
Can GPUs Sort Strings Efficiently?

Aditya Deshpande and P J Narayanan
Center for Visual Information Technology,

International Institute of Information Technology,
Hyderabad, India

Abstract—String sorting or variable-length key sorting has
lagged in performance on the GPU even as the fixed-length key
sorting has improved dramatically. Radix sorting is the fastest on
the GPUs. In this paper, we present a fast and efficient string sort
on the GPU that is built on the available radix sort. Our method
sorts strings from left to right in steps, moving only indexes and
small prefixes for efficiency. We reduce the number of sort steps
by adaptively consuming maximum string bytes based on the
number of segments in each step. Performance is improved by
using Thrust primitives for most steps and by removing singleton
segments from consideration. Over 70% of the string sort time is
spent on Thrust primitives. This provides high performance along
with high adaptability to future GPUs. We achieve speed of up to
10 over current GPU methods, especially on large datasets. We
also scale to much larger input sizes. We present results on easy
and difficult strings defined using their after-sort tie lengths.

I. INTRODUCTION

Sorting is an important operation in data processing. Fast
and efficient sorting has been available on the GPU for a
few years. Radix sort performs the best on the GPU and
its performance has improved steadily since its introduction
[14], [16]. The Thrust template library contains fast sort
implementations, with its radix sort by Merrill and Grimshaw
being the fastest [14]. Thrust sort can be enhanced with a
custom comparison operator [3]. Sorting is a vital data parallel
primitive on the GPU and is a critical component of several
algorithms [1], [8], [7], [10], [13], [15], [19]. The use of
standard primitives opens the door for automatic performance
improvements when the primitive’s performance improves due
to an improved implementation or an improved architecture,
both of which happens with sort on the GPU. A primitive
based implementation can thus be adapted efficiently to newer
generation of architectures that differ significantly.

Sorting long and variable length keys is still a challenge on
the GPU. The most typical problem is sorting of strings of arbi-
trary length, which is a common occurrence in different fields.
In this paper, we study string sorting that is built over existing
sort primitives on the GPU. Such an approach will result in
future performance improvements in the primitives to translate
to string sorting with no redesign. The developers of Thrust
suggest the use of a custom comparator with the fixed-length
sort primitives, to perform string sorting. The performance of
this depends critically on the comparator implementation and
is not fast enough perhaps due to the moving of a lot of data.
Davidson et al. presented the first string sort implementation
on the GPUs using an efficient merge sort for long and variable
length keys [6]. Their performance is good, but scalability to
large datasets may not be straightforward using merge sort as
opposed to radix sort.

In this paper, we present a fast and efficient GPU string

sort method based on available fixed-length radix sort. Our
method outperforms both methods described above on large
datasets. Our method is simple and scalable. We sort the string
prefixes progressively from the left, using a key length that
performs the best on radix sort. A straightforward MSD radix
sort, which shuffles entire strings, will require excessive data
movement that will slow the operation, as stated by Davidson
et al. [6]. We, therefore, use fixed-length prefixes to represent
the strings and move only a 4-byte string index in addition to
the key. Each sort divides the strings into buckets or segments
of common prefixes. Each segment needs to be sorted in further
rounds within itself. This is done using a global radix sort with
a key consisting of the segment id and further prefix characters
from the string. Singleton segments represent strings that have
found their final place and are removed to reduce the sorting
problem size for later iterations. We also use maximum number
of bytes in the key for the string characters in each step. This
is done by using minimum number of bytes for the segment
id adaptively in each step. This allows for more string bytes
to be used in each sort step. Flexible prefix selection reduces
the number of iterations needed, since now a larger part of the
string is sorted per iteration, and results in significantly higher
performance.

We present exhaustive results on several datasets to demon-
strate the applicability and scalability of our method. We use
the standard benchmark datasets as well as create our own
to demonstrate scaling to larger problem sizes. The average
after-sort tie-length quantifies the difficulty of sorting a given
dataset. We present results on datasets with large variations in
the tie-length. Our main contributions include the following.
(a) A fast string sort implementation that achieves a speedup
ranging from 1.8 to 19.7 over the current GPU methods.
We reduce the memory movement of long-key radix sort by
shuffling only string ids, for high performance. We reduce the
number of iterations by removing singletons as and when they
are formed. We sort the longest possible prefix in each step
by adaptively fixing the length of segment id field. (b) We use
the optimized primitives from available libraries effectively to
implement most of the steps. About 70% of the total time is
spent of such primitives. This uses the architectures effectively
with less effort and provides high scalability and portability
to future architectures. (c) We present results on a variety of
natural and synthetic datasets to demonstrate the performance
of our algorithm. We also analytically estimate the expected
runtime. The experimental results are within realistic limits of
these expected runtimes.

