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Abstract—We propose a deep convolutional feature represen-
tation that achieves superior performance for word spotting
and recognition for handwritten images. We focus on :-
(i) enhancing the discriminative ability of the convolutional
features using a reduced feature representation that can scale
to large datasets, and (ii) enabling query-by-string by learning
a common subspace for image and text using the embedded at-
tribute framework. We present our results on popular datasets
such as the IAM corpus and historical document collections
from the Bentham and George Washington pages. On the
challenging IAM dataset, we achieve a state of the art mAP
of 91.58% on word spotting using textual queries and a mean
word error rate of 6.69% for the word recognition task.

Keywords-Word spotting, word recognition, embedded at-
tributes.

I. INTRODUCTION

Accurate recognition of handwritten text has remained as
a prime problem of interest for many decades. When the
domain (or lexicon) is limited or when the text is written
by a limited number of individuals, there have been many
successful solutions such as [1], [2]. However, performance
of unconstrained handwritten word recognition and retrieval
has been far from satisfactory. We attempt to bridge this
gap with deep learned features. This paper reports a deep
feature representation that results in superior recognition and
retrieval performance on the popular datasets. In addition
to advancing the state of the art, we also argue that a
representation that can be learnt from a dataset is the key
direction for furthering handwritten text recognition. Our
method uses limited amount of manually annotated data
and leverage extensively by using synthetically generated
handwritten data [3] and enable large scale learning in
handwritten documents.

Utility of deep learned features for a wide range of
recognition tasks in computer vision is now widely appreci-
ated [4], [5]. Networks trained on large data sets also learn
generic feature representation that can be used for related
tasks [6], and in many cases, have reported state of the
art results as compared to the handcrafted features. When
the data is limited, fine tuning a pre-trained network has
also been demonstrated to be very effective [7]. Motivated
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Figure 1. (a) Top row shows the top retrieved word images for the textual
query "cigarette" from the IAM dataset. (b) Recognition results for a few
word images from the IAM dataset are shown in bottom two rows.

by these, we learn a feature representation that suits hand-
written images. Considering the relatively small quantity of
annotated data publicly available, we pre-train the network
on a synthetic dataset and fine tune it on a real world
corpus. We further improve the representation by embedding
both the CNN representation and text labels into a common
subspace where both the images and their corresponding text
representation lie close to each other.

Given the inherent challenges in handwritten documents,
the problem of text retrieval is typically posed either as
word spotting [2], [8] from a given candidate corpus or
word recognition [8], [9] constrained on a given lexicon.
Under both scenarios it is assumed that the word images
are segmented and available at hand. In word spotting,
one is interested in learning holistic word image features
which is useful in predicting similarity between a query and
candidate image without recognition. Here the query can
be text or an exemplar image. Initial works such as [2],
[10] used variable length feature representation which use
dynamic time warping, or HMM for computing the distance.
Later bag of visual words based method using local features
such as SIFT, HOG and better encoding schemes such as
Fisher vectors [11], [12], gave promising results both in
terms of scalability and performance as compared to variable
length representation. In [8], [13], a new representation
based on character level attributes referred to as pyramidal
histogram of characters (PHOC) was proposed which encodes
the spatial and lexical properties of a word image and its
label seamlessly. In [8], Almazan et.al. used Fisher based
word image representation for attribute embedding which



gave state of the art results until recently before the success
of deep CNN features [14], [15]. In the recognition domain,
most of the popular methods uses HMM [16] or recurrent
neural networks such as LSTM [17]–[19]. In [9], Poznanski
et. al. uses a very deep CNN architecture for recognition
of PHOC attributes using multiple parallel fully connected
layers, thereby resulting in a high dimensional representa-
tion. The learned representation is further embedded into
a common subspace of text and images using canonical
correlation analysis [20] and they report the current state
of the art results for word recognition.

