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Abstract—Optical Character Recognition (OCR) problems are
often formulated as isolated character (symbol) classification task
followed by a post-classification stage (which contains modules
like Unicode generation, error correction etc. ) to generate the
textual representation, for most of the Indian scripts. Such
approaches are prone to failures due to (i) difficulties in designing
reliable word-to-symbol segmentation module that can robustly
work in presence of degraded (cut/fused) images and (ii) convert-
ing the outputs of the classifiers to a valid sequence of Unicodes.
In this paper, we propose a formulation, where the expectations on
these two modules is minimized, and the harder recognition task
is modelled as learning of an appropriate sequence to sequence
translation scheme. We thus formulate the recognition as a direct
transcription problem. Given many examples of feature sequences
and their corresponding Unicode representations, our objective
is to learn a mapping which can convert a word directly into
a Unicode sequence. This formulation has multiple practical
advantages: (i) This reduces the number of classes significantly
for the Indian scripts. (ii) It removes the need for a reliable word-
to-symbol segmentation. (ii) It does not require strong annotation
of symbols to design the classifiers, and (iii) It directly generates
a valid sequence of Unicodes. We test our method on more
than 6000 pages of printed Devanagari documents from multiple
sources. Our method consistently outperforms other state of the
art implementations.

I. INTRODUCTION

There have been many attempts in recognizing printed
documents in Indian scripts [1], [2]. However, performance
of the best available solution [3] is not yet comparable to
their English counterparts. There are multiple reasons for this.
The number of symbols (or segments) to be recognized is
often few hundreds (eg. 800 for Devanagari [4]). Segmentation
of words into symbols (basic unit for recognition) is hard
due to similarity in characters, complex shapes etc. In our
recent experience in design of OCRs for Indian languages [3],
we have observed that the errors are primarily caused by
two modules. The first one, which segments the word into
symbols, and the second one which generates valid Unicode
sequence form the classifier outputs. (See also Fig. 2(a) and
Section II-A.)

In this paper, we argue that one can look at this problem
from a different angle. We formulate the problem of OCR
as an automatic transcribing task. We formulate this as that
of learning a module which minimizes the transcription error
(as well as the transposition error) directly. This formulation
has multiple practical advantages. This method reduces the
number of classes significantly for the Indian scripts. The
number of labels that the recognition module need to output is
limited to the space of Unicodes for a language (which is 127
for Devanagari). This is significantly lesser than the previous
methods, which requires more than 800 classes [4]. However,

Fig. 1. A sample page from our dataset with examples of words present in
it. We were able to recognize pages with similar degradation with very less
error while many state-of-the-art OCR systems have high errors.

in this case, the output is a structured space. However, this
demands a different type of classifier. Our method removes
the need for a word-to-symbol segmentation as popularly done
in the case of recognition methods based on Hidden Markov
Models(HMM) [4] and Recurrent Neural Networks (RNN) [5].
Since the annotation required for this module is only at the
word level, we bypass the requirement of strong annotation
of symbols to design the classifiers. Note that the definition of
symbols is not yet standard. We do not explicitly use this latent
script definition at any stage of our solution. Since we directly
generate Unicode, our output is syntactically correct. Note that
a significant percentage of errors in Indian language OCRs
is visible as invalid Unicode sequences. We experimentally
validate our approach on around 6000 printed documents and
show that our method outperforms the other existing solutions.
Fig. 1 shows a sample page from our database along with some
words present in them. Our method was able to recognize many
of these degraded words.

There have been many attempts in the past in recognizing
Indian scripts. Initial attempts were based on modelling the
shape with intuitive features. Simple classifiers like a KNN or
Multilayer perceptions (MLP) were used for the recognition
task. Pal and Chaudhuri [2] provides an excellent summary
of this period. Bansal and Sinha [6] and Chaudhuri and
Pal [7] have developed OCR systems for Hindi script based
on isolated symbol recognition. More recently, Support Vector
Machine (SVM) based techniques have been used in Hindi
character classification [3]. The challenges present in character
extraction and recognition lead to the popularity of HMMs [4]
and other word recognition strategies [5] for Devanagari.

There are two popular schools in design of OCRs. A large



Fig. 2. Difference in the OCR solutions. (A) The architecture of a traditional OCR, which starts with symbol/character extraction and classification. (B) Our
approach. We bypass the two harder modules of the traditional OCR. We directly output a Unicode sequence, given a word image.

number of methods depend on isolated character (symbol)
classifiers like SVMs or MLPs. An alternative is to use
segmentation free methods based on Hidden Markov Models
(HMM) or Recurrent Neural Networks (RNN). Isolated char-
acter classifier based methods recognise individual symbols,
which is then converted to respective Unicodes. However such
methods were sensitive in dealing with issues related to word-
symbol segmentation, as cut or fused symbols would make the
recognition inaccurate. This demands a harder segmentation
problem to solve [8], [9]. HMM based approaches explicitly
tried to address this problem by defining the input as a se-
quence of feature vectors. HMM/RNN based solutions does not
require explicit symbol segmentation for recognition [4], [5].
However, the definition of symbols and Unicode generation are
still required [4], [5]. In this paper, we expand our previous
work [5] by defining the problem as an end-to-end sequence
transcription task.