We are the first to exploit radix sort effectively for string
sorting on the GPU. Our approach loads the string progres-
sively from left to right only once; the segment id acts as
a proxy for the prefix for later iterations. This reduces the

memory movement greatly and improves the performance. In
contrast, a merge sort approach repetitively loads each string
from the global memory (whenever ties occur) in every merge
step. We show a speed up of more than 10 over the best GPU
string sorting approaches. We obtain a sorting throughput of
83 MKeys/s on a dataset of 1 million random strings. Our
approach can scale to an order of magnitude larger input size
than the previously reported GPU string sort. On a 10 million
words dataset we achieve a throughput of 65 MKeys/s.

II. RELATED WORK

We review the relevant sorting and string sorting algorithms
for the CPU and the GPU in following sections.

A. CPU String Sorting Algorithms

Most sorting algorithms are designed with the assumption
that input keys are a few characters or integers (i.e. fixed-
length keys). For keys which span more than a few integers or
characters (i.e. strings), comparison based sorting algorithms
use an iterative comparator between given keys. Radix sorting
algorithms create and recursively sort buckets starting from
most significant to the least significant integer or character.
Comparison based sorts will perform Ω(Nlog(N)) compar-
isons, each iterating over two strings to resolve ties. Naive
radix sort procedures will shuffle the entire strings in each
step. Both of these could be expensive in practice.

Several specialized string sorting algorithms have been
developed over time. Most popular and efficient amongst such
approaches are: mutli-key quicksort [4], Burstsort [17], [18]
and MSD (most significant digit) radix sort [9]. These typically
use a combination of two or more of the standard sorting algo-
rithms augmented with a few additional steps for performance.
Burstsort uses burst-trie data structure and a standard sorting
algorithm [4], [12]. It organizes strings into small buckets
by inserting them into a burst-trie, such that these buckets
can be sorted within the CPU cache memory. The sorted
buckets are already lexicographically ordered amongst each
other and need not be merged later. Kärkkäinen and Rantala
engineer an efficient radix sort for strings which involves
repetitive application of radix sorting from most significant
digit to the least significant one [9]. They develop counting
based methods which require pre-computing the bucket size.
To achieve this, they need to make two passes over the data
per radix sort step, where the first pass computes bucket sizes
and the next pass scatters the data. They also develop one-
pass dynamic methods where buckets are generated and resized
on the fly. They resort to simpler sorting viz. insertion sort
when buckets are small enough. They avoid shuffling entire
strings by manipulating pointers, cache successive characters
of strings, and use supra-alphabets (2 byte characters instead
of 1 byte) for small buckets, to reduce the sorting steps.

Our algorithm comes under the category of counting based
method of [9], with actual implementation exploiting the
efficient standard primitives viz. sort, scatter, scan etc. on
the GPU. The MSD radix sort creates buckets in a depth
first manner, while we show that a breadth-first pattern is
more suited for exploiting the parallelism on the GPU. Also,
our implementation can compare longer length of prefixes
(maximum of ≈ 8 characters long) per radix sort step as

compared to the two character limit of MSD radix sort.
In Table VIII and Section IV-F, we show that our GPU
algorithm gives significant speed up (4× - 17×) compared
to both Burstsort and MSD radix sort algorithms on standard
benchmark datasets.

B. GPU String Sorting Algorithms

The GPU has emerged as a massively parallel accelerator
for problems that have a strong data parallel flavor. Several
high performance sorting algorithms have been designed for
it. Cederman and Tsigas developed an implementation of
Quicksort [5], sample sort was implemented by Leischner et
al. [11]. Satish et al. developed a radix sort on GPU which
outperformed an 8-core CPU by 4× [16]. Their performance
benefits from the reducing of scattered writes to global memory
by making use of on-chip shared memory. They also developed
a fast merge sort, which merged small blocks that fit in the
on-chip shared memory. Merrill and Grimshaw later developed
a radix sort using fast scan primitives which is the fastest
sort today [14]. They introduced optimizations like adapting
the radix sort granularity (digit size) to fit the underlying
GPU architecture, kernel fusion and serialization of threads
for appropriate steps to reduce the global memory accesses.
All these implementations assume a fixed key size of 32/64
bits and cannot handle variable or long keys.

Thrust also provides efficient primitives for fixed key length
radix sort and merge sort [3]. Developers of Thrust suggest
creating a user-defined string class and a custom iterative
comparator to extend their sort to strings1. Thrust supports
radix sort only for basic datatypes and resorts to a merge sort
when provided with user defined datatypes and/or a custom
comparator. Radix sort primitives are significantly faster as
compared to merge sort and such an approach fails to exploit
them.

