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ABSTRACT

Nuclear imaging modalities like Positron emission tomogra-
phy (PET) are characterized by a low SNR value due to the
underlying signal generation mechanism. Given the signif-
icant role images play in current-day diagnostics, obtaining
noise-free PET images is of great interest. With its higher
packing density and larger and symmetrical neighbourhood,
the hexagonal lattice offers a natural robustness to degrada-
tion in signal. Based on this observation, we propose an alter-
nate solution to denoising, namely by changing the sampling
lattice. We use filtered back projection for reconstruction, fol-
lowed by a sparse dictionary based denoising and compare
noise-free reconstruction on the Square and Hexagonal lat-
tices. Experiments with PET phantoms (NEMA, Hoffman)
and the Shepp-Logan phantom show that the improvement in
denoising, post reconstruction, is not only at the qualitative
but also quantitative level. The improvement in PSNR in the
hexagonal lattice is on an average between 2 to 10 dB. These
results establish the potential of the hexagonal lattice for re-
construction from noisy data, in general.

Index Terms— PET Images, Denoising, Hexagonal lat-
tice, Image Reconstruction

1. INTRODUCTION

Image denoising is a classical problem in image processing. It
continues to be an active area of research. A variety of tech-
niques for denoising have been proposed recently based on
Non-Local means [1] wavelets [2], curvelets [3], total varia-
tion [4] and sparse representation/Dictionary learning [5]. Im-
age denoising is critical in the medical domain where images
are typically obtained via a reconstruction process. Depend-
ing on the nature of the modality and acquisition methodol-
ogy, the reconstructed images are corrupted with noise. For
instance, the need to minimize exposure (or dosage) levels
of a subject to ionizing radiations such as X-ray employed
in computed tomography (CT), invariably incurs a low SNR.
The quality of the reconstructed image plays a key role in its
usefulness as a basis for medical diagnostics. Better image
quality naturally facilitates more accurate diagnosis.
In nuclear imaging, the problem is especially acute since the
acquired signal is based on low photon counts that result from
a radioactive decay process. Due to the randomness involved

in the decay process, the noise problem cannot be alleviated
by merely improving the sensor mechanism such as employ-
ing photo multipliers. Hence, this is handled at the signal pro-
cessing level. Recently, the low SNR problem has been tack-
led with compressive sensing (CS) based approaches. CS so-
lutions incorporating sparse constraints have been used both
during and post reconstruction. Examples of the former are
low dose CT [6] and PET [7] reconstruction with undersam-
pling. Examples of the latter are the deblurring solutions pro-
posed in [8],[9].
In this paper, we argue that there is an alternative avenue for
solving the noise problem, namely, by employing the hexag-
onal sampling lattice and demonstrate a dictionary based ap-
proach to denoising of PET images. Hexagonal lattices offer
consistent connectivity and superior angular resolution moti-
vating their study for several applications such as edge detec-
tion, morphological processing, etc., [10], [11]. The utility
of this lattice in reconstruction has not been reported in litera-
ture barring a method for CT reconstruction which reports im-
proved efficiency and memory management with hexagonal
lattice [12]. Since optical cameras acquire images sampled on
a square grid, resampling is required to consider the hexago-
nal grid-based solutions, thus limiting their practical applica-
tion. However, this is not the case with PET (or CT) images,
as the signal is acquired as a sinogram first thus permitting the
choice of the hexagonal lattice more readily for reconstruct-
ing and denoising the final image. We choose a sparse dic-
tionary based approach for denoising since it has been shown
to perform well on images from natural images [5] as well
as MR and fluorescence microscopy images [9]. Our ap-
proach does not incorporate the noise model in the dictionary
learning step in order to clearly assess the role the change
of lattice in PET image denoising using the simplest possi-
ble pipeline: reconstruction onto a hexagonal lattice using
filtered back projection (FBP) followed by sparse dictionary-
based denoising. The paper presents results of assessing the
denoising performance across lattices using 3 phantoms, one
of which is analytical and the other two being standard phan-
toms used for PET reconstruction studies: the Shepp-Logan
(analytical) NEMA and Hoffman.



2. HEXAGONAL IMAGE ADDRESSING

Hexagonally sampled images are defined on horizontally
aligned hexagonal lattices generated using the basis matrix
Vh defined as

Vh = (h1, h2) =
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where the columns hi; i = 1, 2 are the basis vectors of the
lattice which are clearly non-orthogonal. Based on the above
matrix it is possible to define a neighbourhood N of a point
as the following set.

