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ABSTRACT
The dynamic time warping (DTW) distance is a popular similarity
measure for comparing time series data. It has been successfully
applied in many fields like speech recognition, data mining and
information retrieval to automatically cope with time deformations
and variations in the length of the time dependent data. There have
been attempts in the past to define kernels on DTW distance. These
kernels try to approximate the DTW distance. However, these have
quadratic complexity and these are computationally expensive for
large time series. In this paper, we introduce FastDTW kernel,
which is a linear approximation of the DTW kernel and can be
used with linear SVM.

To compute the DTW distance for any given sequences, we need
to find the optimal warping path from all the possible alignments,
which is a computationally expensive operation. Instead of finding
the optimal warping path for every pair of sequences, we learn a
small set of global alignments from a given dataset and use these
alignments for comparing the given sequences. In this work, we
learn the principal global alignments for the given data by using
the hidden structure of the alignments from the training data. Since
we use only a small number of global alignments for comparing the
given test sequences, our proposed approximation kernel is compu-
tationally efficient compared to previous kernels on DTW distance.
Further, we also propose a approximate explicit featuremap for our
proposed kernel. Our results show the efficiency of the proposed
approximation kernel.
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1. INTRODUCTION
Distance (Similarity) functions play an important role in a wide

variety of problems, including regression, classification and clus-
tering. They are used to find the similarity and dissimilarity be-
tween a pair of samples. There are several distance functions avail-
able in machine learning literature like Euclidean, Geodesic, Earth
Movers Distance (EMD) [22], dynamic time warping (DTW) [2,
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26], etc. Each of these distance functions computes different types
of similarity, and is useful for different kinds of problems. For
example, Euclidean distance is widely used in comparing the se-
quences which are in the same space. The main limitation of using
Euclidean distance for time series data is that it does not capture
the local dependencies between neighboring states of the time se-
ries, and is sensitive to distortion in time axis [13]. The best way to
compare time series data is DTW distance [3, 26, 2]. For a given
pair of time series, it finds the optimal alignment by ignoring both
global and local shifts in the time dimension. DTW is often used
in speech recognition [17] to determine the similarity between two
speech signals representing the similar spoken words. In speech
recognition, for a given same spoken word, the length of the signals
are permitted to vary, but the overall speech signals are similar. In
addition to speech recognition, DTW has also been found useful
in many other disciplines [14], including word recognition [4, 21],
bioinformatics [1], data mining and gesture recognition. DTW is
commonly used in data mining as a distance measure between time
series.

Over the last decade, SVMs has emerged as the most popular
approach in classification. This is mainly due to its state-of-the-art
performance on a wide variety of real-world classification prob-
lems [10, 12, 15]. Most of the distance functions may not yield
positive definite kernels and thus can not be used along with SVM.
Although these distance functions do not yield positive definite ker-
nels, they have popular applications in many fields. For exam-
ple, DTW distance does not yield a positive definite kernel but it
works well on many time series classification problems with Near-
est Neighbour (NN) classifier [30]. In general, SVM performs
superior than NN on classification problems, where the appropri-
ate choice of kernel exists [28]. Due to its superiority, it is rea-
sonable to use DTW distance with SVM. However, because of its
non-metric property, DTW distance does not yield positive definite
kernel.

Non positive definite kernels are previously used in SVM [7, 29],
and DTW distance previously used in kernel machines by many
authors [2, 26, 32, 8]. In [8], the authors corrected the negative
definite kernel matrix by its square. There are also some attempts
where minor changes are incorporated in the definition of DTW
distance for defining a positive definite kernel. Hayashi et al. [9]
projected the time series into an Euclidean space such that the re-
sulting representation approximates the DTW distance. Although,
we can use the distance functions in kernels with some approxima-
tions/modifications in the original formulation, the resulting ker-
nels are computationally expensive. This limits the use of these
distance functions for large datasets. For example, the computa-
tional complexity for finding the DTW distance between two time
series of length n andm respectively, isO(nm). The resulting ker-



nels over DTW distance has quadratic complexity, which is com-
putationally prohibitive for large time series containing thousands
of data points. Note that such large length time series commonly
arises in many domains like speech, bioinformatics and text pro-
cessing.