Recently, Davidson et al. developed an efficient merge sort
based string sorting procedure that handles variable length
keys well [6]. They prefer register packing (by creating a
limited number of threads) against over-utilization of GPU.
Input was divided into blocks of fixed size, m = 1024,
and m/8 threads (per SM) were created to sort 8 elements
each through a carefully designed bitonic sorting network.
Each thread then modified its search-space (neighboring 8,
16, 32 and so on elements) to create the final sorted block
of size m. In the next step, on each GPU SM two blocks
were merged which doubles the size of the output block and
halves the number of blocks. At the end when blocks to be
merged are few, they use a scheme where all threads (or cuda
blocks) cooperatively merge them. For variable length keys,
they initially sort the first 4 characters and load successive
characters from global memory in case of ties. As the merge
procedure nears conclusion, they observe that, comparisons are
made between more similar strings and ties take longer to
resolve. Resolving ties involves accessing high latency global
memory and also causes thread divergence, these issues cannot
be easily solved. Their implementation shows a good sorting
performance of 70M Strings/sec on a dataset of 1 million
strings when ties are few and slows down by 4 − 5× when
tie length increases. Though the GPU radix sort primitives are

1http://goo.gl/mlwlZ

A R I D \0 X O C P M T U R E R \0 D A R A P \0 R A L A E L \0 L A P

T R T I O I \0 N A P T R C I E L G \0 A R H P C \0 MO A P T C \0

0 6 15 21 30 40 49 55

GLOBAL STRING ARRAY

POINTER ARRAY

Fig. 1. The strings in the global string are delimited by null characters. The pointer array contains indices of the starting position of each string in the global
string array. This pointer array is shuffled during the sort to obtain the sorted order of strings. The example we consider in this paper contains the set of strings
: radix, computer, radar, parallel, partition, particle, graph, compact. We use this same set of strings to illustrate our sorting procedure.

0

6

15

21

30

40

49

55

RA

CO

RA

PA

PA

PA

GR

CO

 KEY VALUE

6

55

49

30

40

49

0

15

CO

CO

GR

PA

PA

PA

RA

RA

0

0

1

1

1

2

2

6

55

30

40

49

0

15

MP

MP

RA

RT

RT

DI

DA

0

0

1

1

1

2

2

GRAPH - 49

6

55

40

49

UT

AC

IT

IC

0

0

1

1

GRAPH - 49

PARALLEL- 30

RADAR - 15

RADIX - 0

6

55

30

40

49

15

0

MP

MP

RA

RT

RT

DA

DI

0

0

1

1

GRAPH - 49

SORT LOAD
SUCCE-
SSORS

SORT LOAD
SUCCE-
SSORS

 KEY
VALUE

REMOVE SINGLETONS &
GENERATE SEGMENT IDS

REMOVE SINGLETONS &
GENERATE SEGMENT IDS

 - SEGMENT ID - PREFIX STRING - SINGLETONS - FIXED O/P

COMPACT - 55

COMPUTER- 6

GRAPH - 49

PARALLEL- 30

PARTICLE- 49

PARTITION- 40

RADAR - 15

RADIX - 0

FINAL OUTPUT

Fig. 2. Illustration of our basic GPU sorting algorithm. In this example, we load two-character prefix strings in each step. The steps of fixed-length sorting,
removing singletons, generating segment ids and loading successive prefix strings are performed until we obtain the final output (i.e. all strings are singletons).

relatively faster, their string sort again uses a merge sort. They
avoid radix sort because “costs of radix sort algorithm that
involves direct manipulation (i.e. shuffling) of keys will scale
with key length”.

In a recent development, Banerjee et al. use the hybrid
CPU+GPU platform and present a faster merge sort algorithm
than Davidson et al. [2]. They also benchmark its sorting
performance on long and variable length keys [2]. On an
average, their merge sort is 20% faster for fixed-length keys
and 24% faster for a dataset of random strings as compared to
Davidson et al. On GTX 580 GPU, they achieve a throughput
of 16 MKeys/s on a dataset of 1M random strings, while
our throughput on the same platform is 83 MKeys/s. In our
detailed results, for balanced comparison, we only compare to
Davidson et al. Since, unlike Banerjee et al. our string sort
currently does not exploit the multi-core CPU for additional
performance.

