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Abstract

Discrete labeling problems are often solved
by formulating them as an integer program,
and relaxing the integrality constraint to a
continuous domain. While the continuous re-
laxation is closely related to the original in-
teger program, its optimal solution is often
fractional. Thus, the success of a relaxation
depends crucially on the availability of an ac-
curate rounding procedure. The problem of
identifying an accurate rounding procedure
has mainly been tackled in the theoretical
computer science community through math-
ematical analysis of the worst-case. However,
this approach is both onerous and ignores the
distribution of the data encountered in prac-
tice. We present a novel interpretation of
rounding procedures as sampling from a la-
tent variable model, which opens the door to
the use of powerful machine learning formu-
lations in their design. Inspired by the recent
success of deep latent variable models we pa-
rameterize rounding procedures as a neural
network, which lends itself to efficient opti-
mization via back-propagation. By minimiz-
ing the expected value of the objective of the
discrete labeling problem over training sam-
ples, we learn a rounding procedure that is
more suited to the task at hand. Using both
synthetic and real world data sets, we demon-
strate that our approach can outperform the
state-of-the-art hand-designed rounding pro-
cedures.

1 Introduction

A discrete labeling problem is defined over a set of
random variables, each of which needs to be assigned a
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value from a discrete label set. An assignment of values
to all the random variables is referred to as a labeling.
The large number of putative labelings (exponential
in the number of random variables) are quantitatively
distinguished from each other by means of an energy
function. The goal of the discrete labeling problem is
to compute the labeling with the minimum energy.

The discrete labeling problem plays a key role in many
areas of computer science. For example, in machine
learning it is required for maximum a posteriori esti-
mation in graphical models. In theoretical computer
science, several classical tasks such as vertex cover and
graph partitioning can be viewed as discrete labeling
problems. While special cases of the problem can be
solved exactly in polynomial time [20], in general it is
known to be NP-hard. A popular approach to obtain
an approximate solution is to formulate the discrete la-
beling problem as an integer program, which can then
be relaxed to obtain an easy-to-solve continuous op-
timization problem. While the continuous relaxation
is closely related to the original integer program, its
optimal solution can be fractional (it often is). Thus,
a key requirement for using continuous relaxations is
the availability of an accurate rounding procedure, that
is, a method that can convert the optimal fractional
solution to a feasible integer solution with low energy
value. The most popular family of rounding proce-
dures is based on randomized algorithms, which gen-
erally pose rounding as sampling from a distribution
parameterized by the fractional solution.

The design of sampling based rounding procedures
generally involves highly sophisticated mathematical
analysis to establish the expected value of the energy
of the rounded solution in the worst-case. In special
cases such as uniform metric labeling, a lot of simple
procedures, backed by strong mathematical analysis,
have been proposed. While such an approach has
important theoretical consequences (specifically, it es-
tablishes the computational complexity of various in-
stances of discrete labeling problems), from a practi-
tioners point of view it suffers from two major deficien-
cies. First, it is highly onerous and therefore cannot
scale well as each new class of problems would require
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expert knowledge to design an appropriate rounding
procedure. Second, it focuses on the worst-case sce-
nario (for ease of analysis), which often does not occur
in practice.

In order to alleviate the aforementioned deficiencies,
we propose a novel machine learning framework that
learns to round the solutions of a continuous relax-
ation using a training data set. The key observation
of our approach is that many randomized rounding
procedures can be viewed as sampling from a joint
distribution of two types of random variables: (i) vari-
ables whose marginal probability is provided by the
optimal fractional solution of the relaxation; and (ii) a
set of appropriately designed latent variables. Viewed
in this way, the problem of rounding readily lends itself
to machine learning techniques. In this work, we em-
ploy a deep neural network that consists of two stages.
In the first stage, it projects a low-dimensional input
(namely, the optimal fractional solution of a relax-
ation) to a potentially high-dimensional space of the
aforementioned latent random variables. In the sec-
ond stage, it projects the representation encoded by
the latent random variables back to the original space
of feasible fractional solutions, to give the output of the
neural network. The integer solution of the problem
is obtained by using the simplest rounding procedure
on the output. The parameters of the deep neural
network are estimated by optimizing a differentiable
learning objective that minimizes the expected energy
of the labeling for a given set of training samples.