In this work we improve the discriminative ability of
deep CNN features using HWNet [14] by learning the PHOC
based attribute representation and embed both the text and
image representation into a common subspace. The proposed
representation gives state of the art results in word spotting
and comparable results with [9] in recognition while having
a shallow network and a compact representation which is
preferable for large scale datasets. Figure 1 shows sample
results from the proposed framework. The top row shows
retrieved results for the query “cigarette” and the bottom two
rows show the recognition results for a few challenging word
images along with their recognized output. In Section II, we
present our deep CNN architecture, its learning scheme and
introduce the framework for embedding the image and text
labels into a common subspace. In Section III, we present
results on standard datasets and compare the results on word
spotting and recognition with the state of the art methods.
Finally we conclude in Section IV along with future works.

II. DEEP FEATURES AND EMBEDDING

In this work, we use holistic features learned from a CNN
network (HWNet) [14] on handwritten word images. The
activation features from the last fully connected (FC) layer
are found to be generic enough to build robust word spotting
systems in a query-by-example setting. We use the same
CNN architecture as proposed in [14] which has been pre-
trained on a large corpus of synthetic handwritten word
images and later fine-tuned on a real world corpus. The
transfer of domain from synthetic to real world data leads to
better feature learning and quick adaption to different writing
styles.

A. HWNet Architecture

HWNet consists of five convolutional layers with 64,
128, 256, 512 and 512 square filters of dimensions 5, 5,
3, 3 and 3 respectively. The next two layers are fully
connected with 2048 neurons each. The last layer uses a
fully connected (FC) layer with the dimension equal to the
number of word classes and is further connected to the
soft-max layer to compute the class specific probabilities.
It uses a multinomial logistic regression loss function to
predict the class labels, and the weights are updated using
the mini batch gradient descent algorithm. The network

is pre-trained using the subset of IIIT-HWS [3] synthetic
handwritten word image corpus of size 1M and later fine
tuned on a real world corpus to learn the natural variations
in writer styles. The activation features from the second fully
connected layer of dimension 2048 are taken as the holistic
representation for word images. To make learning invariant
to affine transformations, we apply a random amount of
rotation (+/ − 5 degrees), shear (+/ − 0.5 degrees along
horizontal direction) and perform translation in terms of
padding on all four sides to simulate incorrect segmentation
of words.

A fundamental assumption used while training HWNet
using a multinomial logistic regression loss function is that
each class is assumed to be independent. In reality, different
classes of word images share a considerable amount of visual
information. For example, the words “School” and “School-
ing” differ by just an inflection of “ing” in the suffix part
of the second word, and we would prefer the feature space
to obey the corresponding lexical ordering. Note that in this
work, we only focus on lexical similarity and not on the
actual semantics, i.e., in case of the words “car” and “cat”,
both will be constrained to be near, although they differ a
lot in the semantic space. One can argue that such sharing of
information is implicitly learned in the convolutional layers
of the network. However, there is a need to make such
relationships more explicit. In this work, we exploit the fine-
grained relationships present among the word images using
the word attribute framework [8] along with embedding the
label information into a common reduced subspace where
both the text and image representations lie close to each
other. Given such a reduced space, we have the following
advantages:- (i) The reduced space is of a much lower(
∼ 200) dimensions as compared to the original 2048

dimensions with no loss in accuracy, (ii) seamlessly enable
both query-by-string and query-by-example based retrieval,
and (iii) less memory footprint which enables large scale
retrieval and recognition.

B. Text and Image Embedding

Let I = {I1, I2, . . . , In} be the set of n images from
the training data and Y = {Y1,Y2, . . . ,Yn} be the cor-
responding text labels. In [8], [13], a new representation
called as pyramidal histogram of characters (PHOC) was
introduced which maps the text label into word attributes
space. The concept is similar to spatial pyramid pooling
in natural images but in case of the text, the divisions of
pyramids is done in a horizontal direction where at level n,
the entire text is divided into n equal parts. From each part,
the histogram of uni-grams (characters) and bi-grams are
extracted and concatenated for final representation. We refer
to this representation as word attributes [8] since it encodes
the presence or absence of a particular character in a specific
region of the text. As argued earlier, such a representation
enables sharing between the words with lexical similarities.



