
Error Detection in Indic OCRs

V. S. Vinitha and C. V. Jawahar
International Institute of Information Technology, Hyderabad, INDIA

Abstract—A good post processing module is an indispensable
part of an OCR pipeline. In this paper, we propose a novel method
for error detection in Indian language OCR output. Our solution
uses a recurrent neural network (RNN) for classification of a
word as an error or not. We propose a generic error detection
method and demonstrate its effectiveness on four popular Indian
languages. We divide the words into their constituent aksharas
and use their bigram and trigram level information to build a
feature representation. In order to train the classifier on incorrect
words, we use the mis-recognized words in the output of the
OCR. In addition to RNN, we also explore the effectiveness of a
generative model such as GMM for our task and demonstrate an
improved performance by combining both the approaches. We
tested our method on four popular Indian languages and report
an average error detection performance above 80%.

Keywords—Error detection, Aksharas, OCR, Indian languages

I. INTRODUCTION AND RELATED WORK

An Optical Character Recognition system (OCR) can be
used to convert scanned document images to editable electronic
documents [1]. Although efforts have been made to build OCRs
for Indic scripts, the effectiveness of the techniques employed
in English OCRs is not reproducible in Indic scripts. While a lot
of emphasis has been placed on building good OCRs, little has
been done in the area of post processing in Indian languages.
The challenges in the recognition process can be overcome
by using a good post processing module. Automating the
detection of OCR errors can help improve the overall OCR
accuracy in applications where there is a human in the loop.
This is also the first step towards automatic error correction.

When a document image is given as input to the OCR
it processes the image and outputs the text in an editable
form. During this conversion, a single character or a group
of characters in the document image can be mis-recognized
by the OCR for a similar shaped character or a group of
characters, resulting in error. Post processing systems have
error detection module to detect such errors and correction
module to provide appropriate replacement words. The errors
can be broadly classified as real word errors and non-word
errors. Real word errors like the word ’aim’ getting recognized
as ’arm’ are difficult to detect without using any context
information (like neighbouring words) because both are valid
words in the language. However, non-word errors like ’aim’
recognized as ’oim’ can be detected using character ngram
models [2]. Figure 1(a) shows a real word error in Telugu
language where a word is incorrectly recognized, and the
output is also a valid word. Such errors are difficult to detect
without using the context of reference of the word. Figure 1(b)
shows an example of a non-word error in Gujarati language,
where a group of characters are mis-recognized as another
single character.

In this paper, we propose an error detection technique for
Indian languages using a combination of Recurrent Neural

Fig. 1. Types of OCR errors: First image shows a word in Telugu language,
its image and the mis-recognized OCR output which is another valid word in
Telugu. A unicode character (in red box) is recognized as another unicode
character (in blue box). Second figure shows a Gujarati word, the image of
which when recognized, gives an invalid word as output. The character (in
red box) is recognized as a group of characters (in blue box)

Network (RNN) and a Gaussian Mixture Model (GMM). In
Indian languages, words are composed of aksharas which
are similar to syllables in English. We divide words into
their constituent aksharas and use their bigram and trigram
probabilities to build features for training the classifiers. RNN
learns the pattern of word formation using aksharas in correct
and incorrect words from their bigram and trigram probabil-
ities. We use the GMM model to check the misclassification
of correct words as errors by the RNN. The error detection
approach essentially requires the learning of patterns which can
distinguish a word as error or not. RNN offers good trainability
as well as flexibility of using arbitrary input sequence length.
Our method can be used on any language without requiring
knowledge of the intricacies of its grammar, provided we have
a fairly large and clean corpus. Unavailability of a large corpus
prompted us to use a web crawler to take advantage of the huge
digital content available online.