In this work, we propose the FastDTW kernel which is a lin-
ear approximation to the non-linear DTW kernel. Our main con-
tributions are (i) computing the DTW distance based on a set of
principal global alignments computed from the training data, and
(ii) computing an approximate explicit feature map for the DTW
kernel so that linear SVM can be used. The main objective of this
paper is to speed up the DTW kernel by learning the optimal align-
ments from the given training data. As far as we are aware, none
of the previous methods have exploited the hidden structure of the
alignments. In our experiments, we observe that, we can represent
the internal structure of the alignments using few basis alignments
(global alignments). These basis alignments are sufficient for com-
paring any given new pair of sequences. Since we are avoiding
computing the optimal alignments for the test sequences, the pro-
posed FastDTW kernel is computationally efficient compared to
previous techniques.

A popular method for speeding the non-linear kernels is with the
help of explicit featuremap [27, 16, 20, 19]. Explicit featuremap
approximates the original large dimensional featuremap by a small
finite dimensional featuremap. This gives the linear approximation
of the original non-linear kernel, which can then be used with a
linear SVM. To find the linear approximation of the proposed Fast
DTW kernel, we compute its approximate explicit featuremap us-
ing the global top alignments. Explicit featuremaps are quite popu-
lar for different non linear kernels like intersection [16], Hellinger’s,
χ2 and RBF kernels [27, 20]. However, this technique does not ap-
pear to be in widespread use in the time series community. In this
paper, we follow this line of work and propose a novel approxi-
mate explicit feature map for DTW kernel. In [25], the authors
proposed a dynamic time warping algorithm for the computation
of DTW distance, which is linear in both time and space. The
algorithm finds a nearly optimal warp path between two time se-
ries. However, the limitation of this algorithm is that it cannot be
transformed into valid kernel. For a given dataset, we first learn the
global top alignments, and then compute the explicit featuremap for
the DTW kernel from these alignments. Our proposed approxima-
tion kernel is computationally efficient compared to other kernels
over DTW distance. We compare our proposed kernel with the GA
kernel [5] and, Gaussian DTW kernel [2], and show speed up for
the given datasets. Since we are approximating the DTW kernel,
the FastDTW kernel slightly decreases accuracy.

The paper is organized as follows. The next section describes the
popular dynamic time warping technique and some existing kernels
based on DTW distance. Details about problem formulation are
discussed in Section 3. Section 4 provides a detailed explanation
of our proposed approximation techniques. Section 5 discusses ex-
perimental evaluations of proposed kernel with previous kernels on
DTW distance, followed by concluding remarks.

2. PRELIMINARIES
Kernel methods have been successfully used for comparing im-

ages, graphs and strings. Defining appropriate kernels for compar-
ing structured objects like time series, remains a key challenge in
the application of kernel methods to areas like signal processing,
speech recognition and datamining.

We cannot directly use popular kernels such as Gaussian and
polynomial kernels for comparing time series. This is mainly due
to the variable length of time series. Also these kernels cannot

capture the local dependencies between neighboring states of the
time series. A successful method to compare time series is dy-
namic time warping (DTW) [24, 26, 2]. For the given two time
series, the DTW yields an optimal alignment from all the possible
alignments. This optimal alignment can be used to find the corre-
sponding regions between the given time series. It can also be used
to find the similarity between the time series. The DTW measure
is the difference between the two time series after they have been
mapped together with the optimal alignment.

Given two time series,X = (x1, . . . , xn) and Y = (y1, . . . , ym)
of lengths n and m respectively, an alignment π of length |π| = p
is a pair of increasing p-tuples (π1, π2) such that

1 = π1(1) ≤ . . . ≤ π1(p) = n,
1 = π2(1) ≤ . . . ≤ π2(p) = m

with unitary increments and no simultaneous repetitions. That is,
for ∀1 ≤ i ≤ p− 1,

π1(i+ 1) ≤ π1(i) + 1, π2(i+ 1) ≤ π2(i) + 1
(π1(i+ 1)− π1(i)) + (π2(i+ 1)− π2(i)) ≥ 1.

Intuitively, an alignment π between X and Y describes a way to
associate each element ofX to one or possibly more elements in Y ,
and vice-versa. Let A(X,Y ) be the set of all possible alignments
between X and Y . The DTW distance between two time series
(sequences) X and Y is given as the minimum distance over all
possible alignments,

DTW (X,Y ) = minπ∈A(X,Y )

|π|∑
i=1

ϕ(Xπ1(i), Yπ2(i))

where, ϕ(Xπ1(i), Yπ2(i)) is the distance between the given sequences
indexed by the alignment π. In general, Euclidean distance is used
for this measure. The resulting alignment is the optimal path be-
tween the given two sequences.