Our approach can be readily applied to a large class
of existing relaxations, including those based on linear
programming [6, 13], quadratic programming [17] and
second-order cone programming [15, 16]. By learning
the neural network for a given set of samples that im-
plicitly define the data distribution, we obtain more
suitable rounding procedures for real-world problems
compared to the ones designed for the worst-case.
We demonstrate the efficacy of our approach on sev-
eral instances of the discrete labeling problem, includ-
ing uniform metric labeling and truncated linear and
quadratic labeling by comparing them to the hand-
designed rounding procedures proposed in the theo-
retical computer science literature.

2 Related Work

As mentioned earlier, most of the literature on
randomized rounding procedures focuses on hand-
designed algorithms for special instances of the dis-
crete labeling problem. Examples include interval
rounding and hierarchical rounding for linear program-
ming relaxations of metric labeling [6, 12], hyperplane
rounding for semidefinite relaxations of graph parti-

tioning [8], and contention resolution for multilinear
relaxations for submodular maximization [22]. While
such an approach is of great theoretical importance,
the complexity of mathematical analysis and the focus
on the worst-case makes it less appealing in practice.

Our work exploits the close relationship between ran-
domized rounding and sampling. Similar to round-
ing, there have been several hand-designed sampling
algorithms that have been proposed in machine learn-
ing [2, 5]. Furthermore, there has also been some effort
in learning to sample using a training data set [18, 25].
However, to the best of our knowledge, ours is the first
approach to exploit the connection between sampling
and rounding for discrete labeling problems. More-
over, unlike sampling in which the main objective is
to maximize sample fidelity with the original distri-
bution, our goal is to minimize a task specific energy
function by learning to round.

There is also a rich history in machine learning for
learning latent spaces for a particular problem [4, 9,
10]. The one most closely related to our approach
is the variational auto-encoder (vae) [11], which uses
a deep neural network in order to obtain an expres-
sive latent representation of the input space. However,
there are several key differences between our frame-
work and the vae. First, our training objective is de-
signed to maximize the accuracy rounding, instead of
minimizing the reconstruction error. Second, while the
vae aims to learn the parameters of a neural network
that generalizes well across the entire data distribu-
tion, our problem is concerned with learning the pa-
rameters for each individual instance of the problem.

Finally, there has been work on using reinforcement
learning for function optimization [3, 23]. Reinforce-
ment learning also optimizes an entropy regularized
expected energy. However, in our case, a key difference
is that we compute the expected energy and its exact
gradient analytically instead of relying on estimates of
the policy gradient. This reduces the variance in the
gradient, thereby enabling efficient learning. Another
key difference is that, unlike the reinforcement learn-
ing based methods, we also condition our model with
respect to a primal marginal solution which allows a
trained model to generalize to unseen energy functions.

3 Preliminaries

Discrete Labeling Problem. A discrete labeling
problem is defined over a set of random variables
X = {X1, X2, · · · , Xn}, each of which can take a value
from the label set L = {l1, l2, · · · , lh}. An assignment
of values to all the random variables is called a label-
ing, and is denoted by x ∈ Ln. The labelings are quan-
titatively distinguished from each other by the means



Pritish Mohapatra, C. V. Jawahar, M. Pawan Kumar

of an energy function Eθ : Ln → R, which consists of a
sum of potential functions. For the sake of clarity, we
will restrict ourselves to a pairwise energy function. In
other words, the energy of a labeling x is given by:

Eθ(x) =

∑
a∈[n]

θa(xa) +
∑

(a,b)∈[n]2
θab(xa, xb)

 . (1)