One can argue that the use of a dictionary is the most
straight forward approach to detecting the erroneous words
in the OCR output [3, 4]. The presence/absence of a word
in the dictionary is used to check the validity of the word.
The availability of a nearly complete dictionary can give good
results in this method, if one exists! The existence of a large
number of unique words is one of the major challenges in
Indian languages [2]. To cover around 80% of the words in the
language, when English requires around 8K words, Telugu and
Malayalam require close to 300K words. Evidently, the main
challenge in this approach is the creation of a dictionary which
covers most words in the language. Many spell checking and
correction systems make use of this binary dictionary method
efficiently [5]. The enormous English corpus shared by Google
is used to check the validity of words in the OCR output in
[4].



Detection of the non-word errors can be done using a
dictionary, but capturing real word errors in the OCR output
requires the context information. Detection and correction of
real word errors is analogous to spell checking in typed text.
For the detection of real word errors, a trigram based noisy-
channel model is employed in [6]. In noisy-channel model, the
goal is to find the intended word given an erroneous word. In
some cases, for example, when the error word is a proper noun
which is not present in the dictionary, it may be better to accept
the error word as the intended word rather than attempting to
find an intended word in the dictionary. In [7], the author
uses part-of-speech trigrams combined with Bayesian methods
for context sensitive spelling correction. In [8], Smith uses
a shape classifier model, a word ngram model and a binary
ngram dictionary model to detect errors. These methods are
effective in detecting errors in English. However in Indian
languages, the use of these methods are not effective due to
various reasons like complexity of scripts, existence of huge
vocabulary etc.

Attempts have been made to use post processors to improve
the accuracy of Indian language OCRs [9, 10, 11]. In [9], a
multi-stage graph based reasoning, aided by sub-character level
language model is used to correct errors in the OCR output.
Here unicode characters are used as the basic unit of a word
to create the language model. In [10], a shape based post
processing system for Gurmukhi OCR was employed in which
the Gurmukhi corpora is split into different partitions based on
the size and shape of a word. The error detection technique in
[11] is done by morphologically parsing the word and checking
if the root and suffix part of the word can exist grammatically.

Compared to English and other Latin language OCRs,
Indian language OCRs are still inferior [2] mainly because
of the following reasons: (a) existence of huge vocabulary
(b) longer words (c) large number of valid words within a
particular hamming distance (d) inability to perfectly segment
characters in a word and (e) lack of language resources like
morphological analysers or synthesizers. The high inflectional
and agglutinative nature of these languages serve as a major
reason for the existence of huge vocabulary. Inflection is the
property by which a word is modified to represent different
grammatical categories which leads to creation of different
words from the same root word. The existence of a huge
vocabulary, along with the unavailability of a huge corpus,
limits the possibility of using a binary dictionary approach to
detect errors. This also affects the creation of a good language
model.

The average word length of most Indic scripts are greater
than English. Hence for a specific character accuracy, the
word accuracy of such scripts would be less. The nature of
the script and the complexity of the script further worsens
the accuracy in these languages. This also causes issues in
perfect character segmentation. Another issue is the number
of words in the language which exist at a hamming distance
of one or two characters from each other. The percentage of
words within a particular hamming distance, is much larger
when compared to English [2]. Hence the probability of real
word errors is much higher in these languages, making error
detection even harder. In the correction of errors, when there
are many candidate words for error word replacement, the
lowest hamming distance word is chosen. However, when

many words with the same hamming distance exist, choosing
the right word is a random choice.

Our approach captures up to 87% of the errors in the
languages we tested, also ensuring minimum misclassified
correct words. The F-score of the method is significantly
better than results obtained in [2] which employs a dictionary,
statistical language model and a SVM classifier. The catch here
is that we do not use any dictionary lookup to predict the word
label.

II. METHODOLOGY

A. Basic OCR Model and Error Detection Procedure

Generally in OCR systems, each non-touching independent
symbol, hereafter referred to as glyph is the basic recognition
unit. The segmentation of each word involves identification of
these glyphs. Glyphs are segmented using connected compo-
nents. This is depicted in figure 2. In English, this level of
segmentation is relatively easy because of the simple nature
of the script. A major issue in Indic scripts is that the glyph
level segmentation is overlapping due to the complexity of
scripts(note the overlapping boxes). Most Indic scripts have
dependent vowels or other modified consonants which are
connected to a consonant. These are seen in the red coloured
bounding boxes in the figure. Hence perfect glyph segmenta-
tion is a challenge. This causes recognition issues leading to
errors in the output such as a glyph getting mis-recognized as
another glyph or group of glyphs. Post processors are useful in
this context wherein, a good language model and knowledge of
error patterns can handle the issues created by similar shaped
glyphs.