For comparing two time series X and Y of length n and m re-
spectively, the time and space complexity of DTW is O(nm). The
quadratic complexity mainly involves finding the optimal align-
ment from a huge set of possible alignments. The quadratic com-
plexity is particularly prohibitive for large length time series. For
the time series containing few thousands of measurements, it re-
quires lot of memory and is computationally unattractive. In prac-
tice, heuristic constraints are used to speed up DTW. Among these,
two of the most commonly used constraints are Sakoe-Chiba [23]
and Itakura [11] constraints. Instead of searching in the entire space
for optimal path, these restrict the search space using a constraint
window. When constraints are used, the DTW algorithm finds
the optimal path which passes only through the constraint window.
It speeds up the DTW computation by a constant factor but the
quadratic complexity still remains. In addition, using these meth-
ods the global optimal path can not be found if it does not pass
through the constraint window and constraints work well if the op-
timal path is expected to be closer to the diagonal.

Since SVMs often outperforms K-NN classifiers [28], it is de-
sirable to use DTW distance with SVMs. To do this, we need to
define a valid kernel using DTW distance. Several kernels have
been proposed over the DTW distance [2, 26, 32, 8]. For example,
in [2], the authors proposed the Gaussian DTW (GDTW) kernel
based on DTW distance as follows

κGDTW = exp
(
−min

π∈A(X,Y )

1

|π|

|π|∑
i=1

‖Xπ1(i) − Yπ2(i)‖
2
2

)
(1)



Here Euclidean distance is used for the distance measure ϕ. By
using Gaussian kernel for ϕ, in [26], the authors defined another
kernel over DTW, which is given as

κDTW1 = max
π∈A(X,Y )

1

|π|

|π|∑
i=1

e
−1

σ2
‖Xπ1(i)−Yπ2(i)‖

2
2 (2)

To get the better performance using DTW kernel, Cuturi et al. [6]
proposed Group Alignment (GA) kernel. Their kernel is not based
on the optimal alignment, but takes advantage of all the scores ob-
tained from all the possible alignments. This kernel is defined as,

κGA(X,Y ) =
∑

π∈A(X,Y )

|π|∏
i=1

κ(Xπ1(i), Yπ2(i)) (3)

where, κ(Xi, Yj) = e−ϕ(Xi,Yj). This kernel is positive definite if
κ
κ+1

is positive definite. Rather than considering the optimal align-
ment (simple minimum of the objective function), the kernel con-
siders softmax of the scores of all possible alignments. Intuitively,
the kernel considers both the optimal alignment and all the align-
ments which are closer to it. They argue that, two sequences are
similar not only if they have one single alignment with high score,
but also share a wide set of other alignments. All the above ker-
nels have quadratic complexity. This is computationally expensive
for large datasets containing thousands of sequences with length in
thousands. Based on the constraint windows [18] for DTW dis-
tance, Triangular Global Alignment (TGA) is proposed in [5] for
speeding up GA kernel. This increase in speed comes at the cost of
an approximation, and the resulting path may be suboptimal. This
reduces the computational cost by a constant factor. In all the above
kernels, the quadratic complexity mainly involves finding the opti-
mal alignment or near optimal alignments.

GA kernel considers all the alignments or alignments near to the
diagonal, due to which it is better than DTW kernel. Since, it needs
to compute the alignments for every pair of sequences it is compu-
tationally slower. In this paper, instead of finding the optimal align-
ments for the given time series, we learn a set of global alignments
from the training data and use these alignments for comparing new
pair of sequences. Since we are finding the global alignments from
all the possible alignments, in one way, our proposed kernel is an
approximation to the GA kernel.