Here, [n] = {1, ..., n}, and θa(xa) and θab(xa, xb) are
short hand for θa(Xa = xa) and θab(Xa = xa, Xb =
xb) respectively. While, θa(Xa = xa) denotes the
unary potential of assigning the label xa to the ran-
dom variable Xa, θab(Xa = xa, Xb = xb) denotes the
pairwise potential of assigning the labels xa and xb to
random variables Xa and Xb respectively. The dis-
crete labeling problem is specified as follows: x∗ =
argminx∈Ln Eθ(x). The general discrete labeling prob-
lem allows for high-order potentials (that is, potentials
that depend on the labels of an arbitrarily large subset
of random variables). Our approach can be trivially
generalized to handle such potentials by suitably mod-
ifying the training objective. We assume that the po-
tentials are finite valued. In other words, all the label-
ings are valid, and the task is to identify the one with
the minimum energy. This assumption is mainly due
to the fact that we parameterize our framework via a
neural network, which requires gradients for all possi-
ble parameters in order to utilize the back-propagation
algorithm during training.

Integer Programming Formulation. The dis-
crete labeling problem can be reformulated as an in-
teger program using indicator variables ya(i) ∈ {0, 1}
corresponding to all random variables Xa ∈ X and
labels li ∈ L. Each indicator variable ya(i) = 1, if
Xa = li and 0 otherwise. Formally, the following pro-
gram provides the minimum energy labeling:

min
∑
a∈[n]

∑
li∈L

θa(i)ya(i) (2)

+
∑

(a,b)∈[n]2

∑
(li,lj)∈L2

θab(i, j)ya(i)yb(j),

s.t.
∑
li∈L

ya(i) = 1 ∀a ∈ [n],

ya(i) ∈ {0, 1} ∀a ∈ [n],∀li ∈ L.

Here, the objective function is just a reformulation of
the energy function in equation 1 using the binary indi-
cator variables. The first constraint ensures that each
random variable is assigned exactly one label, while
the second constraint ensures that the optimization
variables are binary.

Continuous Relaxations. The above integer pro-
gram can be relaxed to obtain a continuous optimiza-

tion problem. Several relaxations have been proposed
in the literature, including linear programming [6, 13],
quadratic programming [17] and second-order cone
programming [15, 16]. All the aforementioned relax-
ations drop the integrality constraints, and instead en-
force the variables ya to belong to a probability sim-
plex, that is, ya(i) ≥ 0 and

∑
i ya(i) = 1. The resulting

continuous problem is then solved to obtain an optimal
fractional solution y∗.

Randomized Rounding Procedures. Given a
feasible fractional solution ȳ, a rounding procedure
treats ȳa(i) as the probability of assigning the label
li to the random variable Xa. Several rounding proce-
dures that satisfy this property have been proposed in
the literature. We refer the interested reader to [21, 24]
for examples. Although most often these algorithms
are applied on optimal fractional solutions, the analy-
sis applies to all feasible solutions. In our work, we will
use the simplest rounding procedure to obtain integer
solutions from the output of a deep neural network,
which we refer to as complete rounding. The main
steps of the complete rounding procedure are described
in Algorithm 1. Complete rounding computes the cu-
mulative distribution of ya for each Xa ∈ X (step 3).
It then samples from the cumulative distribution us-
ing the same real number r ∈ [0, 1] for all the random
variables (step 4). Note that the use of the same real
number is important. Otherwise, the rounding proce-
dure can be shown to produce arbitrarily bad labelings
(see [14] for examples).

Algorithm 1 The complete rounding algorithm.

Input: A fractional solution y of a relaxation.
1: Sample a real number r from uniform distribution

over [0, 1].
2: for all Xa ∈ X do
3: Define, Ya(0) = 0, Ya(i) =

∑i
j=1 ya(j).

4: Assign label li to random variable Xa if

Ya(i− 1) ≤ r < Ya(i).
5: end for

4 Trainable Latent Variable Model
For Rounding

Given a feasible (or optimal) fractional solution y of
a continuous relaxation, randomized rounding proce-
dures can be viewed as assigning a label to the set
of discrete random variables X from the set L such
that Pr(Xa = li) = ya(i). There are several ways in
which one can achieve this goal, including the simple
complete rounding procedure described above. What
separates a good rounding procedure from a bad one
is the joint probability of the labeling of a subset of
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random variables. Since we have restricted our de-
scription to pairwise energy functions, the key crite-
rion for differentiating two rounding procedures is the
joint probability of assigning two random variables Xa

and Xb to the labels li and lj respectively.