Fig. 2. The figure shows in coloured boxes, the segmentation of each disjoint
glyph in a Telugu word.

One of the primary issues in Indian languages is the
unavailability of a huge corpus like the British National Corpus
[13], Brown Corpus etc. which are available for English. A
huge corpus is essential to create a good language model for
any language. The unique word coverage of Indian language
corpora like CIIL are not sufficient for our application [14].
To include words across domains, we use a corpus made
by crawling popular news sites and other websites in Indian
languages. The crawled data contains noise due to unwise use
for Zero-Width Joiners (ZWJ) and Zero-Width Non-Joiners
(ZWNJ) which are used for proper rendering of the unicode
symbols. Also many unicode characters which do not belong
to the concerned language may also be present in the crawled
data. The unicode range for the language is used to filter out
the undesirable characters from the corpus. Further, simple
cleaning techniques like eliminating words with occurrence of
successive vowels are also done.



Fig. 3. Figure shows the splitting of a Hindi word at akshara and unicode
level. An akshara may be composed of one or more unicodes.

B. Dilemma: What is the basic Unit?

In Indian languages, the question of choosing the basic
recognizable unit of a word is debatable. Each character or
glyph has a unicode value associated with it. Decomposition of
a word into its constituent unicode characters certainly ensures
atomicity, but fails to give insight as to how these bigrams
or trigrams can build a meaningful word. This means that
the bigram or trigram unicodes may not really say anything
about the correctness of a word. This prompts us to go for the
akshara level splitting of the word. Aksharas are similar to
syllables in English language, except that in certain languages
like Malayalam, a syllable may be composed of more than one
akshara. We would be using the terms akshara and syllable
interchangeably. Figure 3 shows a Hindi word split at akshara
and unicode level. For error detection in OCR output, we find
that syllable level splitting better suits our requirement. Word
formation is related to morphological as well as phonological
features [15]. Syllables provide phonological information and
are widely used in speech recognition systems [16]. Splitting
of words into aksharas can be done using a simple regular
expression. Akshara is formed using zero or more consonants
followed by a vowel. When a word is split into its constituent
syllables, if the syllables formed does not belong to the set of
syllables already created from the corpus of large words, it is
likely that an error has occurred. The words in a particular
language has a set of commonly used syllables. This set
is not finite, yet if a large corpus is used, we get a fair
share of the commonly used syllables. The presence of errors
in a word often results in the formation of syllables which
are generally not found in the language. However, with the
increasing influence and incorporation of words over time from
other languages, especially English, the number of syllables
in the language is also increasing. For example, many English
words like stall, bag, office etc. are widely transliterated to
Indian languages, introducing new syllables. Also, in error
words, even if the constituent syllables are valid, its bigram
or trigram combinations may have less probability. In our
experiments, we first split the words into their constituent
syllables to compute their bigram and trigram probabilities
in the corpus. Table I shows the number of unique words in
the crawled corpus, which is used to create syllables in each
language, along with the number of unique syllables, bigram

and trigram counts.

The SRILM toolkit [17] is used to compute the bigram
and trigram probabilities of syllables and smoothing is done
using Good-Turing discounting to estimate the probabilities
of unseen objects [18]. Probability computations are done for
ngrams using nth-order Markov chain assumption and log
probabilities are used in computations, since the probability
values are very small. The probability of unseen syllable
ngrams are taken care of using the smoothing technique as
shown below.

p0 =
N1

N
pr =

(r + 1)S(Nr+1)

NS(Nr)

where p0 is the probability for an unseen syllable ngram, pr
is the probability for an ngram encountered r times, N is the
total number of ngrams, Ni is the count of ngrams occuring i
times and S is a smoothing function. The simple Good-Turing
(SGT) method uses a simple linear smoothing function and also
specifies a threshold for switching from Good-Turing estimate
to Maximum Likelihood Estimate (MLE) for higher frequencies
as Good-Turing estimate is accurate only for lower frequencies.
We create a lookup table (LT) of these syllables along with
their bigram and trigram probabilities for creating features of
the words.

