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Abstract. Automatic disease detection and classification have been at-
tracting much interest. High performance is critical in adoption of such
systems, which generally rely on training with a wide variety of annotated
data. Availability of such varied annotated data in medical imaging is
very scarce. Synthetic data generation is a promising solution to address
this problem. We propose a novel method, based on generative adver-
sarial networks (GAN), to generate images with lesions such that the
overall severity level can be controlled. We demonstrate the reliability
of the generated synthetic images independently as well as by training
a computer aided diagnosis (CAD) system with the generated data. We
showcase this approach for heamorrhage detection in retinal images with
4 levels of severity. Quantitative assessment results show that the gen-
erated synthetic images are very close to the real data. Haemorrhage
detection was found to improve with inclusion of synthetic data in the
training set with improvements in sensitivity ranging from 20% to 27%
over training with just expert marked data.

Keywords: Synthetic Images, Generative Adversarial Networks, Deep
Neural Net.

1 Introduction
Generation of synthetic medical data is aimed at addressing a range of needs.
Early examples are generating digital brain phantoms [1] and synthesizing a
whole retinal image [11] using complex modeling. These were aimed at aiding
the development of algorithms for denoising, reconstruction and segmentation.
Recently simulation of brain tumors in MR images [13] has also been explored
to aid CAD algorithm development. With the advent of deep learning, modeling
of complex structures and synthesizing images has become easier with a class of
neural networks called generative adversarial networks or GAN [4].

GAN is an architecture composed of two networks, namely, a generator and
a discriminator. Functionally, the generator synthesizes images from noise while
the discriminator differentiates between real and synthetic images. GAN have
recently been explored for a variety of applications: detection of brain lesions [15],
predicting CT from MRI images [12], synthesizing normal retinal images from
vessel mask [2], segmenting anatomical structures such as vessels [6] and optic
disc/cup [17].
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Fig. 1: Proposed end-to-end pipeline for generation of abnormal retinal images and its
use in a CAD system for detection of haemorrhages.

We propose a GAN for generating images with pathologies in a controlled
manner and illustrate how the generated synthetic images can be used to ad-
dress the data sparsity problem which hampers the development of robust CAD
solutions for abnormality detection. We choose staging of diabetic retinopathy
(DR) from given color retinal images as a case study. The ETDRS standard
for staging of DR is based on the number and location of haemorrhages [19].
However, very few images are publicly available with local markings of haem-
orrhages. Recent deep learning-based methods [5], [20] overcome this problem
by sampling a large public dataset (with only image-level annotations) to get
local annotations for a much smaller subset of images which are abnormal. These
annotations are privately held and hence such measures are not beneficial to a
wide community for building a robust CAD solution.

2 Method
The proposed method consists of three modules: (i) pre-processing, (ii) synthetic
image generation and (iii) CAD for haemorrhage detection. As a part of the pre-
processing step, given retinal images are corrected for non-uniform illumination
using luminosity and contrast normalization [7].

2.1 GAN for Synthesis of Retinal Images with Pathologies

Generating normal retinal images from vessel mask has been attempted ear-
lier [2] with a single U-net for the generator and a 5-layer convolutional neural
network for the discriminator. Our interest is in generating images with haem-
morages (HE) towards synthesis of exemplars for different stages of DR. HE
are often indistinguishable from vessel fragments and therefore the input to the
generator has to enable distinguishing between these both structures. Further,
exemplar generation requires gaining control of the locations, size and density of
HE. Hence, we propose a GAN architecture (shown in Fig.1) with a generator
consisting of two parallel networks: one with a vessel mask as input and another



with a lesion mask as input. The output of the networks, based on the U-net
architectures, are merged and fed to a third U-net architecture which generates
the whole retinal image with lesions. The generator thus maps from vessel (vi)
and lesion (li) masks to a retinal image (ri). A 5-layer convolutional neural net-
work as in [2] is used for the discriminator to distinguish between the real and
synthetic sets of images, with each set consisting of vessel and lesion masks along
with retinal images.

The GAN learns a model as follows: the discriminator iteratively reduces
its misclassification error by more accurately classifying the real and synthetic
images while the generator aims to deceive the discriminator by producing more
realistic images. The overall loss function that is to be optimized is chosen as
a weighted combination of 3 loss functions: Ladv, LSSIM and L1 as defined
below in eq.1-4 to produce sharp and realistic images (here, G and D, represent
generator and discriminator respectively).

(i) The adversarial loss function Ladv is defined as

Ladv(G,D) = E(v,l),r∼pdata((v,l),r)[log(D((v, l), r))]

+ Ev,l∼pdata(v,l)[log(1−D((v, l), G(v, l)))]
(1)

where E(v,l),r∼pdata
represents the expectation of the log-likelihood of the pair

((v, l), r) being sampled from the underlying probability distribution of real pairs
pdata((v, l), r), while pdata(v, l) is the distribution of real vessel and lesion masks.