To illustrate the weakness of complete rounding, con-
sider the following simple example of a uniform metric
labeling problem (also referred to as the Potts model)
defined over n random variables, each of which can
take 1 of n possible labels. The unary potential for
the ath random variable Xa is defined as follows:

θa(i) =

{
∞ if i = a,
0 otherwise.

(3)

Every pair of random variables Xa and Xb are assumed
to be connected by an edge and the pairwise potential
between them is defined as follows: θab(i, j) = δ(i 6=
j). Any labeling that assigns the same label to all but
one of the random variables would be optimal for this
discrete labeling problem.

On the other hand, the optimal fractional solution y
obtained for the LP relaxation of this discrete problem
can be defined as follows:

ya(i) =

{
1/(n− 1) if i 6= a,

0 otherwise.
,∀a ∈ {1, . . . , n}

(4)
It can be verified that, when performing complete
rounding on this optimal fractional solution, if the ran-
dom number r is between (i−1)/(n−1) and i/(n−1)
for i = 1, 2, · · · , n−1, the first i variables take the label
i+ 1, and the remaining ones take the label i. Specifi-
cally, it is impossible for it to do so when the random
number r ∈ [1/(n − 1), (n − 2)/(n − 1)]. Therefore,
the probability of the complete rounding procedure to
output an optimal integral solution (that is assigning
the same label to all but 1 of the random variables)
is only 2/(n− 1). In order to overcome the deficiency
of complete rounding, Kleinberg and Tardos [12] pro-
posed a more suitable rounding procedure for uniform
metric labeling. In what follows, we provide a novel
interpretation of their procedure based on latent vari-
able models, which will motivate our general learning
based framework.

Consider an augmented label set L′ = {l0} ∪L, where
the auxiliary label l0 indicates that a random variable
has not yet been assigned a label. We define a latent
variable Z, which can take a value from the label set
L. The probability Pr(Z = li) = 1/h for all li ∈ L.
Furthermore, we define Pr(Xa|Z) as

Pr(Xa = li|Z = lj) =

 ya(i) if i = j 6= 0,
1− ya(i) if i = 0,

0, otherwise.
(5)

In order to obtain a labeling, we use an iterative pro-
cedure. At each iteration, we first sample from the
distribution Pr(Z) to fix the value of the latent vari-
able. Next, we use complete rounding on the distribu-
tions Pr(Xa|Z) for all random variables Xa ∈ X . If
a random variable is assigned a label li ∈ L (that is,
not the label l0), then we fix its label to li. For all
the unassigned random variables (that is, those with
the label l0) we repeat the above process until a valid
labeling has been obtained. The above iterative proce-
dure can be viewed as sampling from the joint distri-
bution Pr(Z,Xa) =

∑
li∈L Pr(Z = li) Pr(Xa|Z = li),

and marginalizing out the latent variable. It can be
verified that, in the case of the illustrative example
for uniform metric labeling, the above procedure al-
ways outputs an optimal integral solution. It can do
so because of the use of latent variables. This can thus
result in an improved expected energy of the output
labeling compared to complete rounding.