In general, SVMs with non linear kernels over large data sets
are computationally slower compared to linear kernels. It requires
efficient solvers to optimize the given problem. A linear SVM is
given by the inner product F (X) = 〈w,X〉 between the data sam-
pleX and a weight vectorw. On the other hand, a non linear SVM
is given by the expansion F (X) =

∑M
i=1 αiκ(X,Xi), where κ is

a non-linear kernel, Xis are representative data vectors and M is
the number of support vectors. In most of the cases, evaluating the
inner product 〈w,X〉 is more efficient than evaluating the kernel
κ(X,Xi). This makes the linear SVM atleastM times faster com-
pared to non-linear SVM, which is a significant gain especially on
large datasets. The training time is also effected in the similar way.
A successful way to speed up the non-linear SVM is with the help
of explicit featuremaps [27]. For a given non-linear kernel κ, there
exists a featuremap φ such that κ(X,Y ) = 〈φ(X), φ(Y )〉. How-
ever, in most of the cases, the featuremap φ is of infinite dimension.
In explicit featuremap, it finds a finite dimension approximation φ

′

of the featuremap φ such that κ(X,Y ) ' 〈φ
′
(X), φ

′
(Y )〉. Given

a positive definite kernel κ(X,Y ) and a data density p(X ), where
X,Y ∈ XD for some input space X , the approximation finds the
featuremap φ

′
, which minimizes the following functional

E(φ
′
) =

∫
XD×XD

(κ(X,Y )−〈φ
′
(X), φ

′
(Y )〉)2p(X)p(Y )dXdY

where, the components φ
′
k(X) (k = 1, 2, . . .) are eigenfunctions of

the kernel κ. In general, the data density p(X ) is approximated by
a finite sample set and correspondingly eigenfunctions are replaced
with eigenvectors. The eigenfunctions (vectors) play an important
role in the approximation of the kernels.

3. PROBLEM FORMULATION
The problem of finding optimal alignment in DTW is solved as

follows: For given pair of two time series X = {x1, . . . , xn} and
Y = {y1, . . . , ym}, where xi, yi ∈ Rk, of length n and m respec-
tively, we first construct a cost matrix C of dimension n×m. The
(i, j)th element of the cost matrix C is the Euclidean distance be-
tween the elements xi and yj . The x-axis and y-axis of the matrix
C represent time domain for the time series X and Y respectively.
Each warp path in the cost matrix represents an alignment between
the time seriesX and Y , and the sum of elements through the align-
ment gives the cost of the alignment. The DTW finds an optimal
warp path (top alignment) which has the minimum cost. We need
to compute the optimal warp path for finding the DTW distance
between two time series.

It is likely that for given two distinct pairs of time series, there
exists some common top alignments. For a given dataset, the top
alignments may not be completely different for two different class
of time series. The top alignments between any two time series
from two different classes always follow some structure, which de-
pends on the dataset. We plot the top 3 alignments between two
time series in Figure 1(a). The top alignments are not completely
different from each other. We show this behavior over a subset of
samples from Libra dataset in Figure 1(b). Here, we plot the top
alignments between all the pairs of samples. Clearly, we can ob-
serve that all the alignments are passing through a small window.
Any of the top alignments is not completely different from others.
Since for any given two time series, their top alignments are fol-
lowing some structure, we can approximate the top alignments for
a new pair of time series from the few alignments obtained from
the given data. The aim of this work is to find these few candidate
top alignments (global alignments) from the given data.

Let us define the DTW kernel as follows

κDTW = exp
(
−

∑
π∈A(X,Y )

1

|π|

|π|∑
i=1

‖Xπ1(i) − Yπ2(i)‖
2
2

)
(4)

4. APPROXIMATION FOR DTW KERNELS
In general, explicit featuremaps for non-linear kernels are com-

puted using their eigenfunctions. Eigenfunctions play an important
role in representing any kernel function and, from Mercer theorem,
we can represent a kernel function using sum of its eigenfunctions.
However, computing eigenfunctions for a kernel which is a solu-
tion to an optimization problem is practically difficult. In DTW
distance, alignments have some similar properties as eigenfunction.
For a given pair of samples, we can represent its DTW distance us-
ing few alignments, however, these alignments will change across
the samples. Since alignments play a similar role as eigenfunctions
in DTW distance, we compute the global top alignments (eigen
alignments) for the given data. These alignments are good enough
for comparing any samples from the given data. In this paper, we
introduce two methods for finding the global top alignments from



(a) (b)

Figure 1: (a) The top 3 alignments between two time series X and Y of length 90 and 140 respectively. These alignments have least
cost compared to other alignments. These alignments are not completely different from each other. (b) Optimal warp paths between
the sequences of a subset of Libra dataset.

the given data. In the first method, we compute the global top align-
ments from the total top alignments of the given data. For a given
pair of samples, their top alignments are computed from their cost
matrix. Since there are similarities between the top alignments for
different pairs of samples, there will be similarities between their
cost matrices also. Instead of computing representative alignments
from the total top alignments, in the second method, we compute
the representative cost matrix for the given data and global top
alignments are computed from this cost matrix.