Figure 2. Sample word images from datasets used in this paper. Top row
IAM [21], middle row GW [2] and bottom row Bentham [22]

For e.g. the Euclidean distance in attribute space would be
relatively less for words such as “car” and “cat” as compared
to word “the”. Let φY : Y → Rd be the text label embedding
function which gives the PHOC representation. Here d is the
number of attributes which is equivalent to PHOC dimension.

Let X = {X1,X2, . . . ,Xn} where Xi is the CNN repre-
sentation for Ii word image. We can learn a similar attribute
space for CNN features by training d attribute classifiers
which predict the probability of a particular attribute given
its image representation. This would result in having both
text and images in a Rd space and mutually comparable
although not in an optimal manner. We train the attribute
classifiers using linear SVMs since the CNN features act
as explicit feature maps which encode the non-linearities
present in feature space. Here each attribute classifier is
trained discriminatively to predict a particular attribute such
as “the presence of character ‘x’ in the first half of the word
image” and so on. Given d attribute classifiers, the attribute
embedding function is given as φX : X → Rd which
encodes the classifier score in predicting each attribute.

As mentioned earlier, even though both image and text
representation lie in Rd space, they are not optimally compa-
rable because the scores lie in different ranges. To calibrate
the scores along with maximizing the correlation between
the multivariate vectors (text and images) we formulate
the problem as common subspace regression (CSR) with a
closed form solution as proposed in [8]. In CSR the objective
function is to minimize the distance between an image and
its corresponding text representation in a common subspace
(Rd′

) found by the optimal projection matrices. In typical
cases, d′ < d, which is set empirically by tuning on a
validation dataset. Note that in the common subspace, both
word spotting and recognition can be posed as a simple
nearest neighbor based search.

III. EXPERIMENTS AND ANALYSIS

We use three most popular datasets used in the handwrit-
ten document analysis community. Table I shows different
datasets and its statistics in terms of pages, words and
number of writers. Here, the GW and Bentham datasets are
historical collections where one can find a peculiar writing
style and different set of ligatures as compared to a modern

Table I
WE USE THREE STANDARD DATASETS IAM, GW AND BENTHAM. HERE

GW AND BENTHAM DATASETS ARE HISTORICAL DOCUMENTS WRITTEN
PRIMARILY BY A SINGLE AUTHOR ALONG WITH A FEW ASSISTANTS(*).

Dataset Historical #Pages #Words #Writers

IAM [21] No 1,539 1,15,320 657

GW [10] Yes 20 4,894 1*

Bentham [22] Yes 796 1,54,470 1*

dataset such as IAM. Figure 2 shows few sample word
images taken from these datasets.
IAM Handwriting Database [21]: It includes contributions
from 657 writers, making a total of 1539 handwritten pages
comprising of 115,320 words. The database is labeled at the
sentence, line and word levels. We use the standard partition
for training, testing, and validation provided along with the
corpus.
George Washington (GW) [2]: It contains 20 pages of
letters written by George Washington and his associates
in 1755. Images are also annotated at the word level and
contain approximately 5000 words. Since there is no official
partition, we use a random set (similar to [8]) of 75% for
training and validation, and the remaining 25% for testing.
Bentham manuscripts [22]: It is a large set of documents
written by the renowned English philosopher and reformer
Jeremy Bentham (1748-1832) and his secretaries that are
currently being transcribed under the Transcribe Bentham
project. Under the ImageCLEF 2016 Handwritten Scanned
Document Retrieval Task [23], a training set of 363 pages
and a development set of 433 pages were provided. We
use the development set as our test set and use the training
set for both validation and training. In total, 796 pages of
annotated manuscripts are used, containing 154,470 labeled
and annotated words. For our query set, we use the set of
single word queries without stop words which was provided
by ImageCLEF for their development set. A total of 73
queries are used.

For comparing results, we use a standard information
retrieval evaluation measure, mean Average Precision (mAP)
which is equal to the mean area under the precision-recall
curve. The selection of queries follows the protocol used
in [8] where we filter the stopwords from the test corpus
while all words (including stopwords as distractors) are
kept in the dataset where the search is performed. In the
query-by-string (QBS) scenario, we only take unique words
from the test dataset vocabulary as queries. In the query-by-
example (QBE) case, since the query image is taken from
the corpus, the first retrieved image is not included in the
mAP calculation. Also, the evaluation of the performance is
done in a case-insensitive manner.