(ii) The Structure Similarity (SSIM) [18] index is useful in quantitatively
measuring the structural similarity between two images (r,G(v, l)). It also has
been shown to perform well for reconstruction and generation of visually pleasing
images.
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where (µr, µG(v,l)) and (σr,σG(v,l)) are the means and standard deviation com-
puted over patch centered on pixel p, C1 and C2 are constants. The loss LSSIM
can be computed as:

LSSIM = 1− 1

N

∑
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SSIM(p̃) (3)

where p̃ is the center pixel of a patch P in the image I.
(iii) The loss function L1 is used mainly to reduce artifacts and blurring and

is defined as

L1 = E(v,l),r∼pdata((v,l),r)(‖r −G(v, l)‖1) (4)

The overall loss function to be minimized is taken to be

L(G,D) = Ladv + λ1L1 + λ2LSSIM (5)

where λ1 and λ2 control the contribution of the L1 and LSSIM loss functions
respectively.



2.2 CAD for Haemorrhage Detection

We chose the U-Net [16] to build a CAD solution for detection of HE (referred
to as CADH). This is used to demonstrate that the synthetic images (generated
by our proposed GAN) are a reliable resource in training the U-net. The U-net
architecture consists of a contracting and an expansive path. The contracting
path is similar to a typical CNN architecture, whereas in the expanding path,
max-pooling is replaced by up-sampling. There are skip connections between
contracting and expanding paths to ensure localization. The U-net is modified
in terms of the number of filters at each convolutional layer and the loss function.
The number of filters at each stage is reduced to half to simplify computations.
The loss is modified to account for the misclassification of lesions.

The U-net architecture provides the segmentation of HE. The segmented HE
are counted and the image is classified into the respective grade accordingly (as
given in section 3.1: training data for CADH).

3 Implementation
3.1 Datasets

Both GAN and CADH were trained on pathological images. These are drawn
from DRiDB [14] (31 images) and a locally sourced dataset denoted as LoD (58
images). Testing of CADH was done at i) lesion level on 40 pathological images
from DIARETDB1 [8] and ii) at a stage-level on 308 abnormal images + 892
normal images (without HE) from MESSIDOR [3].

Lesion markings are available for DIARETDB1 from four experts, while for
DRIDB and LoD it is from one expert. The consensus of 3 experts was considered
to derive a binary mask for DIARETDB1. The ground truth of all the three
datasets were overlapped with the respective images and thresholded to get
a pixel-level lesion mask. The vessel masks, whenever unavailable were derived
using method described in [10]. Images from all datasets was cropped and resized
512x512 before feeding them to GAN or CADH.

Training Data for GAN Training of the GAN requires both lesion and vessel
masks. the lesion masks for the training data are available, but vessels masks
are available only for DRiDB. It is tedious and time consuming to mark the
vessels in each of the retinal images. Hence, vessel masks were derived using a
method [10] which has proved to perform relatively well for vessel segmentation
even in the presence of pathologies.

Training Data for CADH For training the CADH, a heterogeneous mixture
of data were combined, namely, expert annotated data and synthetic data and
augmented data. The DRiDB and LoD datasets were sources of expert annotated
data. Augmented data was derived by applying random transformations to the
images. This included random rotation between −250 to 250, random translation
in vertical / horizontal directions in the range of 50 pixels, and random horizontal
/ vertical flips.

Finally, the synthetic retinal images were generated using GAN as follows.
The vessel and lesion masks were taken randomly from LoD and DRiDB. The



lesion masks were modified using the same random transformations such as flip-
ping the lesions sector wise, flipping horizontally and vertically, rotations and
translations. Retinal images containing HE are graded with severity levels as
in [3]: grade 0/1 (no HE), grade 2 (1-5 HE) and grade 3 (more than 5 HE). The
lesions masks were derived to provide exemplars for each level using these rules.
The number of lesions in each category were maintained by masking out few
lesions or adding new lesions from another lesion mask randomly. Fig. 2 shows
a sample of the vessel, lesion masks and generated synthetic images at grade 2
and 3 severity levels.

3.2 Computing Details
The models were implemented in Python using Keras with Theano as backend
and trained on a NVIDIA GTX 970 GPU, 4GB RAM. Training was done with
random initialized weights for 2000 epochs by minimizing the loss functions
described in Section 2.1 using Adam optimizer. For model parameters, learning
rate was initialized to 2× 10−4 for GAN and 1× 10−5 for CADH. A batch size
of 4 was considered for both cases and other parameters were left at default
values. Class weights were outlined as the inverse ratio of the number of positive
samples to negative samples and modified empirically.

Fig. 2: Vessel, lesion masks and synthetic images generated at grade 2 (first two rows)
and grade 3 (last row) levels.