TABLE I. STATISTICS OF UNIQUE WORDS AND SYLLABLES IN
DIFFERENT INDIAN LANGUAGES.

Language Unique
Words

Unique
Syllables

Bigram
Count

Trigram
Count

Hindi 891,960 15,805 313,989 407,534
Malayalam 398,887 7,257 124,033 176,087
Gujarati 643,986 7,889 172,581 271,075
Telugu 1,305,852 10,762 254,960 441,806

C. Structure of the Solution

We use two methods for detecting errors in the OCR
output; one using generative model and the other using a
neural network. In generative approach, we use a Gaussian
Mixture Model to create models for correct words and error
words in the OCR output. In the second approach, we use
BLSTM [19] deep learning neural network for classification. In
order to create features for training, we have used the bigram
and trigram probability of syllables in the corpus, obtained
from the lookup table LT. We split each word in the huge
corpus into its constituent syllables and add special characters
to mark the beginning and end of the word. This is important
because in Indian languages, only a specific set of syllables can
occur at the beginning of any word. Certain unicode character
combinations which occur in the erroneous words, may not be
present in the list of syllables created from the huge corpus.
We assign a very low probability value to bigrams and trigrams
containing these character groups.

D. Gaussian Mixture Model for Error Detection

In this method we first cluster the probabilities of all
syllable bigrams in the corpus, using K-means clustering to
create bags of syllable bigrams. We have found K = 10 to be
the optimum number of clusters giving good results by testing
on validation data. Each bag has a minimum probability and a
maximum probability bigram. We then use this bag of syllable
bigrams to create a histogram of each syllable split word. The



Fig. 4. The image shows how feature is created from a word for RNN and GMM training. After adding markers to the beginning and end of akshara split
words in a huge corpus, its language model is generated. The bigram and trigram models are clustered separately. We then perform Dictionary Building to find
the cluster centroids and create bags of syllables, which is stored as a lookup table. The GMM model takes as input, the fixed length histogram of the syllable
split words whereas the RNN uses the raw bigram and trigram syllable probability. Each model then makes a prediction of the label of the input word. A word
is declared error only if both the models label it as an error.

same procedure is done for probabilities of syllable trigrams. If
there are J bags for syllable bigrams and N bags for syllable
trigrams, the size of the feature is J+N +2. Here the 2 is for
the additional bags for unseen syllable bigrams and trigrams.
The steps to creating feature vector for a word are as follows:

1) Create a zero vector of dimension equal to J .
2) For each syllable bigram in the word identify the bag

j in which the bigram probability lies.
3) Increment by one, the count of the jth component in

the feature vector.
4) In case of new syllables, we increment the count of

the bag reserved for unseen bigrams.
5) Repeat the procedure for trigrams using zero vector

of size N .
6) Concatenate the above feature vectors to get the final

feature vector.

These two histograms of bigram and trigram probabilities
are used to create a Gaussian Mixture Model. In the model
we used validation dataset to find the optimum number of
components so that issues of over fitting of data (with too
many components) are taken care of. The procedure is done
for obtaining the models for correct words as well as erroneous
words. For each word in the testing data, we find the model
which best fits the histogram of the word. The word is declared
error if it fits the error model and correct otherwise. In GMM
model, we use the information in the language model to
predict the label of the words. When the GMM is given an
unseen word whose syllable bigram and trigram probabilities
are comparable to the trained valid word probability, it can use

the language model information to correctly predict the label
of the word. We preferred to use GMM over other generative
methods because of the flexibility it offered in selecting the
number of mixture components and its ability to cluster multi
dimensional data of unknown distribution.