II. OCR AS TRANSCRIPTION

A. Recognition Challenges in Indic scripts

Fig. 2(A) depicts a schematic of a typical Devanagari OCR.
Input word images are first segmented into symbols in module
1. However, this could become hard due to the definition of
symbols, cuts and merges, and formatting/rendering issues in
word-processors. Part of these issues (like cuts and merges)
are common to almost all the OCRs. However, the similarities
of sub-parts across symbols make the problem for Devanagari
more challenging. Challenges in Module-3 is possibly more
unique. The outputs of the isolated symbol classifiers need
to be rearranged and processed to obtain a valid Unicode
sequence. A single error in isolated character classification
can result in multiple errors in the Unicode. Because of the
specific manner in which Devanagari (and many other Indian
languages) gets written, this conversion is not monotonic.
i.e., later symbols could output earlier Unicodes. (Note the
intersecting lines in Module 3).

It is observed that, Module-1 and Module-3 contribute to
most of the errors in the existing architectures. Module-2 is
basically a trainable classifier (e.g. SVM), and is considered
as a high-performance (in accuracy and in computational time)
module for most scripts. In this paper, we recast this problem in
a nearly complementary manner in Fig. 2(B) where Module-1
gets converted to a segmentation-free feature sequence com-
putation. This is less susceptible to the degradations. Similarly
the Module-3 is avoided and the learned module is asked to
directly output the Unicode sequence. The harder part of this
solution (Fig. 2(B)) is the sequence to sequence transcription
module which converts the feature sequence to a sequence of
Unicode. We model this as a learnable module which can learn
this mapping from a set of examples.

Modelling recognition problem as translation or transcrip-
tion has been attempted in the past. Object detection was
modelled as machine translation [10] by annotating image
regions with words from a lexicon. Translation techniques
have also been used by linguists [11] and speech recognition
community [12] for modelling recognition. While translation
techniques focus on conversion of input to output using spe-
cific rules, transcription often involves mapping of input to
a specified output, and is considered as a simpler task. We
consider our problem as that of transcription where we start
with a set of word image features, and obtain a corresponding
Unicode text.

B. Learnable Transcription Module

The input to the transcription module is a feature sequence
and output is a sequence of Unicodes. Feature extraction is one
major challenge when we deal with languages with complex
scripts. For our experiments, we extract 7 features from every
word image. The features are extracted using vertical sliding
windows with fixed width of 20px and an overlap of 75%. For
every window, we scan from top to bottom and extract popular
profile based features like upper profile, lower profile, vertical
distance profile and ink-background transitions. More details



about these features can be found in [13]. All the profiles are
normalized with respect to the image height to [0,1] which we
use for training the transcription module. We also make the
features more representative of the given image by dividing
the image horizontally into two and computing the above
mentioned features for both regions. This results in generating
14 features. This increase in number of features though seems
insignificant, have increased the accuracy in practice. This is
because there are many symbols which look similar but appear
in different areas. Splitting the word into two will help in
differentiating such symbols.

C. Requirements of the Transcription Module

We model the problem of Unicode generation as transcrip-
tion of features to Unicode text. We call it transcription as we
try to map the input to a specified output. By this we mean
that, given a sequence of feature vectors, the algorithm should
be capable of generating the textual output. Input image is
converted to feature vector sequence f1, f2, ....fN ; fi ∈ R14.
This is then matched to the target Unicode labels. There are
two important sub-problems to be solved for transcription.
(i) Feature vectors need to be translated to corresponding
Unicode. (ii) the transposition that has occurred in the script
needs to be compensated and a correct sequence need to
be learned. There are many possible approaches for solving
the first task i.e., of decoding the variable length stochastic
sequences. For example, Hidden Markov Models (HMMs)
can do this task. This capability of HMM is exploited in the
speech and handwriting recognition solutions. However, the
second requirement makes the problem more complex. This
demands two additional characteristics for the algorithm: (i)
It should have memory so that it can remember the previous
observations and output the label in a later time instance. (i.e.,
the reversal of ordering is possible). (ii) Solution should be
capable of looking into the future (non-causal). These requires
the solution to be non-Markovian.