At first sight, the choice of the latent variable Z, its
distribution Pr(Z) and the conditional distributions
Pr(Xa|Z) may appear arbitrary. However, there are
two factors that governed their design. First, they
have to exploit the structure of the pairwise poten-
tials, which encourages a pair of random variables to
be assigned the same label. Second, the latent vari-
able and the corresponding distributions have to be
simple enough to lend themselves to worst-case math-
ematical analysis. We now consider each of the two
aforementioned factors to motivate our methodology.
The first factor implies that, for every different fam-
ily of the discrete labeling problems, we would need
to design a new rounding procedure. Indeed, for trun-
cated linear and quadratic labeling, the random vari-
able represents an interval of consecutive labels, in-
stead of a single label [6]. Given the vast number of
choices, it is clear that the process of hand-designing a
rounding procedure is too tedious and would not scale
well to meet the demands of an increasingly automated
world. However, our novel interpretation of rounding
procedures as latent variable models opens the door
to the use of powerful machine learning frameworks.
The second factor implies that the simple form of dis-
tributions is not a requirement in practice as we are
not interested in worst-case analysis. Thus, inspired
by the recent success of deep latent variable models
such as vae [11], we propose to parameterize round-
ing procedures for discrete labeling problems using a
deep neural network. This allows us to learn highly
complex latent variables and the corresponding distri-
butions (which can depend on the fractional solution
y) using a set of training samples that implicitly de-
fine the data distribution of interest. In what follows,
we describe our model and its end-to-end differentiable
training objective in detail.
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Figure 1: Our deep latent variable model that includes an encoder, a latent layer and a decoder. The encoder
takes in a feasible fractional solution y as input and computes the parameters [µµµ,σσσ] of the latent variable distri-
bution Pr(Z). The decoder takes a sample from Pr(Z) and computes the output fractional solution ȳ. Finally,
approximate integral solution ŷ is obtained by performing complete rounding on ȳ.

4.1 Prediction Using Deep Latent Variable
Model

We use deep neural networks to model both the distri-
bution Pr(Z) associated with the latent random vari-
ables Z and the conditional distribution Pr(X|Z) that
projects back into the space of feasible solutions. Over-
all, our network is composed of an encoder (Eααα), a
layer of latent variables (Z) and a decoder (Dβββ). Here,
ααα and βββ are the learnable parameters of the encoder
and decoder respectively. Figure1 shows a representa-
tion of our deep latent variable model. While we have
shown a fully convolution network here, any network
architecture can be used for this purpose.

The detailed description for rounding using our deep
latent variable model is outlined in Algorithm 2. First,
the parameters φφφ of the latent variable distribution
Pr(Z;φφφ) are computed as outputs by the encoder Eααα,
that is, φφφ(y) = Eα(y) (step 1). We then sample z from
the distribution Pr(Z;φφφ) (step 2) and pass it through
the decoder Dβββ to get an output fractional solution
ȳ = Dβββ(z) (step 3). This output fractional solution ȳ
parameterizes the distribution Pr(X = ŷ|Z; ȳ), where
ŷ is a feasible integral solution. We perform complete
rounding as described in Algorithm 1 on ȳ to get our
output ŷ (step 4). In practice, we perform several it-
erations of complete rounding on ȳ and choose ŷ to
be the integral solution with the lowest energy Eθ(ŷ).
In our experiments, we parameterize the latent vari-
able distribution Pr(Z;φφφ) as a diagonal Gaussian with
mean µµµ and standard deviation σσσ, that is, φφφ = [µµµ,σσσ].
However, one can also assume other parameterized
models like the Bernoulli distribution for the latent
variables.

4.2 Training Methodology

Our aim here is to learn the parameters ααα and βββ of the
encoder and the decoder respectively using training set

which is assumed to contain independently sampled in-
stances from the data distribution. The training data
set D can consist of several instances of any particu-
lar discrete labeling problem that vary in terms of the
values for the parameters of the energy function Eθ,
while maintaining the same underlying structure. For
example, in case of the problem of semantic segmen-
tation of images, we can have different images as the
samples of the training set while assuming the same
structure for inter-pixel dependencies for all the im-
ages. To be specific, each instance st in the training
set D = {s1, . . . , sN} should include the parameters
θt of the energy function and a feasible fractional so-
lution yt from a continuous relaxation of the original
discrete labeling problem.

Algorithm 2 Rounding using deep latent variable
model.
Input: A feasible solution y of the continuous relax-

ation.
1: Compute parameters of the latent variable

distribution by passing through the encoder:
φφφ(y) = Eα(y).

2: Sample z from the latent variable distribution
P (Z;φφφ).

3: Compute output fractional solution by passing z
through the decoder: ȳ = Dβββ(z).

4: Perform complete rounding as described in Algo-
rithm 1 to obtain an integral solution ŷ corre-
sponding to ȳ.

