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Abstract. Traditional clustering algorithms use a predefined metric and
no supervision in identifying the partition. Existing semi-supervised clus-
tering approaches either learn a metric from randomly chosen constraints
or actively select informative constraints using a generic distance measure
like Euclidean norm. We tackle the problem of identifying constraints
that are informative to learn appropriate metric for semi-supervised clus-
tering. We propose an approach to simultaneously find out appropriate
constraints and learn a metric to boost the clustering performance. We
evaluate clustering quality of our approach using the learned metric on
the MNIST handwritten digits, Caltech-256 and MSRC2 object image
datasets. Our results on these datasets have significant improvements
over the baseline methods like MPCK-MEANS.
Keywords: Semi-supervised Clustering, Informative Constraints, Con-
straint Selection, Metric Learning

1 Introduction

Clustering aims to partition a collection of data items/objects into clusters, such
that objects within a cluster are more “similar” to each other than they are to
objects in other clusters. A common approach is to infer the similarity based on
a distance measure on the data objects. A good distance metric between objects
accurately reflects the true underlying relationships i.e., reports small distances
for similar objects and large distances for unrelated objects. In literature, the
notion of similarity has many variants and formulations [9]; some according to
the purpose of the study [8], some making domain-specific assumptions [8] while
some relying on prior knowledge of the problem [1] [3] [15].

Semi-supervised clustering algorithms offer a way to specify the prior in-
formation in the form of instance level pairwise constraints like must-link con-
straints and cannot-link constraints. Many works have demonstrated that the
use of such constraints could help in guiding the clustering algorithm towards a
more appropriate data partitioning. Some of these approaches incorporate the
constraints by modifying the clustering objective function so that it includes
enforcing constraints [15], or initializing and constraining clustering based on
labeled examples [1]. However, it has been shown that constrained clustering
is a hard problem [4] and it is not necessarily a good idea to derive the parti-
tions strictly satisfying every constraint [16]. Instead of enforcing the constraints
directly, recent techniques introduced penalties on constraint violations.



Other approaches employ distance metric into the clustering algorithm; where
the metric is first trained to satisfy the constraints. The unified approach, MPCK-
MEANS [3] uses pairwise constraints along with unlabeled data for constraining
the clustering and learning distance metrics. This technique penalizes the con-
straint violations on must-link and cannot link constraints. However, the con-
straint specification effort can become a significant burden as they do not offer
any mechanism for selecting informative pairwise constraints. Moreover, the cost
associated with constraint violations do not include any prior knowledge from
the data.

One of the solution to this problem is to adapt an active learning strategy
where the algorithm queries an oracle that can assign a must-link or cannot-
link label to a given constraint pair. The goal is to query potentially interesting
constraint pairs and obtain a better partition of data with minimal number
of queries. However, the existing approaches assume that the target metric is
available for clustering data. Active PCKMeans [2], depends on farthest-first
strategy, can pose a constant number of queries to the oracle by actively selecting
informative constraints to get improved clustering performance. Active query
selection algorithm [11] is a special case of min-max approach, using a Gaussian
kernel to measure the uncertainty in deciding the cluster memberships.

To this end, the previous semi-supervised clustering approaches either learn
a metric from randomly chosen constraints or actively select informative con-
straints using generic distance measures like Euclidean norm or a Gaussian ker-
nel. In this work, we focus on how to utilize the user specified constraints effec-
tively to infer the cluster labels by learning appropriate distance metrics. Unlike
MPCK-means, we impose pairwise distance constraints to simultaneously learn
metric and perform clustering to guide the process of active constraint set acqui-
sition. We empirically evaluate the effectiveness of our approach on Caltech-256,
MSRC2 and MNIST image datasets. The proposed approach performs better
than previously proposed methods that either use a pre-defined metric or use
random set of constraints for learning a metric.

2 Semi-Supervised Clustering

Our goal of learning distance metrics is to improve the clustering performance
by selecting informative pairwise constraints. Metric learning often learns the
appropriate distance function (metric) from a set of examples in a supervised set-
ting. In a semi-supervised clustering setting, one could learn appropriate metric,
if enough pairwise constraints (must-link and cannot-link) are provided. How-
ever, getting appropriate constraints from an oracle is often hard. One needs to
actively minimize the extra supervision for solving the clustering problem.