III. SEQUENCE TO SEQUENCE TRANSCRIPTION

One significant conclusion from previous section is that the
sequence-sequence transcription module should be inherently
capable of learning the context from the past inputs so that a
proper prediction can be made during the Unicode generation.
Since this requires memory based learning, recurrent neural
networks were the first choice for this task. We decided to
use a variant of RNN known as Bi-directional Long-Short
Term Memory (BLSTM) [14]. This allows longer memory and
non-causal sequence processing. A detailed introduction to the
theory of this network is beyond the scope of this paper.

A. Recognition Module

We require a system that can transcribe feature sequence to
Unicode sequence. It should accept features along with the cor-
responding Unicode text and recognize the mapping. BLSTM
neural networks have been successfully used in the past for
both printed and handwritten text recognition tasks [15], [16].
The distinctive feature about these networks is their ability to
remember long range context over several timesteps. The use
of Connectionist Temporal Classification (CTC) layer as the
output layer allows the words to be presented as a sequence
of unsegmented features thus doing away with the character

segmentation issues in Indian languages. Further the bidirec-
tional nature of the network makes it suitable for Unicode
level learning as it is capable of handling Unicode reordering
issues quite prevalent in Indian scripts. These features make
BLSTM a natural choice for developing a document image
translation system for Devanagari. Further details into BLSTM
architecture can be found in [14]. One major advantage of
using such a system is that given an input, we can directly
model the output label sequence probability. This gives our
method an edge over HMM based solutions [17] which are
generative in nature. Also, our network models continues
trajectories and can use contextual information that can span
the entire input sequence, something which the HMM bases
systems lack.

B. Training time reduction

Most of the RNNs are typically trained by Back Propaga-
tion Through Time (BPTT). Being a gradient based method, it
is susceptible to being stuck in a local minima. One popular
technique to avoid this issue is to use stochastic gradient de-
scent [18] where the weight updates are based on only a subset
of the complete training set. We found this to be extremely
useful in our experiments. It was observed while dealing with
large quantities of training data that it contains quite a few
redundant samples. It seemed possible that a smaller subset of
training samples should have the same information content in
terms of training the network. Motivated by this we switched
to using stochastic gradient descent by solving subsets of the
training sets. After each epoch, a fixed number of examples
were sampled with replacement. There is another way to view
this strategy. The standard method of presenting data to the
neural network consists of doing it in terms of epochs. That
is, all the training samples are presented one after the other and
the process is repeated till convergence. In the other extreme
we can do a random sampling where we sample one example
after the other with replacement. In the first case the network
is presented with the complete information about the data only
in quanta of the complete training set. In the latter case, the
network is presented with the same information in any given k
examples, for a reasonable size of k. The strategy of sampling
a subset of the examples after each epoch is somewhere in
the between these two. We provide 20% of training data at a
time for training in this mode. This method converges to 5%
training error after 42 epochs, taking totally 126 minutes while
the normal method takes 10 epoch totalling 190 minutes. We
had compared the total time taken for training a dataset so
that the training error stabilizes and network convergences. As
argued, normal approach takes very less number of epochs, but
the time taken per epoch is very high. While comparing with
stochastic method, it takes nearly an hour more to converge.
This difference becomes significant when the training data is
very large. Although this method had very little contribution
towards final testing accuracy, it helped in reducing the training
time considerably and thereby allowing us to perform multiple
experiments and obtain better accuracies.

IV. EXPERIMENTS, RESULTS AND DISCUSSIONS

A. Dataset

For the purpose of evaluation, we used two annotated
datasets. The first dataset consists of 5000 page corpus which



Character Error Rate(CER) Word Error Rate (WER)
Dataset Our Method BLSTM [5] Char. OCR [3] Tesseract [19] Our Method BLSTM [5] Char. OCR [3] Tesseract [19]
Dataset 1 7.06 9.87 12.03 20.52 30.52 34.41 38.61 34.44
Dataset 2 12.31 18.69 53.6 38.2 40.49 51.32 83.36 57.9

TABLE I. CHARACTER AND WORD ACCURACY FOR DIFFERENT HINDI CORPUS. WE COMPARE OUR RESULTS AGAINST OTHER OCR SYSTEMS

has emerged as a common benchmark data within Indian
research community [20]. These pages are from popular Hindi
books printed in the last 50 years or so. This dataset is refereed
as Dataset 1. We also use 1000 pages from the publicly
available Digital Library of India. This corpus contains pages
that are scanned and stored as binarized images. The pages are
considerably degraded compared to Dataset 1. We refer to this
dataset as Dataset 2. More details can be found in Table II.
We also show couple of qualitative examples from the two
datasets in Fig. 3. Dataset 2 is degraded more than Dataset 1.
This is due to the age of the books, print/paper quality and the
process of digitization.