4.1 Approximation using Top Alignments (ATA)
To model the global top alignments, we use principal component

analysis (PCA). The objective is to find the global top alignments
from the optimal alignments obtained from the given data. We need
to find the better representative alignments from the total optimal
alignments. The problem is similar to the objective of PCA, where
for a given data it finds the principle directions in which variance
of the data is maximum and the data can be well represented using
these representations. PCA is a statistical procedure that uses an or-
thogonal transformation to convert a set of correlated observations
into a set of values of linearly uncorrelated variables called prin-
cipal components. The number of principal components are less
than or equal to the number of original variables. This transforma-
tion computes the principal components in such a way that the first
principal component has the largest possible variance and accounts
for as much of the variability in the data as possible. The succeed-
ing components in turn has the next highest variance possible. This
method is very much similar to the objective of the approximation
using top alignments, where we find the representative alignments
(principal alignments) from the total alignments obtained from the
given data. However, PCA works only on one dimensional data
(1D), if we want to apply over two dimensional (2D) data, the 2D
data must be transformed into 1D data. This leads to a high di-
mensional vector space where it becomes difficult to evaluate the
covariance matrix accurately. Similar to PCA, a two-dimensional
principal component analysis (2DPCA) [31] is proposed to over-
come these issues. 2DPCA is based on 2D matrices rather than
1D vectors. In this work, we use 2DPCA for computing the global
top alignments from the total optimal alignments obtained from the
given data. The global top alignments are computed as follows.

First we represent each alignment using a 2D matrix. The global
top alignments are then computed by applying 2DPCA over these
matrices.

An alignment π between two time series of length n and m is
represented using a n × m grid. Equivalently, it can also be rep-
resented using a n × m binary matrix (alignment matrix), where
the elements are either 0 or 1. This representation is given in Fig-
ure 2. The entries in the matrix through which the alignment passes
is 1 and for other entries it is 0. Since for every pair of time series
there exist many alignments, it corresponds to many binary matri-
ces. For a given pair of time series X and Y , denote their possible
alignments as π1, π2, . . . , πl, where l is the total possible number
of alignments. Assume that these alignments are arranged accord-
ing to their cost, i.e π1 is the optimal alignment which has the least
cost and πk is the top kth alignment for X and Y . For the time
series X and Y , we represent its final alignment matrix as follows

BX,Y = ∪lk=1B
k
X,Y

where, BkX,Y is the alignment matrix for the time series X and Y
corresponding to the kth alignment, and l is the total number of
possible alignments.

Figure 2: Alignment matrix representation. The entries in the
matrix where the alignment passes is 1, and for others entries
it is 0.



For a given dataset, we first construct these alignment matrices
for every pair of samples. Since there exist possibly many align-
ments for every pair of samples and only top alignments have sig-
nificance in DTW distance, we take only top t alignments. For a
given dataset X , we construct its alignment matrices as follows,

Pt = ∪X,Y ∈X (∪tj=1B
j
X,Y )

Here, the set Pt takes only top t alignments between every pair
of samples. Now, the set Pt contains all the best possible align-
ment matrices for the given dataset. We compute the global top
representative alignments from this set of alignment matrices us-
ing 2DPCA. If the dataset contains alignments of variable length,
the set Pt contains matrices of variable dimension. In this case,
we cannot apply the above procedure. To overcome this, we first
scale the alignments to a fixed size and, then alignment matrices
are computed from these scaled alignments. The resulting align-
ment matrices will thus have the same dimension. We then apply
2DPCA over this set of matrices and find the eigenvectors. These
eigenvectors give the global top alignments for the given data. The
resulting kernel is given as follows,

κATA(X,Y ) =
∑
π∈GX

e−β
∑|π|
k=1

(Xπ(k)−Yπ(k))
2

(5)

where GX is the set of global top alignments of X .
Now our objective is to find the explicit featuremap for this ker-

nel. The kernel given in (5) is the sum of RBF kernels over the
global top alignments. From the work on explicit featuremap for
RBF kernel [27], the explicit featuremap of dimension n for RBF
kernel is given as follows

φRBF (X) =
1√
n
[e−i〈ω1,X〉, . . . , e−i〈ωn,X〉] (6)

where ω1, . . . , ωn are sampled from the Gaussian density. Since
the kernel given in Equation 5 is the sum of Gaussian kernels over
the global top alignments, the final explicit featuremap for this ker-
nel is given as follows,