A. Word Spotting
Table II shows quantitative results of word spotting on

all three datasets for both QBE and QBS setting using the



Figure 3. Qualitative results of word spotting on datasets. The first three rows correspond to the IAM dataset, the next two rows to the GW dataset and
the last three rows to the Bentham dataset respectively. Retrieved results which are relevant to the query are outlined in green while the false positives are
marked in red.

proposed method and compares it with recent state of the art
methods. We use the Fisher Vector (FV) representation [26]
as our baseline method, which is computed from SIFT
features, reduced to 64 dimensions using PCA, and then
aggregated into the Fisher Vector. Note that the Fisher
representations are not learned in a supervised setting and
thus cannot be directly compared to other methods. It em-
phasizes the importance of supervised techniques to capture
the multi-writer styles and its variations. The HWNet [14]
architecture, originally trained for the QBE scenario, shows
a significant performance gain as compared to the embedded
attribute framework (KCSR) trained on FV mainly because
of robust CNN features. We tested the QBS case in HWNet
by synthesizing textual queries from synthetic fonts and
reported a mAP of 0.7037 on IAM, which is slightly inferior
to KCSR. The generalization of HWNet for synthetic queries
was quite natural since the original network was pre-trained
on the synthetic dataset and thereby the performance did not
deteriorate much.

The proposed method, which uses CNN features using
embedded attribute framework, gives superior results in
both QBE and QBS scenarios on all the three datasets.
Note that we use 10 uni-gram levels and 6 levels of bi-
grams for PHOC representation. In case of bi-grams we
only take the top-50 commonly used ones. We also perform
test side augmentation similar to [9] where given a test
image we make its additional variants using a combination

of rotations, shear and translation with same parameters as
done in training. The final representation is taken to be
the norm of the sum of all the individual representations.
We achieve better results from the original HWNet features
along with a significant reduction in dimensionality from
2048 to 200 (for IAM). This is quite important from the
perspective of building scalable retrieval systems. In terms
of QBS, the improvements are quite high, where we now
report an mAP of ∼ 91% on IAM, 92% on GW and 86%
on the Bentham corpus. We also performed a hybrid query
expansion (HQExp) similar to [8] where both the text and
image based representations are combined in a weighted
manner to form the query which is used for searching. Here
again, we consistently perform better in all of the cases. In
general, we see the performance on Bentham corpus is lesser
than other datasets mainly due to incorrect segmentation of
words and, presence of historical ligatures which can be
seen in the last row of Figure 2. In Figure 3, we present
few qualitative results. Our system is able to retrieve word
images successfully irrespective of style variation, upper and
lower case keywords and degradation. There are a few false
positives that are marked in red boxes which are visually
quite similar and hence confused with the true positives.

Since the original HWNet was trained on a large synthetic
dataset, we would like to measure the performance of
proposed features on out of vocabulary (OOV) words in the
test set. In Table III, the performance on both OOV words



Table II
QUANTITATIVE EVALUATION OF WORD SPOTTING ON STANDARD

DATASETS IN BOTH QUERY-BY-EXAMPLE (QBE) AND
QUERY-BY-STRING (QBS) PARADIGMS.

Dataset Method QBE-mAP QBS-mAP

IAM

DTW 0.1230 -
FV 0.1566 -

Frinken et. al. [24] - 0.7800
Sebastian et. al. [15] 0.7251 0.8297

KCSR [8] 0.5573 0.7372
KCSR+HQExp [8] - 0.7570

HWNet [14] 0.8061 0.7037
Proposed 0.8424 0.9158

Proposed+HQExp - 0.9152

GW

DTW 0.6063 -
SC-HMM [25] 0.5300 -

FV 0.6272 -
Frinken et. al. [24] - 0.8400

Sebastian et. al. [15] 0.9671 0.9264
KCSR [8] 0.9290 0.9111

KCSR+HQExp [8] - 0.9674
HWNet [14] 0.9484 0.6129

Proposed 0.9441 0.9284
Proposed+HQExp - 0.9726

Bentham

FV 0.3738 -
KCSR [8] 0.7451 0.7689

KCSR+HQExp [8] - 0.8313
HWNet [14] 0.8121 0.6089

Proposed 0.8641 0.8634
Proposed+HQExp - 0.8986

Table III
OUT OF VOCABULARY ANALYSIS ON IAM DATASET. THE RESULTS

REPORTED SHOWS THE GENERALIZATION OF THE PROPOSED FEATURES
FOR OOV QUERIES.