Output: An approximate integral solution ŷ to the
original discrete labeling problem.

As has been discussed elaborately in the previous sec-
tions, our objective is to find the integral solution
ŷ with the lowest possible energy Eθ(ŷ). Therefore,
given the training data, we should try to minimize
the energy Eθ(ŷ) of the output integral solutions for
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all of the training examples. However, since ours is a
stochastic model, it is appropriate for us to minimize
the expected energy with respect to the distribution
Pr(X; yt,ααα,βββ) for all training samples st ∈ D.

Given a training sample st ∈ D and a value z from
the latent variable distribution Pr(Z;φφφ(yt,ααα)), we can
sample several integral solutions using the complete
rounding procedure. The expectation with respect to
the distribution induced by the complete rounding pro-
cedure can be evaluated exactly by using the expres-
sion presented in Lemma 11 of [14]. To be specific, the
expected pairwise energy can be computed as,

E(θab(ŷa, ŷb)) =

h−1∑
i=1

Ya(i)Θ1(i) (6)

+

h−1∑
j=1

Yb(j)Θ1(j) +

h−1∑
i=1

h−1∑
j=1

|Ya(i)− Yb(j)|Θ2(i, j).

Here, Ya and Yb are the cumulative distributions with
respect to ya and yb, and Θ1 and Θ2 are defined as
follows,

Θ1(i) = 1
2 (θab(li, l1) + θab(li, lh)− θab(li+1, l1)

− θab(li+1, lh)),∀i ∈ {1, .., h− 1}, (7)

Θ2(i, j) = 1
2 (θab(li, lj+1) + θab(li+1, lj)− θab(li, lj)
− θab(li+1, lj+1)),∀i, j ∈ {1, .., h− 1}. (8)

The overall expected energy of the output integral so-
lution ŷ with respect to complete rounding then can
be computed as,

E
ŷ∼Pr(X|Z;βββ)

[Eθ(ŷ)] =
∑
Xa∈Xa

〈θa(ŷa),ya〉 (9)

+
∑

(Xa,Xb)∈X 2 E(θab(ŷa, ŷb)).

As discussed above, the expected energy of the output
integral solution ŷ, with respect to the distribution
induced by the complete rounding procedure, has a
closed form expression. This allows us to analytically
compute the gradient of this expected energy with re-
spect to the output fractional solution ȳ and thus have
no variance in gradient estimation.

For our training objective, we further take expectation
of the above computed expected energy with respect
to the latent variable distribution Pr(Z;φφφ) to obtain,

E
ŷ∼Pr(X;yt,ααα,βββ)

[Eθt(ŷ)]

= E
z∼Pr(Z;φφφ(yt,ααα))

[
E

ŷ∼Pr(X|Z=z;βββ)
[Eθt(ŷ)]

]
. (10)

Since analytical computation of this expected energy
is not feasible, we have to estimate it by using k sam-
ples from the latent variable distribution. When the
latent variable distribution is chosen to be a Gaussian

distribution, the gradient of this sampling based es-
timation of the expected energy with respect to the
parameters of the distribution can be computed using
the reparameterization trick. This results in very low
variance for the gradient estimation. In the general
case, the reinforce algorithm can be used to estimate
the gradient.

Finally, our training objective is obtained by taking
expectation of the above computed expected energy
with respect to the data distribution D. As in case
of all machine learning frameworks, we estimate the
expectation over the data distribution by using sam-
ples from the training data set D. Then the training
objective function can be written as

JE(ααα,βββ) = E
st∼D

[
E

ŷ∼Pr(X;yt,ααα,βββ)
[Eθt(ŷ)]

]
(11)

While optimizing the expected energy, the model
might sometime get stuck in local minima correspond-
ing to integral ȳ’s that lead to bad approximate solu-
tions. In order to avoid such bad local minima during
optimization, we regularize the output fractional solu-
tions ȳ to bias them towards having higher entropy.
Specifically, we add the following entropy based regu-
larization term to our objective function,

JR(ααα,βββ) = (12)

E
st∼D

 E
z∼Pr(Z;φφφ(yt,ααα))

∑
a∈[n]

ȳa(z,βββ) log ȳa(z,βββ)

 .
Overall, we optimize the objective function J = JE +
λJR for learning the parameters ααα and βββ of the en-
coder and the decoder respectively. Here, λ is a
hyper-parameter which we fix appropriately. Since,
this objective function is differentiable, we can use the
standard back-propagation algorithm to train our net-
work parameters. In order to back-propagate through
the sampling process at the latent layer, we use the
re-parameterization trick for Gaussian distribution as
proposed in [11].