φATA(X) =
1√
n
[e−i〈ω1,Xπ1 〉, . . . , e−i〈ωn,Xπ1 〉, . . . ,

e−i〈ω1,Xπm 〉, . . . , e−i〈ωn,Xπm 〉]

(7)

where π1, . . . , πm are the global top alignments and m is the total
number of global top alignments. The proposed linear approxima-
tion of the DTW kernel is given as

κlinATA(X,Y ) = 〈φATA(X), φATA(Y )〉 (8)

4.2 Approximation using Cost Matrix (ACM)
In the approximation using top alignments (ATA), to compute

the global top alignments, we need to compute the top alignments
for every pair of samples. This is computationally costly for large
datasets. To avoid this, we propose another technique, in which a
global cost matrix is computed from the given data and the global
top alignments are computed from this cost matrix.

To find the DTW distance between two time series, we first need
to compute the cost matrix. The optimal alignments are computed
from this cost matrix. In the approximation using top alignments,
we construct the cost for every pair of samples, and top alignments
from these cost matrices are computed for learning the global top
alignments for the given data. These cost matrices vary across the

samples. Learning the global top alignments from the top align-
ments obtained from the cost matrices is computationally expensive
for large datasets. Since there are similarities between the optimal
alignments between different pairs of sequences, there would exists
some similarities between the their cost matrices also. The idea is
to incorporate all these similarities into a single cost matrix called
global cost matrix, which captures all the correlations present in the
data. Now, the global top alignments are computed from this global
cost matrix. We construct the global cost matrix for the given data
as follows. We first consider cost matrix for every pair of time
series from the given data, and normalize each cost matrix by the
maximum cost of that matrix, then we take mean of all these ma-
trices as the global cost matrix for the given data. If the dataset
contains alignments of variable length, the cost matrices will have
variable dimension. In this case, we can not compute the global
cost matrix as discussed above. To overcome this, we first scale
the alignments to a fixed size, and then cost matrices are computed
from these scaled alignments. The resulting cost matrices will thus
have the same dimension. The top alignments computed from the
global cost matrix give the global top alignments for the given data.
These alignments are sufficient enough for comparing any two time
series. Since, we have global top alignments, we compute the ex-
plicit featuremap as described in method ATA. The DTW kernel
obtained from this global top alignments is given as,

κACM (X,Y ) =
∑
π∈G′X

e−β
∑|π|
k=1

(Xπ(k)−Yπ(k))
2

(9)

where G
′
X is the set of global top alignments computed from the

global cost matrix. The explicit featuremap for this method is given
as follows

φACM (X) =
1√
n
[e
−i〈ω1,X

π
′
1

〉
, . . . , e

−i〈ωn,X
π
′
1

〉
, . . . ,

e
−i〈ω1,Xπ′m

〉
, . . . , e

−i〈ωn,X
π
′
m
〉
]

(10)

where π
′
1, . . . , π

′
m are the global top alignments and m is the total

number of global top alignments.
Since, we are avoiding learning the global top alignments from

a large set of top alignments, ACM is computationally faster com-
pared to the approximation ATA. However, as we are computing
the global cost matrix from a large set of cost matrices, it may not
capture all the correlations present in the data. Due to this, the
proposed ATA has slightly reduced accuracy. We refer the kernels
obtained from the two approximation techniques ATA and ACM
as FastDTW kernels.

5. EXPERIMENTS

5.1 Datasets
The goal of this evaluation is to demonstrate the efficiency of the

proposed kernel on a wide range of time series data sets. We eval-
uate our kernel over popular machine learning datasets Libra, Aus-
lan, Japanese vowels, handwritten Characters and PEMS database
of freeway traffic. Except Libra dataset, all the other datasets con-
tains multivariate time series of variable length. In addition to these
small datasets, we also evaluate our FastDTW kernel on large scale
time series datasets obtained from UCR Time Series Data Mining
Archive. Since our method is applicable only for fixed length se-
quences, we scale the variable length sequences to a fixed length
using standard scaling techniques. For all these datasets, we com-



Database dimension length classes # samples
Libra 2 45 15 945
Auslan 22 45-136 95 2465
JV 12 7-29 9 640
HC 3 60-182 20 2858
PEMS 963 144 7 440

Table 1: Details of the datasets considered in the experiments
Libra, Auslan, Japanese Vowels (JV) and Handwritten Charac-
ters (HC). Here, Libra dataset contains fixed length time series,
whereas all other datasets describes multivariate time series.