Thus, we need to solve these two sub-problems in a coupled manner. Specif-
ically, when the scheme has an access to a set of constraining pairs, our goal is
to find potential supervision information and learn appropriate distance metric
for semi-supervised clustering.



2.1 K-means with Mahalanobis metric

Given N points X = {xi}Ni=1, xi ∈ Rd, we consider the K-means problem as a
disjoint K-partition of X = {Xh}Kh=1. We wish to find the K cluster centroids
{µh}Kh=1 and l = {li}Ni=1, the cluster labels , where li ∈ {1, . . . ,K}. Points in the
same partition are assigned with the same cluster label. The goal is to minimize
the objective function

φA(X) =
∑
xi∈X

dA(xi, µli) (1)

where the squared Mahalanobis distance between the points x and y is defined as
dA(x, y) = (x− y)TA(x− y) and A is a d× d positive semi-definite matrix. Note
that, when A = I, the above equation is equivalent to the K-means clustering
problem with Euclidean distance metric. Our objective is to learn the distance
metric, A using the constraints given by the user and later adopt it in Eqn.(1)
so that φA(X) < φI(X).

2.2 Learning with ITML

Information theoretic metric learning (ITML) method of [6] learns a Mahalanobis
distance metric, A, under a given set of constraints. Given an initial d× d pos-
itive definite matrix, A0, specifying the prior knowledge about the inter-point
distances, ITML [6] minimizes the LogDet divergence between matrices A and
A0 subject to a set of constraints specified by the user. The goal is to enforce
simple distance constraints for similar(S) and dissimilar(D) points and solve the
following optimization problem:

min Dld(A,A0)

s.t. A � 0

dA(xi, xj) ≤ u (i, j) ∈ S
dA(xi, xj) ≥ v (i, j) ∈ D

(2)

where Dld(A,A0) = tr(AA−10 )− log det(AA−10 )− d; v and u are large and small
values, respectively. Solving Eq.(2) involves repeatedly projecting the current
solution onto a single constraint, via an update:

At+1 = At + βtAt(xit − xjt)(xit − xjt)TAt, (3)

where xit and xjt are the constrained data points for iteration t, and βt is a
projection parameter computed by the ITML algorithm. Our goal is to identify
informative constraints from the data that minimizes the Eq.(2) to learn the
appropriate distance metrics for semi-supervised clustering problem.

2.3 Semi Supervised Clustering by selecting informative constraints

We perform K-means clustering and metric learning using ITML [6] such that
both the objectives in Eq.(1) and Eq.(2) are solved simultaneously. We also
provide a quantitative way to measure the constraint-set utility for paritional
clustering as adapted in [5].



Informativeness refers to the amount of information in the constraint set that
the algorithm cannot determine on its own. Coherence, measures the amount of
agreement with in the constraints themselves, with respect to a given distance
metric. Constraint sets with high informativeness and coherence tend to result in
increase in clustering performance [5]. In our approach, we use pairwise distance
constraints which are more informative than simple must-link and cannot-link
constraints. We perform ITML to learn the metric and subsequently use it for the
K-means clustering. The main steps for selecting constraints with high coherence
is summarized in Algorithm 1.

Algorithm 1: Semi Supervised Clustering

Data: X, K, S,D, u, v
Result: A, Sa

A0 = I // Initial prior about the inter-point distances;
Su = S ∪D // User specified similar and dissimilar constraints;
Sa = {} // Active(informative) constraints selected by our algorithm;
repeat

foreach (i, j) ∈ Su do
//learn metric (Aij) if a new constraint (i, j) ∈ Su is added to Sa

Aij ← ITML(X, A0, Sa ∪ (i, j), u, v);

// Obtain cluster assignments (lij) and quality of clustering (Qij)
(Qij , lij)← K-means(X, Aij , K); //use metric Aij for K-means

end

(i∗, j∗)← arg maxij(Q
ij) ;

A0 ← Ai∗j∗ ;
Sa ← Sa ∪ (i∗, j∗);
Su ← Su \ (i∗, j∗);

until convergence;

In each iteration, a new constraint from a set of user specified constraints
Su is added into the active constraint set, Sa. ITML learns the distance metric
by using constraints from the active constraint set, Sa. Thereafter, we perform
the K-means clustering again using the learned distance metric, Aij , to obtain
the cluster labels, lij and the clustering quality, Qij . Then update the active
constraint set, Sa, with a constraint which resulted in maximum performance
in the clustering. We also update Su accordingly and repeat this process until a
satisfactory clustering performance is achieved.