N 6
h = {h1, h2, h1 − h2}

It may be noted that |h2 − h1| = |h1| = |h2| and hence all
the neighbouring sites in a hexagonal 6 neighbourhood are
equidistant. These properties distinguish the hexagonal lat-
tice from the square lattice in two key ways: (a) consistent
connectivity due to equidistant points in N and (b) redun-
dancy in the information captured at the lattice points due to
the non-orthogonal basis vectors. These two factors can be
beneficial to denoising with the hexagonal lattice, relative to
a square lattice.

Another implication of the above definition for the basis
vectors is that the Cartesian coordinates for the lattice points
are irrational which is cumbersome due to floating point er-
rors that may occur during addressing. We hence choose to
follow the single-index, base-7 addressing convention pro-
posed in [10] as it has been shown to be efficient. The in-
dexing scheme uses a positional numbering system based on
hierarchical aggregates to address pixels. A sample image
with pixel indices is shown in figure 1. This linear indexing
helps to define an image patch easily. We define a hexagonal
patch of order n centered at location l7 as the set of pixels
given by:

hPnl = {l7, l7 + 17, l7 + 27, ...l7 + (7n)7} (2)

Where, 17, 27, .., is numbers 1,2,.. to base 7. For example a
patch of order 1 (O1) at location 157 is given by:

hP1
42 = {15, 16, 10, 14, 2, 1, 63}

In general, an On patch will have 7n elements/pixels. Figure
1 shows and example of a O2 patch which is stored as a vec-
tor. O2 patch is seen to be similar in structure, to an O1 patch,
with a central O1 patch surrounded by six O1 patches. Thus,
there is a natural hierarchical structure to the image neigh-
bourhoods.

3. PROPOSED PIPELINE

PET is a nuclear imaging modality used to study functional
activities of living tissues such as glucose metabolism, etc.

Fig. 1: A hexagonal patch of order 2 and its representation as a vector.

The measured data generally consists of a sinogram and an
attenuation profile which is used to correct the sinogram data.
The proposed pipeline for denoising has two stages: In stage
1, the PET image is reconstructed onto a desired lattice from
the given sinogram and in stage 2 the reconstructed image
is denoised using a sparse dictionary learned from the noisy
image. Details of these stages are explained next.

3.1. Filtered back projection: stage 1

Filtered back projection (FBP) is an analytical reconstruc-
tion method, which essentially is an algorithm for inverting
the sinogram or set of projections. It is derived from the
Fourier slice theorem which establishes the relationship be-
tween the projections and the Fourier transform of the cross
section f(x, y) being imaged. Reconstruction involves fil-
tering each of the projections (rows of the sinogram) and
backprojecting the filtered results. FBP assumes the data to
be noise-free and hence leads to noisy reconstructions given
a noisy sinogram. In practice, therefore, iterative, statistical
reconstruction methods [13], are employed to achieve a good
SNR. However, since our focus in the present work is on
assessing the role of lattice, FBP serves as an appropriate
baseline algorithm to compare the results.

3.2. Sparse dictionary based denoising: stage 2

The denoising is based on the KSVD algorithm [5]. The main
steps in the algorithm are: Dictionary learning, sparse coding,
reconstruction of the denoised image using sparse code and
the learnt dictionary. The denoising is based on the sparsity
of the image which means fewer atoms capture the ’clean’
signal whereas the noise is captured by many or all atoms.
Various methods [14] [15] etc have been proposed for learn-
ing sparse dictionaries. We have used the ‘online approach’
[15] to learn a dictionary which we briefly review next.
Randomly sampled patches from images are vectorized to
generate training data for learning the dictionary. In the case
of square lattice, the patch sPnl is vectorized by row-major or-
dering to obtain a vector xs ∈ Rn

2

. For the hexagonal patch



Fig. 2: Sample Dictionary learned over the hexagonal lattice

hPnl , the adopted positional indexing method yields a vector
directly xh ∈ R7n (see figure 1). For a fair comparison of the
lattices, n was chosen to be 2 in hexagonal case and 7 in the
square case, to get a 49-dimensional vector for both lattices.
The dictionary is learned by solving the following optimiza-
tion problem.

min
D∈C,α∈Rk×n

1

2
‖ X− Dα ‖2F +λ ‖ α ‖1,1 (3)

C = {D ∈ Rm×ks.t∀j = 1, ...k, dTj d
T
j ≤ 1} (4)

where, X =
(
xs(h)1, xs(h)2, ...xs(h)n

)
is a matrix of training

samples(vectors), α is the sparse code matrix for the vectors.
‖ · ‖F represents the Frobenius norm and ‖ · ‖1,1 the l1 norm.
Two separate dictionaries Dh (hexagonal) and Ds(square) are
learnt using (3). This method is fast and optimized for a
large training set (which is the case for densely sampled im-
age patches). The regularization parameter λ = 0.6 was used
while training the dictionary. An example of individual atoms
learned in the hexagonal case is shown in Figure 2.
Sparse coding is done using Cholesky factorization-based or-

thogonal matching pursuit of the test signals. The algorithm
efficiently computes in parallel, the sparse codes α by approx-
imately solving the following (NP-hard) problem.

min
α
‖ α ‖0 s.t ‖ x−Dα ‖22≤ ε (5)

During the denoising stage, densely sampled patches from
images are reconstructed using the sparse dictionary learned
in previous step. A (sparse code) weighted combination of
dictionary atoms are averaged to obtain the final denoised im-
age.