Libra Auslan PEMS HC JV
# Samples 945 2465 440 2858 640
# Global Alignments 14 24 8 24 12

Table 2: Number of global alignments for the datasets used in
the experiments. Here, the number of global alignments are
based on the size of a dataset.

pare our methods with (GDTW) [2] kernel and (GA) Kernel [5].
Details of the datasets are given in Table 1.

5.2 Experimental results

5.2.1 Procedure and Evaluation
We measure the efficiency of the proposed approximations ATA

and ACM in time with respect to the number of samples, and com-
pared to the GA [5] kernel and GDTW [2] kernel. In our proposed
approximation kernels, we use FastDTW [25] implementation for
computing both top alignments and cost matrix. For every pair
of time series, we take t = 10, i.e we choose top 10 alignments.
In both the proposed approximations, the number of global align-
ments are based on the size of the dataset. The number of global
alignments for the given datasets are shown in Table 2. All the ker-
nels are implemented in Matlab. All experiments are carried out
on a single core of a 2.1 GHz AMD 6172 processor with 12 Gb
RAM. For comparison, the runtime is measured using the system
clock with minimal background processes running. In both the pro-
posed approximations ATA and ACM, we consider equal number
of global top alignments. Hence the runtime for kernel computation
is same for both the methods. As both the approximation kernels
have equal runtime, in all our experiments, for comparing computa-
tional time with other kernels, we refer our proposed approximation
kernel as FastDTW kernel.

5.2.2 Role of number of Global Alignments
Since we select the number of global alignments based on the

size of the dataset, we show the effect of the number of global
alignments on accuracy in Table 3. To show the role of number of
global alignments, we compare proposed ATA over varying num-
ber of selected global alignments with the GA kernel and GDTW
kernel. As we increase the number of top alignments, the accu-
racy improves. This suggests that to get better accuracy we need to
consider more global alignments. The results also shows that, if we
further increase the number of alignments, there is no improvement
in the accuracy.

5.2.3 Accuracy of FastDTW Kernel
We compare the accuracy of proposed approximation methods

ATA and ACM with GA kernel and GDTW kernel on the given
datasets in Figure 3(a). On Libra dataset, our proposed methods
achieve better accuracy compared to GDTW kernel, and perform-

Libra Auslan PEMS HC JV
ATA 12.2±0.29 43.1±2.3 25.2±0.8 45.2±2.8 17.1±0.3
ACM 7.7±0.21 28.9±1.2 19.5±0.3 36.3±1.8 12.3±0.2

Table 5: Training time (Hrs) for ATA and ACM over the given
datasets. Only top 1 alignment is considered in this experiment.

ing comparable to GA kernel. This shows that our proposed ker-
nel performs equally well, if not better than GA kernel on same
length time series. For other datasets, our results are superior com-
pared to GDTW kernel and comparable to the GA kernel. The
drop in the performance for variable length time series is due to
the scaling step which we are performing for scaling the data to
equal length. While scaling the data to equal size, we are loosing
some information from the data, which causes the degraded perfor-
mance. However, compared to GDTW kernel, which is exponen-
tial of DTW distance, the proposed methods get better accuracy
over all the datasets.

Sometimes, the alignments may not follow the unimodal distri-
bution. In such case, if we apply PCA directly over the alignments,
we may not get the correct candidate global alignments. Due to
this, the resulting global alignments may reduce the accuracy. To
get better model for the alignments, we use bimodal distribution
over the considered alignments. In bimodal distribution, we apply
the PCA over each distribution separately, and global alignments
from these distributions are taken as the final global alignments.
The results of these experiments are shown in Table 4. Clearly,
we obtain better performance using bimodal compared to unimodal
distribution. This suggests that if data is well distributed or follows
some distribution, we get better global alignments.