E. Error Detection using RNN

Recurrent neural network (RNN) is a class of neural net-
works with the capability of persisting the information from
previous states. The loops or connections in the nodes of the
recurrent neural network enable it to use an “internal memory”
to remember and process past information[20]. In our problem
of error detection in OCR output, we use a Long Short Term
Memory (LSTM) network. The LSTMs have been used in a
wide range of problems including text recognition in images
and generating language models. Bidirectional RNNs are based
on the idea that the output at particular time may not only
be dependent on the previous elements in the sequence, but
also on the future elements. We prefer the use of LSTM for
error word detection over other classifiers like support vector
machines. A neural network can learn the error model in the
erroneous words during training. Apart from the advantage
offered by the use of networks for better learning, it also
provides flexibility of using arbitrary number of sequences
as input. The number of unicodes or aksharas in words are
not fixed, leading to different number of bigrams and trigrams
in different length words. We need not use padding or other
methods to create fixed length feature while using a LSTM.
While GMM uses bags of akshara level ngram probabilities,
RNN uses the raw values of probabilities for training. For



each bigram and trigram in the word, the bigram probabilities,
followed by trigram probabilities form the feature vector for
the word. The size of the feature for each word having n
syllables is 2n − 3, the sum of the number of bigrams and
trigrams in the word. Figure 4 illustrates the feature creation
and prediction in GMM and RNN.

III. EXPERIMENTS

In order to create error words for training, we used the OCR
outputs of Hindi, Gujarati, Malayalam and Telugu OCRs [12].
We used 5K document images from each language and used
the OCR output collected from the respective OCRs. Recursive
Text Alignment Tool (RETA) [21] is used to align the OCR
output with the annotated ground truth text and extract the
misrecognized words. We have ignored numbers, punctuations,
special characters etc. which are not identified correctly by the
OCR.

A. Data and Evaluation Metrics

The details of the data used for training and testing using
RNN and GMM is shown in table II. We used a train-val-test
split ratio of 64-16-20 in the experiments. In order to evaluate

TABLE II. DETAILS OF TRAINING AND TESTING CORPUS SIZE

Language Words for Training Words for Testing
Errors Correct Errors Correct

Hindi 81,632 89,196 20,308 22,299
Malayalam 966,16 137,171 24,155 34,293
Gujarati 150,825 171,730 37,706 42,932
Telugu 149,501 174,113 37,376 43,529

the error detection accuracy, we use True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN)
values. TP gives the percentage of errors correctly detected
and TN gives the percentage of correct words rightly detected
by the post processor. The FN value shows the undetected
errors and its value goes up when there are more real word
errors. When the correct words are labeled as errors, the FP
value increases. This can occur when the correct word pattern
is not recognized by the post processor A good error detection
system should give significant TP without generating much
FP. This means that while all/most of the error words are
detected correctly, the percentage of correct words labeled as
errors should be kept minimum if not zero. We have used
Precision, Recall and F-measure to compare the results of
various approaches. Our aim is to maintain a high precision
value because large number of correct words recognized as
errors make the error detection module insignificant in post
processing.

B. Results of using RNN and GMM Methods

The results of error detection experiments using RNN is
shown in table III. While Malayalam, Gujarati and Telugu
have comparable values of True Postives, many errors went
undetected in Hindi. Analyzing the results, we identify the
presence of many valid words as errors. This behavior is
justified by the presence of large number of words at a
particular Hamming distance [2] in Hindi. Therefore, when a
character is mis-recognized by the OCR, there is a good chance
that another valid word is formed, which is difficult to detect.
Other False Positives include words which are not inherently

TABLE III. TRUE POSITIVE, FALSE POSITIVE, TRUE
NEGATIVE AND FALSE NEGATIVE PERCENTAGE FOR

LANGUAGES

Language TP TN FP FN
Hindi 72.30 90.90 9.10 27.70
Malayalam 87.56 94.23 5.77 12.44
Gujarati 83.47 93.70 6.30 16.53
Telugu 80.34 95.69 4.31 19.66

found in the language such as names of people, places etc. The
table IV shows the results of both RNN and GMM methods.