Query Proposed Method KSCR [8]

In Vocab.
QBE 83.42 49.66
QBS 91.25 71.64

Out of Vocab.
QBE 87.13 57.45
QBS 91.91 73.89

and in vocabulary words are shown for the IAM dataset
and compared with the KCSR [8] method. Note that for
the proposed method, the vocabulary comprises of union of
words present in the training data of synthetic dataset and
the training corpus of IAM. We observe that the performance
is slightly better for OOV words which is not quite usual. On
further analysis we found that the OOV words are typically
rarer words and larger in size (in terms of no. of characters)
which gives enough context information for extracting better
features. Moreover it also shows the advantages of the
attribute based framework and its sharing property which
makes it applicable to zero-shot learning.

Table IV
WORD RECOGNITION PERFORMANCE OF THE PROPOSED METHOD IN

COMPARISON WITH STATE OF THE ART METHOD FROM BOTH
RECOGNITION DOMAINS. HERE (T) REFERS TO TEST CORPUS LEXICON
AND (L) REFERS TO A LARGE LEXICON HAVING NEARLY 90K WORDS.

Method WER CER

Almazán et al. [8] 20.01 11.27

Bluche et al. [19] 11.90 4.90

Doetsch et al. [17] 12.2 4.70

Arik et al. [9] 6.45 3.44
Proposed Method (T) 6.69 3.72

Proposed Method (L) 14.07 6.33

B. Word Recognition

In word image recognition, the task is to find out the
transcription of a given query word. We use a lexicon
based approach for the IAM dataset, where we limit the
transcription to words appearing in lexicons derived from the
test set of IAM. We use two evaluation measures, namely the
mean word error rate (WER) and the mean character error
rate (CER). The CER between two words is defined as the
Levenshtein distance between the two words by computing
the minimum number of character insertions, deletions and
substitutions required to transform one string to another,
normalized with respect to the number of characters in a
word. The mean WER is defined as the average percentage
of words that are wrongly transcribed. In Table IV, we
compare our proposed method with techniques in the word
spotting domain and also with the state of the art hand-
written text recognition systems [9], [17]. Here, we obtain
better results than state of the art RNN based framework,
which uses costly pre-processing techniques and language
models. We report a mean WER of 6.69 and mean CER
of 3.72 which is comparable with recent n-gram based CNN
framework [9] with a very deep architecture. Figure 4 shows
few challenging word images from the IAM dataset and their
recognized outputs.

Usually, on increasing the lexicon size, lexicon based
recognition methods perform badly. In order to test such
a scenario, we took a large vocabulary of size 90K words
from a popular open source English dictionary Hunspell and
added it into the existing test corpus lexicon. This indirectly
acts as a distraction in the recognition process and enables
us to measure the robustness of the proposed features. As
shown in the table, the results using the large lexicon (L)
hasn’t deteriorated much.

IV. CONCLUSION

In this work, we present a framework for robust word
spotting and recognition in handwritten word images using
deep feature embedding learned from a CNN architecture.
The generality of the attribute based framework in both
the images and the text helped us to exploit and represent



Figure 4. Word recognition results from the proposed method. Many of
the words are quite challenging and most of the incorrect words have some
order of ambiguity in the original image space.

both modalities into a common subspace which seamlessly
enabled query-by-string and query-by-example paradigms.
The reduced dimensionality of the final subspace will be
a boost for developing scalable and robust systems in the
future. In addition to this, we believe that this work has
opened up new directions for developing handwritten word
recognition systems using CNN architectures which were
until recently attempted using recurrent neural networks
such as BLSTMs. In the future, we would like to relax the
assumption of having segmented words and prefer to work
in a near segmentation-free approach.
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