5.2.4 Efficiency
In this section, we explore the efficiency of FastDTW kernel

over small and large datasets. In all the experiments, we compare
FastDTW kernel with GA kernel and GDTW [2] kernel. In the
approximation using top alignments (ATA), we need to compute
the top alignments for every pair of time series. Due to this ATA
is computationally slower compared to ACM in training. Training
time for both the approximations ATA and ACM over the given
datasets are given in Table 5. It shows that the approximation ACM
is computationally faster compared to ATA over all the datasets.
We compare our proposed FastDTW kernel with the GA kernel
and GDTW kernel over all the datasets and results are shown in
Figure 3(b). The results show that FastDTW kernel is computa-
tionally faster compared to both the GA kernel and GDTW ker-
nel over all the datasets. For Libra dataset, which is the smallest
dataset in our experiments, both FastDTW kernel and GA kernel
are performing equally well. However, for other datasets, which
have more number of sequences compared to Libra, FastDTW ker-
nel has significant gain in performance compared to GA kernel.
Also the proposed FastDTW kernel clearly outperforms GDTW
kernel over all the datasets. On Hand written characters dataset,
FastDTW kernel is nearly 10 times faster than GDTW kernel. The
speed up of our proposed kernel is mainly due to the global top
alignments, which are then used in the computation of explicit fea-
turemap. To further explore the FastDTW kernel over large length
sequences, we test the proposed kernel over UCR time series data
mining archive. This dataset contains time series of length from
1000 to 0.1 Million. In Figure 4, we show the computational time
over varying length of time series. For small length sequences, both
FastDTW kernel and GA kernel are performing equally well. The
performance of FastDTW kernel is least effected with the increase



Libras Auslan PEMS HC JV
Accuracy Test time Accuracy Test time Accuracy Test time Accuracy Test time Accuracy Test time

Top 1 Alignment 82.2 0.9 83.8 2.3 71.0 2.2 86.2 3.1 84.9 2.4
Top 3 Alignments 82.5 0.9 84.1 2.3 71.5 2.2 86.1 3.1 85.5 2.4
Top 5 Alignments 83.1 0.9 84.4 2.3 71.8 2.2 86.3 3.1 85.6 2.4
Top 8 Alignments 83.4 0.9 85.0 2.3 72.1 2.2 86.7 3.1 85.8 2.4
Top 15 Alignments 83.5 0.9 85.1 2.3 72.1 2.2 87.0 3.1 86.1 2.4
GDTW Kernel 83.4 2.4 84.6 13.2 71.6 14.7 86.1 29.3 85.4 13.2
GA Kernel 83.6 1.1 87.3 5.1 73.8 5.2 89.3 11.2 88.7 4.8

Table 3: Performance of proposed ATA over varying number of global alignments. Here, both the accuracy (%) and test time is
compared with GA kernel. Proposed FastDTW kernel is computationally faster with a slight decrease in the accuracy

Unimodal Bimodal
Libra Auslan PEMS HC JV Libra Auslan PEMS HC JV

ATA 83.5±0.9 85.3±1.0 72.1±0.4 87.1±1.3 86.1±0.7 83.6±0.8 86.9±1.2 72.5±0.5 87.4±1.5 87.1±0.9
ACM 83.5±0.8 84.5±0.9 71.4±0.3 86.2±1.0 84.9±0.6 83.6±0.7 86.2±1.1 72.1±0.5 87±0.9 86.9±0.9

Table 4: Comparison between Unimodal and Bimodal distributions over Libra, Auslan, PEMS, HC (Hand written Characters) and
JV (Japanese Vowels) datasets. GA kernel does not uses Bimodal distribution.

Figure 4: Comparison of FastDTW kernel with GA kernel over
varying length of time series. Here, the computational time is
given in minutes and is shown on log scale. For small number of
samples both FastDTW kernel and GA kernel are performing
equally well. The performance of FastDTW kernel has minimal
effect with the increase in the number of samples.

in the number of samples. On the other hand, in case of GA ker-
nel, test time increases significantly with increase in the number of
samples. For time series of length 0.1 Million, FastDTW kernel is
able to compute in around one minute, whereas for GA kernel, it
took nearly one hour. For better comparison, we show the compu-
tational time on log scale. This suggests that proposed FastDTW
kernel is computationally efficient compared to GA kernel and is
suitable for both large datasets and large length time series.

6. CONCLUSION
In this paper, we propose the linear approximation to the non-

linear DTW kernel. In addition, we also propose the explicit fea-
turemap for our proposed approximation kernel. For computing the
explicit featuremap, we exploit the internal hidden structure of the
alignments. We represent the optimal alignments between the time
series using few global top alignments. This reduces the compu-
tational cost of DTW distance by huge factor. The main aim of

this paper is to explore the hidden structure of the alignments for
approximating the non linear DTW kernel by a linear kernel.
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