
The information between bypass networks is shared to fa-
cilitate the learning of atmospheric distortion at multiple
scales. The output of the bypass networks is fused by a
1 � 1 convolutional layer. After fusion, we apply chan-
nel attention on the output of a1 � 1 convolutional layer
to capture channel-wise inter-dependencies. After that, the