4. RESULTS

The denoising method was assessed with 3 standard phantom
images: i) Shepp-Logan phantom, which is analytically de-
rived and routinely used to evaluate reconstruction algorithms
ii) the NEMA and Hoffman brain phantoms which are specif-
ically used to test PET reconstruction. In order to display the

Fig. 3: Comparison of denoising results for the Shepp-Logan phantom. Clockwise from
top left: original, noisy image, denoised resuls on hexagonal and square grids

Fig. 4: Average PSNR for the Shepp-Logan phantom for various noise levels

reconstructed results on hexagonal lattice, the pixels were vi-
sualized with square hyper-pixels using the code provided in
[10]. The Shepp-Logan phantom, unlike the the other two,
permits a controlled study of denoising. In our experiments,
first, the phantom image I (generated using Matlab) was de-
graded with additive Gaussian noise to model the noisy source
In. Next, the sinogram, constructed by computing the Radon
transform of In , was used to reconstruct noisy images Ir onto
square/hexagonal lattices. Finally, Ir was denoised in the na-
tive lattices.

The original image I , its noisy reconstructions Ir and the
denoised results are shown in Figure 3 for standard deviation
0.08 . From these results, we see that the central small, white,
circle has better definition and shape fidelity on the hexagonal
compared to the square lattice. The denoised image on the
hexagonal grid is smoother as well.
The denoising was assessed quantitatively by varying the
noise and computing the PSNR with I as the ’clean’ origi-
nal. The experiments were repeated 5 times and the average
values were recorded. Figure 4 shows this average PSNR



Fig. 5: Comparison of denoising results for NEMA and Hoffman phantoms. Left to right: Noisy reconstruction, denoised images on hexagonal and square lattices.

Fig. 6: Scanline comparison for NEMA on Hexagonal (red), Square (blue) lattices.
Inset image shows the scan line. The labelled pixel positions in the plots are with the
origin at the centre of the image

as a function of noise levels. A trend analysis of the plot
shows that, for high PSNR (i.e. low noise levels) a change to
hexagonal lattice results in a 5 dB improvement in denoising
while for high noise levels, the improvement is half as much.
Figure 5 shows the noisy reconstructed (Ir) and denoised re-
sults (I for the NEMA and Hoffman phantoms. A quantitative
assessment of NEMA phantom was done in two ways: a) An
’inverse’ PSNR metric, which treats the denoised image as the
clean signal and the noisy reconstruction as the ‘noisy signal’,
was computed. A large magnitude of ‘error’ indicates good
denoising. The average (over 5 repetitions) inverse PSNR for
the NEMA phantom were −59.7 dB and −51.6 dB for the
square and hexagonal lattices, respectively. For the Hoffman
phantom these values were−51.5 dB (square) and−41.5 dB
(hexagonal). This demonstrates that the improvement in de-
noising with hexagonal lattice is between 8 to 10 dB. b) The
intensity profile along several scan lines in the denoised im-

age were analysed. This was done only for NEMA phantom
as it is the standard used for PET calibration. A scan line
profile is shown in Figure 6. The line position, as indicated
in the inset image, covers two objects of opposite polarity on
a noisy background. Hence, the ideal profile should be flat at
the location of the objects. This is the case especially for the
bright object in the hexagonal lattice whereas it is not in the
square lattice. The region between bright and dark objects
represent the background which appears noisier in the square
case both in Figure 5 and the profile in Figure 6. Thus, the
hexagonal lattice appears to be better at preserving the fidelity
of the shape after reconstruction and denoising.

5. CONCLUSION

In this paper, we argued that an alternate solution for improv-
ing image denoising, can be a change in the underlying sam-
pling lattice. We extended the adaptive dictionary based de-
noising to hexagonally sampled images. The experimental
results confirm that using a hexagonal lattice for reconstruc-
tion and denoising of PET sinogram data improves the perfor-
mance of reconstruction both qualitatively as well as quanti-
tatively by as much as 10 dB. This can be improved further
with incorporation of a noise model in the denoising. While
the proposed method was proven on PET medical image re-
construction, it is quite possible to extend its applicability to
images from other modalities such as low dose CT, spectral
CT and ultrasound.
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