TABLE IV. COMPARING PRECISION, RECALL AND F-SCORE VALUES
FOR RNN AND GMM APPROACHES. (THE VALUES ARE SHOWN IN

PERCENTAGE)

Language RNN GMM
Precision Recall F-score Precision Recall F-score

Hindi 89.30 77.22 82.82 85.46 77.44 81.25
Malayalam 93.82 87.56 90.58 88.47 84.70 86.54
Gujarati 92.98 83.47 87.97 92.05 80.28 85.77
Telugu 94.91 80.34 87.01 92.44 79.55 85.51

While comparing the F-measure values of both the ap-
proaches, we can see that RNN based approach performs better
than GMM. This can be attributed to the effective learning
capability of neural networks. It is also observed that the Recall
of Hindi is almost same in both approaches. The effectiveness
of both the approaches can be combined to build a powerful
post processor.

C. Combining RNN and GMM Approaches

One of the important concerns in OCR post processing is
the misclassification of correct words identified correctly by
the OCR. The cost of misclassifying a correct word in the OCR
output as ’error’ by the post processor is much higher than the
cost of not identifying an error. This implies that we should
be more concerned about increasing the precision. A good
post processor should try to minimize the occurrence of False
Positives while also trying to maximize the True Positives.

As observed in [8] relying on one method can fix some
obvious errors but it can also increase the rate of hallucination
of correct words as errors. We combine both our approaches to
create a more reliable classifier wherein a word is declared as
an error only if both the models label it as an error. The table
V shows how a word is given a label from the labels of RNN
and GMM approach. The results of the combined approach for
different languages are shown in figure 5.

TABLE V. RULES FOR LABELING A WORD BY COMBINING THE
MODELS

RNN output GMM output Combined Approach
Output

Error Error Error
Error Right Right
Right Error Right
Right Right Right

D. Discussions

The error detection in OCR output using RNN and GMM
gives us good detection accuracies. The primary reason for
this is the exploitation of the potential of a neural network and
complementing its predictions using a generative method. Also
the use of akshara as the basic recognition unit of a word helps



Fig. 5. The bar graph shows the precision recall and F-score using RNN,
GMM and the combined approach. The precision in the combined approach
exceeds both the individual approaches. We compromise recall to improve
precision, because our problem demands that the misclassification of correct
words should be minimized.

TABLE VI. RESULTS OF ERROR DETECTION ON A NEW RNN BASED
OCR USING THE PRE-TRAINED ERROR DETECTION MODEL. WE HAVE USED

A COMBINATION APPROACH DISCUSSED IN PREVIOUS SESSION TO
ACHIEVE THIS RESULT. THE VALUES ARE IN PERCENTAGE.

Language TP TN FP FN Precision Recall F-Score
Malayalam 75.57 85.38 14.62 24.43 83.79 75.57 79.47
Gujrathi 67.39 94.83 5.17 32.61 92.87 67.39 78.11
Hindi 64.83 87.98 12.02 35.17 84.36 64.83 73.32

in learning the morphology of a word and patterns in word
formation, enabling better prediction of labels of unseen words.
The method fails to detect correct words like person names or
place names which are not related to the region where the
language is used. Also detection of errors in punctuation and
digits is a troublesome task. Overall, the approach succeeds in
providing a fair solution for detecting non word errors in the
OCR output.

We evaluate the error detection accuracy on the output
obtained from another OCR (RNN based) and the results are
shown in table VI. Some qualitative results of the combined
approach are shown in figure 6. We observe that long words
like the Malayalam word, which are actually correct are
identified correctly by the RNN. The GMM does well at picking
up transliterated words from languages like English as shown
in the Hindi example. It can be seen that combining both the
models helps to reduce misclassification of correct words.