In our experiments, we have selected 50 informative constraints to show the
effectiveness of Algorithm 1. In addition to the active constraints generated from
Algorithm 1, we can also infer additional constraints using the transitive closure
of the set of constraints [2]. Given three data points x, y, z, if (x, y) ∈ S and
(y, z) ∈ S then (x, z) ∈ S; if (x, y) ∈ S and (y, z) ∈ D then (x, z) ∈ D.

Our algorithm requires O(mn) metric learning and clustering operations,
where m = |Sa| is the number of informative constraints selected and n = |Su|
is the number of user specified constraints. The complexity of our algorithm
scales linearly with the number of user specified constraints. Empirical results
suggest only a few informative constraints have significant effect on clustering
performance.



3 Experiments and Results

3.1 Experimental Setup

Datasets: To assess the viability of proposed approach, we have performed
experiments using MNIST [10] database of handwritten digits, Caltech-256 [7]
and MSRC2 [13] object datasets in our experiments. We have selected 11 objects
from Caltech-256 dataset and all 20 objects from the MSRC2 dataset for object
clustering. For MNIST dataset, we have used all the ten digits for clustering. The
parameter K in Algorithm 1, which is the number of clusters in each dataset, is
set as the real number of classes in each dataset. Fig.1 shows sample images.

For ITML algorithm, distances are constrained to be either similar or dissim-
ilar, based on the class values, and are drawn only from training set. For MNIST
dataset, we choose constraints only from 10 training examples per digit and eval-
uate the clustering on the 100 testing examples per digit. For the Caltech-256
dataset, we have used 5 images for training and 45 images for testing from each
of the 11 classes. For MSRC2 dataset, we have used 5 images for training and
25 images for testing from each of the 20 classes.

Fig. 1: Sample object and handwritten digit images used in our experiments:
Caltech-256 (left), MSRC2 (middle), and MNIST (right)

Features: Clustering is performed based on visual features extracted automat-
ically from the images. For the Caltech-256 and MSRC2 object clustering, the
image data is supplied in the form of visual words with a vocabulary size of 600
using the popular SIFT descriptors as in VLFeat library [14]. In the MNIST
dataset, the digits have been normalized to fit in a 20x20 pixel box and the
resulting 400 pixel values are used as feature representation for each image. In
our implementation, we empirically set the slack variables v and u in Eqn.(2) to
the 95th and 5th percentiles of the distribution of pairwise Euclidean distances
within the dataset, respectively.
Evaluation methods: A number of ways have been developed to validate un-
supervised clustering algorithms [17]. In our case, the ground truths for the
datasets are naturally available, that is, the digit labels and object categories.
We also report the clustering performance by comparing total squared Maha-
lanobis distances computed from Eq.(1). We also evaluate the quality of clusters
using the F1-measure [2] and Rand Index [12] commonly used performance met-
ric for semi-supervised clustering algorithms.



3.2 Results and Discussion

We compare our approach to the baseline methods like popular K-means which is
an unsupervised clustering with Euclidean distance metric and MPCK-MEANS
which is a semi-supervised clustering algorithm that simultaneously learns metric
under some constraints. We quantify the comparison by using the same initial
centroids for K-means in all the methods. For semi-supervised algorithms, we
show the results by selecting 50 informative constraints using Algorithm 1.

Three variants of Algorithm 1 are implemented: Semi-supervised cluster-
ing with random constraints (SSC-rand), Semi-supervised clustering with online
distance metric learning (SSC-OLDML) and Semi-supervised clustering with ac-
tive constraint set generation (SSC-active). In SSC-rand, we perform K-means
clustering with a distance metric learned directly from random constraints. In
SSC-OLDML, we perform K-means clustering with a distance metric learned
using the most recently obtained metric as prior (using Eq.(3) for ITML). In
SSC-active, we perform K-means clustering with a distance metric learned using
the active constraint set acquired in each iteration (using Eq.(2) for ITML).