3.3 Evaluation Metrics

The synthetically generated images were evaluated quantitatively and qualita-
tively. The mean and standard deviation of the Qv score described in [9] was
computed over all images (40 abnormal) in DIARETDB1.



The performance of CADH was evaluated using Sensitivity (SN) and Positive
Predictive Value (PPV) which are defined as follows: SN = TP

TP+FN and PPV =
TP

TP+FP . To evaluate against the given local annotations by experts, the pixel
wise classification was converted to region wise detection by applying connected
component analysis and requiring at least 50% (but not exceeding more than
150%) overlap with manually marked regions to identify true positive detections
(TP); else it is false positive (FP). If a region is marked by the expert but was
not detected by the model then it is a False negative (FN). The area under the
SN vs PPV curve (AUC) is also taken as a measure of performance.

4 Experiments and Results

4.1 Synthetic Image Generation (GAN)

Fig.3 shows two sample synthetic retinal images (containing HE) generated by
the proposed GAN model. The first two columns show the vessel and lesion
masks given as input to the GAN. Third and fourth columns show the synthetic
and the corresponding real images, respectively. The synthetic images appear
realistic yet differ from the real images in terms of background color, texture
and illumination. Lesion locations are roughly similar but sizes are different as
lesion masks are not results of exact segmentations of lesions.

Fig. 3: Results of GAN-based image synthesis. From left to right: vessel mask, lesion
mask, synthetic image and corresponding real image.

The mean/ standard deviation of Qv computed over all images with patholo-
gies in DIARETDB1 is 0.0516/ 0.0144 and over all the synthetic images gener-
ated from vessel and lesion mask from DIARETDB1 is 0.0675/0.0239. The Qv
score is higher for images of greater quality, this indicates synthetic images are
considered better as they contain less noise.

4.2 CAD for Haemorrhage Detection (CADH)

The utility of the synthetic data for CAD development was tested by training
4 different CADH models by varying the training set content. Denoting the set
of real images with expert annotations as E and the set of synthetic images



generated by GAN with the corresponding lesion masks as S, the variants of the
training set considered are: (i) only E, (ii) E with data augmentation (E+A),
(iii) E and S, (iv) E, S with data augmentation (E+S+A). The computed SN
at a fixed PPV and AUC values for these variants are reported in Table. 1. The
SN vs PPV curve is shown in Fig. 4.

The tabulated results indicate that addition of synthetic data (E+S) boosts
SN by 20.4% and 10% over E and E+A, respectively. The full set of E+S+A
yields the best performance with an improvement (over E) in SN by 27.4%
and AUC by 19%. This establishes the effectiveness of synthetic data in general
and in CAD development. Increasing the number of synthetic images serves to
improve the performance (row 5). In order to assess if synthetically derived data
has artifacts, the E+S+A variant was tested on an exclusive set of separately
generated synthetic images using vessel and lesion masks of DIARETDB1. The
obtained results (row 6) shows a minor degradation over that for real images
(row 4), implying the generated data is free of artifacts. A recent fast CNN

Fig. 4: SN vs PPV curve for CADH.

Table 1: CADH performance on DI-
ARETDB1.

Training data (# images) SN (%) PPV (%) AUC

1. E (89) 63.1 79.4 0.691

2. E (89) + A (89) 70.6 79.6 0.741

3. E (89) + S (71) 79.3 79.6 0.829

4. E (89) + S (71)+ A (160) 86.9 79.8 0.853

5. E (89) + S (141)+ A (230) 92.7 79.4 0.912

6. E (89)+ S (71)+ A (160) * 84.2 80 0.834

* detection performance on only synthetic im-
ages.

method [5] for binary (HE/no HE) classification used local markings by experts
and report a SN/SP on the MESSIDOR dataset of 91.9/ 91.4% which is lower
than 94/ 91.7% achieved by CADH trained on E+S(141)+A. Since this dataset
provides severity grades for each image, testing of CADH model was done at
gradelevel and the obtained values for SN/ SP are 92/ 94.4% for grade 2 and
89.4/ 90.1% for grade 3. This indicates that the model trained with synthetic
data (can be generated in abundance) is better than that trained with expert
annotated data (which is difficult to obtain).

5 Concluding Remarks

We proposed a novel solution to develop retinal images with HE using generative
adversarial networks. The network is trained to generate the retinal image using
vessel and lesion masks. Hence, we can develop retinal image with any type of
severity, by providing the corresponding lesion mask. The synthetic abnormal
images generated are shown to be realistic in the type of lesions produced and
also the color, texture using the Qv metric. These generated images are valuable
in developing a CAD system which detects and localizes haemorrhages as addi-
tion of synthetic data led to improvement in both SN and AUC by 17%. Our
proposed approach can be extended to other lesions (such as hard exudates) and
image modalities and thus has a wide potential.
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