Fig. 6. Figure shows some of the test cases and the labels assigned to them
by each model. Cross mark and tick mark indicates that the label is error and
correct respectively. Decision column shows the prediction made by combined
method.

IV. CONCLUSION AND FUTURE WORK

Detection of errors in the output of the OCR is an inevitable
task in making good OCRs, especially for Indic scripts. In this
work, we provide an effective solution to detecting the errors
in the OCR output using a pretrained LSTM and GMM model.
We use the bigram and trigram probabilities of aksharas in a
word to train the models. In the future, we would like to try
new features to train the neural network and also use word
level ngram features to predict the real word errors in the OCR
output. We also plan to extend this work to other language
OCRs.

REFERENCES

[1] M. Cheriet, N. Kharma, C. L. Liu, and C. Y. Suen, Character Recognition
Systems. Wiley-Blackwell, 2007.

[2] N. Sankaran and C. V. Jawahar, “Error detection in highly inflectional
languages,” in ICDAR, 2013.

[3] K. Kukich, “Techniques for automatically correcting words in text,”
ACM, 1992.

[4] Y. Bassil and M. Alwani, “OCR context-sensitive error correction based
on google web 1T 5-gram data set,” American Journal of Scientific
Research, 2012.

[5] A. Carlson and I. Fette, “Memory-based context-sensitive spelling cor-
rection at web scale,” in Machine Learning and Applications, 2007.

[6] A. Wilcox-OHearn, G. Hirst, and A. Budanitsky, “Real-word spelling
correction with trigrams: A reconsideration of the Mays, Damerau, and
Mercer model,” 2008.

[7] R. Golding and Y. Schabes, “Combining trigram-based and feature-based
methods for context-sensitive spelling correction,” in ACL, 1996.

[8] R. Smith, “Limits on the application of frequency-based language models
to ocr,” in ICDAR, 2011.

[9] K. Mohan and C. V. Jawahar, “A post-processing scheme for malayalam
using statistical sub-character language models,” in DAS, 2010.

[10] G. Lehal, C. Singh, and R. Lehal, “A shape based post processor for
Gurmukhi OCR,” in Document Analysis and Recognition, 2001.

[11] U. Pal, P. K. Kundu, and B. B. Chaudhuri, “OCR error correction of an
inflectional Indian language using morphological parsing,” Journal Of
Information Science and Engineering, 2000.

[12] D. Arya, T. Patnaik, S. Chaudhury, C. V. Jawahar, B.B.Chaudhuri,
A.G.Ramakrishna, C. Bhagvati, and G. S. Lehal, “Experiences of inte-
gration and performance testing of multilingual OCR for printed indian
scripts,” in J-MOCR Workshop,ICDAR, 2011.

[13] British National Corpus (BNC). [Online]. Available:
http://www.natcorp.ox.ac.uk/

[14] A. Bharati, K. Prakash Rao, R. Sangal, and S. Bendre, “Basic statistical
analysis of corpus and cross comparison among corpora,” Technical
Report of Indian Institute of Information Technology, 2000.

[15] Y.-S. Hwang, B.-R. Park, H.-C. Rim, and S.-W. Lee, “A contextual
post-processing model for Korean OCR using synthesized statistical
information,” in ICMI.

[16] A. Ganapathiraju, J. Hamaker, J. Picone, M. Ordowski, and G. R.
Doddington, “Syllable-based large vocabulary continuous speech recog-
nition,” Speech and Audio Processing, 2001.

[17] A. Stolcke et al., “Srilm-an extensible language modeling toolkit.” in
INTERSPEECH, 2002.

[18] W. Gale and G. Sampson, “Good-turing smoothing without tears,”
Journal of Quantitative Linguistics, 1995.

[19] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” Pattern Analysis and Machine Intelligence, 2009.

[20] L. Medsker and L. Jain, “Recurrent neural networks,” Design and
Applications, 2001.

[21] I. Z. Yalniz and R. Manmatha, “A fast alignment scheme for automatic
ocr evaluation of books,” in ICDAR, 2011.