We present experimental results of our approach on three image datasets and
compare them with the baseline methods. Table 1 shows the K-means error for
all methods. The results show that the SSC-active performs better than popular
K-means (does not learn a metric), SSC-rand (learns metric from random con-
straints) and SSC-OLDML methods. We have not included the MPCK-means
algorithm in Table 1, as it includes penalties for constraint violations in the
objective function.

Algorithm
Dataset Popular K-means SSC-rand SSC-OLDML SSC-active

MNIST 37380 36562 61474 34726

Caltech-256 2.665 2.565 2.618 2.020

MSRC2 2.059 2.275 3.344 1.991

Table 1: Unsupervised K-means clustering error, φI(.), along with Semi-
Supervised clustering error, φA(.), with 50 informative constraints.

In Table 2, we have used rand index [12] to evaluate the semi-supervised
clustering algorithms. We notice that MPCK-means does not boost the perfor-
mance when compared to popular K-means on MNIST and MSRC2 datasets.
This shows that incorporating random constraints might degrade the clustering
performance and it is very critical to choose constraints that are informative for
semi-supervised clustering.

SSC-active adopts distance metric learning by choosing informative con-
straints, and always performs better than the unsupervised K-means on all three
datasets. The underlying reasoning seems to be that the pairwise distance con-
straints are more informative and also that the constraints selected by our ap-
proach have high coherence with respect to the learned metric.



In contrast to what we observed for MNIST and MSRC2 datasets, SSC-
active did not quite perform well on the Caltech-256 images in comparison to
the MPCK-means. The images in Caltech dataset typically share multiple object
categories and we believe that this can be surmounted by use of large vocabu-
laries or using more features for image representation.

Algorithm
Dataset Popular K-means SSC-rand SSC-OLDML MPCK-means SSC-active

MNIST 0.875 0.881 0.861 0.862 0.921

Caltech-256 0.769 0.758 0.827 0.841 0.807

MSRC2 0.892 0.895 0.881 0.859 0.904

Table 2: Results of the semi-supervised clustering based methods, measured in
Rand Index (higher is better).

In Table 3, we compare the performance of clustering methods in terms of
F1-measure [2]. The results demonstrate that our approach performs close to the
MPCK-MEANS on the object datasets and outperforms on handwritten digits
images. However, we can see that SSC-active always performs better than the
unsupervised clustering on all three datasets.

Algorithm
Dataset Popular K-means SSC-rand SSC-OLDML MPCK-means SSC-active

MNIST 0.410 0.434 0.334 0.377 0.621

Caltech-256 0.150 0.156 0.195 0.249 0.215

MSRC2 0.155 0.162 0.128 0.226 0.203

Table 3: Comparison of the different semi-supervised methods on three datasets,
measured in F1 score (higher is better). For each dataset, we see that SSC-active
performs better than unsupervised clustering and performs close to MPCK-
MEANS.

The SSC-OLDML approach sometimes degrades the clustering performance
(See Tables 1, 2 and 3). This happens because of the greedy fashion in which
the metric has been learned; using most recently learned metric as prior can
constrain later ones due to potential conflicts between the prior metric and the
new constraints, and there is no mechanism for backtracking. From this we can
infer that, the constraint set generated by SSC-OLDML has low coherence and
therefore can lead the algorithm into unpromising areas of search space. However,
the SSC-active continued to be consistent as it learns the metric from all the
constraints using the prior as A0 = I and thereby acquiring the constraints sets
with high coherence i.e., amount of agreement within the constraints themselves
is high with respect to the learned distance metric.

Overall, our results show that the coupled approach (SSC-active), to utilize
informative constraints and learn metric, can boost the performance of semi-
supervised clustering. Our approach required only a very small number of infor-
mative constraints to gain significant improvements in the clustering over the
existing semi-supervised clustering approaches like MPCK-means.



4 Conclusion

Pairwise constraints would facilitate accurate metric learning and boost the
quality of semi-supervised clustering algorithms. This paper has presented an
approach to jointly learn metric and select informative constraints from a given
set of pairwise distance constraints. We partition the entire data using K-means
with the learned metric. Our semi-supervised algorithm was applied on the image
datasets and its application always achieved better than the baseline methods
like unsupervised K-means with Euclidean metric and semi-supervised MPCK-
means clustering. Our results demonstrate that the more informative constraints
are under the learned metric, the more likely they are to improve clustering.
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