5 Experiments

We demonstrate the efficacy of our approach, de-
scribed in the previous section, on discrete labeling
problems using both synthetic as well as real world
data.

5.1 Discrete Labeling Of Densely Connected
Graphs

Problem. We consider the problem of labeling a set
of 25 random variables from a discrete set of 21 labels.
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Figure 2: Objective function Vs. iterations during optimization over the training set of the synthetic data set.
Here, ‘avg’ refers to expected energy (Eavg) and ‘best’ refers to minimum energy (Emin).

Labeling Metric Max Rounding Complete Rounding Interval Rounding Our method
Eavg=Emin Eavg Emin Eavg Emin Eavg Emin

Uniform 12.204 12.532 10.435 12.437 10.327 10.180 10.103
Truncated Linear 74.423 1887.213 19.427 1936.361 17.787 153.801 14.762
Truncated Quadratic 152.532 904.821 84.640 876.610 72.418 71.469 65.359

Table 1: Average (Eavg) and minimum (Emin) energy obtained by the different methods on the test set for the
discrete labeling problem on synthetic data.

We assume that all the random variables are depen-
dent on each other and these dependencies are encoded
by a densely connected graph. We consider three dif-
ferent types of distance metrics for encoding label com-
patibility, namely, the uniform, truncated linear and
truncated quadratic distances. The uniform distance
metric is also known as the Potts model and is defined
as d(i, j) = δ(i 6= j). Where as, the truncated lin-
ear and truncated quadratic distances are defined as
d(i, j) = min(|i− j|,M) and d(i, j) = min(|i− j|2,M)
respectively. We use M = 10 for our experiments.
We also assume a spatial arrangement of the random
variables in a 5 × 5 lattice such that each vertex va
has a location coordinate ca = (xa, ya). As such, the
pairwise potential associated with the edge between
vertices va and vb is defined as θab(i, j) = wabd(i, j),
where, wab = exp(−||ca − cb||22/σ2

s) is a spatial Gaus-
sian weight with scaling factor σs.

Dataset. We use a synthetically generated collection
of 100 graphs for this experiment. For each graph, we
randomly generate the unary potential associated with
each vertex from a uniform distribution over [0, 1]. We
also set the parameters σs and a weighing factor τ for
the pairwise potentials, from a uniform distribution
over [−105, 105]. From our collection of 100 graphs,
we use 50 for training and 50 for testing.

Methods. We train a deep latent variable model as
described in Section 4.1 with both the encoder and
the decoder being modeled by neural networks com-
posed of fully connected layers. We use the efficient

proximal lp solver proposed in [1] to obtain fractional
solutions for training our model. The scaling factor for
the entropy regularization term in our training objec-
tive function is fixed to λ = 1 for all our experiments.
We compare our method with other standard round-
ing procedures like max-rounding, complete rounding
and interval rounding[6, 12].

Results. Figure 2 shows the progression of the ob-
jective function when our model is being optimized on
the training data set. As can be seen, our model swiftly
learns to do accurate rounding and outperforms the
hand designed rounding procedures like complete and
interval rounding. Even though this performance cor-
responds to the training set, it is significant because
unlike training for tasks like classification, we don’t
use any kind of ground-truth information. However,
it is not necessary to train the model from scratch for
each new sample. Instead, we only finetune the trained
model for the new sample by optimizing over it for a
very few iterations (20 in this case). Such finetuning is
possible because we do not need any kind of ground-
truth information for it. To evaluate, for each test
sample, we use different randomized rounding meth-
ods, including ours, to sample 1000 integral solutions
and compute the expected energy Eavg and the mini-
mum energy Emin over this set. We report the mean
values of Eavg and Emin computed over the entire test
set. Table 1 shows the results for the uniform, trun-
cated linear and truncated quadratic labeling distance
metrics. As can be seen, our method outperforms the
other rounding procedures in all the 3 cases.
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Max Complete Interval Our method Our method
Rounding Rounding Rounding (with finetuning)
Eavg=Emin Eavg Emin Eavg Emin Eavg Emin Eavg Emin