TABLE II. DATASET DETAILS WHICH WERE USED FOR OUR
EXPERIMENTS

Corpus Name No. of Books No. of Pages No. of Words
Dataset 1 33 5000 1.5M
Dataset 2 11 1000 300K

Fig. 3. Example images from the datasets which we use. We show same
images from the two datasets to show the difference in quality of images. (a)
Examples from Dataset 1 (b) Examples from Dataset 2.

B. Recognition Results

For our experiments, we used 20% of the data for training
and tested the results on remaining 80% data. The results
are shown in Table I. We show our method is perform-
ing considerably better than state-of-the-art methods. We get
poorer accuracy for Dataset 2 as the image quality is much
poorer when comparing Dataset 1. For Dataset 1, we report
an improvement of 3% in character accuracy while comparing
with [5]. The major difference between these two modules
is the presence of sequence-sequence mapping for Unicode
generation. Also, character level accuracy of [3] is better than
[19]. However, when we take word accuracy, the positions
get reversed. One possible reason could be that for [19], the
errors may not be distributed across the words. For Dataset 2,
[19] outperforms [3] in character and word level because of
better preprocessing techniques. A considerably better post-
processing scheme would have contributed to this numbers.
However, our method has shown significant efficiency in
recognizing words even in Dataset 2.

Our method took approximately 16 hours for training while
running on a mid-level desktop PC having 16GB RAM and a

2.3GHz processor. During testing of our method, recognition
of a page took 1.57 seconds on average, considering 250 words
in a page. One of the first experiments that we conducted
was to identify the effect of training size and number of
features on final accuracy. We took a subset of 200 pages
from Dataset 1 and evaluated them by varying the number
of features and amount of training data. Table III shows the
results. The accuracy is highest for 20% training data with
14 features. Training size of more than 20% did not improve
the accuracies by much and hence we decided to use 20% for
training.

TABLE III. EFFECT OF NUMBER OF FEATURES AND TRAINING SIZE ON
A DATASET. THE TESTING CHARACTER ERROR RATE IS SHOWN ON TABLE

BELOW.

#Feat
train%

6 10 14
5% 16.89 14.22 12.34
10% 14.87 11.38 9.16
20% 10.39 8.36 6.82

C. Discussions

A significant reason for improvement in accuracies after
using BLSTM network is its ability to store context, both
past as well as future. The image shown in Fig. 5 is a
typical example that occurs in Hindi. Fig. 5 (a) and (b)
shows two different word containing similar looking segments
(highlighted area in words). While the segment shown in
(a) consists of two Unicodes, (b) image segment is infact
representing a single Unicode. This is because, (b) segment is
actually a single glyph but due to degradation or font rendering,
it was split into two and could be confused with the segment
in (a). Such cases can be recognized only by considering a
larger context for recognition. Availability of memory is vital
in such cases where past and/or future context can be referred
to decide upon the present output. This is shown in Fig. 5(c)
where we show a common symbol and the associated Unicode
for it. While generating Unicode, we need to place them in
the proper order so that the text-processors can render them
correctly. Therefore, eventhough symbol 1 (in red) appears
first in image, it has to be placed in the end. Such reordering
requires the presence of memory so that the future information
can be referred to decide the output of present sequence.

Fig. 5. The above example shows the significance of context. Two different
words with same sub-image is shown with (a) representing two Unicodes and
(b) representing a single Unicode. The reason being (b) sub-image should
have been joined together but due to degradation, they have been separated.
Such words can be detected by considering the larger context



Fig. 4. Success and failure examples of our method is shown. All images present in a box is of same word. Notice the level of degradation and the variation
in font present in the database. Our method has failed when the level of degradation is extreme.

Eventhough our method was able to correctly recognize a
large number of degraded words, most of our failures are also
due to extreme degradations. Dataset 2 consists of books which
have high degree of degradations present in them. Another
significant reason for errors is the inability of our method in
recognizing punctuation marks and other symbols correctly.
There is a significant percentage of errors due to this. This
is because profile based features are not suited in capturing
the information of small components like punctuations. Using
better features should be helpful in solving this issue.

V. CONCLUSION AND FUTURE WORK

In this paper, we model the problem of OCR as that of
transcribing a set of feature vectors to output labels. The need
to re-engineer the existing OCR architecture was felt due to
the lack of formalism present in sub-word segmentation and
latent symbol to Unicode conversion. We consider Unicode
as the fundamental recognition unit and use a sequence-
sequence transcription module to map the word features to
corresponding Unicode. A variant of RNN known as BLSTM
was used for this task. The experiments were conducted on
two different datasets consisting of more than 6000 pages.
Quantitative comparison to the previous methods is reported. In
future, we would like to explore the possibility of extending the
idea to other Indian languages. Initial results in this direction
are very promising. We also would like to try this approach
for scripts like Urdu where the script complexity makes the
problem very exciting. We believe that better language models
and features can further improve the accuracies. However, use
of a statistical language model in this framework is not trivial.
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