803.417 742.596 696.452 744.249 691.179 658.936 653.255 655.547 652.836

Table 2: Average (Eavg) and minimum (Emin) energy obtained by the different methods on the test set for the
task of semantic segmentation on MSRC data set.

Max Complete Interval Our method Our method
Rounding Rounding Rounding (with finetuning)
Eavg=Emin Eavg Emin Eavg Emin Eavg Emin Eavg Emin

977.203 1131.940 977.242 1077.385 968.124 949.794 936.316 945.433 935.725

Table 3: Average (Eavg) and minimum (Emin) energy obtained by the different methods on the test set for the
task of semantic segmentation on MSRC data set when the input fractional solution corresponds to the negative
exponentiated min-marginal provided by TRW-S.

5.2 Semantic Segmentation of Images

Problem. We consider the problem of semantic seg-
mentation of images which can be formulated as a la-
beling task in which each pixel has to be assigned a
label from the set of semantic classes. We formulate
this problem as a labeling problem over a grid graph
in which each vertex va corresponds to a particular
pixel and is connected to its four immediate neighbors
via edges. The pairwise potential associated with an
edge between vertices va and vb is defined as θab(i, j) =
wabδ(i 6= j). Here, wab = exp(−||fa − fb||22/σ2

c ) is a
color based Gaussian weight with fa being the 3D color
vector of the pixel a and σc being a scaling factor.

Dataset. We use the msrc data set [19] for this ex-
periment. It consists of a total of 591 images with
ground-truth segmentation. We use the standard data
set split of 276 training, 59 validation and 256 test
samples, as specified in [19]. We use the texton based
features proposed in [19] for unary potentials in our
experiments.

Methods. For this task, the encoder and the de-
coder for our method are modeled as fully convolu-
tional networks, in order to allow for variable input
image sizes. The hyper-parameters σc and a weigh-
ing factor τ for the pairwise potentials is set by us-
ing the validation set. Here, we apply rounding to
two different sets of fractional solutions: 1) Primal
solutions obtained by solving a continuous relaxation
[17] of the original primal problem, 2) Primal feasi-
ble solutions computed using expected min-marginals
from obtained the TRW-S algorithm. Specifically,
for each data set sample, we use fractional solutions
obtained using the efficient QP solver proposed in
[7] and those corresponding to the negative exponen-
tiated min-marginal provided by TRW-S. We com-
pare rounding procedures like max-rounding, complete
rounding and interval rounding[6, 12].

Results. Similar to the previous experiment, we re-
port the expected energy Eavg and the minimum en-
ergy Emin on the test set and compare our method
with complete and interval rounding. For results
shown in the second last column of Table 2 and Ta-
ble 3, we do not fine-tune our model for the test
samples and report results by simply forward pass-
ing through the network learned with the training set.
However, our model is still able to generalize well to
the test samples and outperforms the other rounding
procedures for both types of fractional solutions. We
also report results for the case when we fine-tune our
model for each of the test samples. As can be seen from
Table 2 and Table 3, fine-tuning slightly improves the
results in both the cases.

6 Discussion

We proposed a novel framework for performing round-
ing for discrete labeling problems. Our approach views
rounding as a method of sampling from a latent vari-
able model and employs deep neural networks for this
purpose. We showed that our method can adapt to
different problem structures and outperforms hand de-
signed rounding procedures on these tasks. Going
ahead, we would like to explore approaches for per-
forming rounding in presence of constraints. Another
interesting direction for future research would be to
try and marry different ideas developed in context of
relaxation methods and rounding procedures with the
aim of improving the overall performance.
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