We introduce a different category of efficient string sorting
algorithms for the GPU, based on fast fixed-length radix sort.
Instead of comparing two strings at a time in the traditional
iterative manner, we show that we can efficiently compare all

strings in a column-wise manner from first to the last character.
Our approach uses a way to limit the shuffling to only string
indexes and small prefix strings at each step, while performing
all operations with fast parallel primitives. Avoiding iterative
comparisons allows us to circumvent the problems of thread
divergence and high latency global memory accesses faced
by Davidson et al. Also, on practical datasets we see that
the length of ties do not exceed more than a few hundred
characters and results in Section IV-D, IV-C show that, our
GPU algorithm gives better performance and scalability as
compared to the merge sort based string sorting methods of
Davidson et al. and the Thrust Library.

III. OUR ALGORITHM

The input setup stores all strings in the global memory as
a single contiguous array, delimited by null characters (Figure
1) and accompanied by an index/pointer array. The pointers
to the strings are indices in this global string array. Fixed-
length radix sort primitives are the fastest amongst all others.
One way to use these primitives for performing string sorting
is to load entire strings as keys and perform the radix sort
operation. This will recursively create buckets from the first to

Algorithm 1 Our GPU String Sorting
1: Input: String Array G, Index Array I
2: Output: Shuffled Index Array O.
3: k = optimal key length // 8 for our platform
4: M ← load prefix(G,k, 0)
5: offset ← k // load next prefix starting at offset
6: Seg ← [0, 0, · · · , 0] // Only one segment
7: segBytes ← compute bytes(Seg) // 0 initially
8: K← pack keys(M, Seg, segBytes)
9: repeat

10: radix sort(key: K, value: I)
11: F← mark singletons(K,O) // F = Flag, O = Output
12: // above step also writes index of singletons to output
13: D← prefix scan(F) // D = Destination Array
14: K, I← scatter(K, I, flag: F, dest : D) // compaction
15: Seg← generate segments(K)
16: segBytes ← compute bytes(Seg)
17: M← load prefix(G, k− segBytes, offset)
18: offset ← offset +k− segBytes
19: K← pack keys(M, Seg, segBytes)
20: until no segments left
21: Output : Shuffled Index Array O

last character, but will involve shuffling the entire string keys
at each step. Such an extensive data movement will form a
huge bottleneck on the GPUs.

We develop an approach that is outlined in Algorithm 1.
We exploit the efficiency of radix sort while reducing data
movement by sorting records of string bytes as the key and
string index as the value (line 10). Each step uses a few bytes
of each string starting at a fixed offset from the left as the key;
the offset is 0 for the first step (line 4). The fixed-length radix
sort primitive from the library is used in each step. Strings
with a common prefix so far come in adjacent positions after
sorting. Strings with unique prefixes will be singletons and
would already be in their final place in the sorted output. These
can be marked and removed from further processing (line 11).
For the remaining strings, we assign segment ids (stored in the
Seg array) beginning with 0 for the lexicographically smallest
and increment by 1 whenever the next string differs. Common
prefix strings are contiguous and get the same segment id.
Segment assignment is performed using a scan primitive after
marking in parallel the locations where adjacent sorted records
have different keys. Each segment represents a bucket; strings
belonging to it will only shuffle among themselves without
crossing segments in the final output. The segment id, thus,
encodes the history of the sorting steps till the current one,
which allows us to discard the currently sorted prefixes and
load successive bytes in their place for further sorts (line 17).
We do further sorts on records with a key consisting of the
segment id on the left and next few bytes from each string
on the right and a value consisting of the string pointers. The
tuple of segment id and successive characters forms a proxy
for the entire prefix of each string. The pointers in the value,
together with the offset are used to load successive characters
in every sort step.

Note that the segment id cannot exceed the problem size.
If there are many common substrings in the dataset, there will
be fewer segments. We repeat the process, sorting more of the

string and removing singletons until all strings are singletons.
Each radix sorting step involves shuffling only a fixed-length
record of the key plus the string index as the value. We are
able to exploit the high performance of the parallel radix sort
for all steps, without resorting to less parallel sorting methods
midway. This enables us to scale to larger datasets and also
datasets with longer ties better, as shown in Sections IV-C,
IV-D,IV-F.

Our approach is illustrated in Figure 2, where we sort
the set of strings: radix, computer, radar, parallel, partition,
particle, graph and compact, organized in memory as shown
in Figure 1. In this example, we load 2-character prefix strings
before every sort step. After the first sort step we see that the
prefix gr is a singleton, thus the position of graph in output
array is fixed as 3. The other prefix strings co, pa, ra are
assigned incremental segment ids. We then use the value part
which consists of pointers of the strings to load successive 2-
character prefixes for each string. The next sort is performed
on the tuple of segment ids and the newly loaded 2-character
prefix. This generates more singletons ra, da, di which fixes
the positions of the strings parallel, radar, radix respectively.
The same process repeats for one more iteration after which
all strings become singletons and we obtain the sorted order.

A. Singleton Elimination

We write a parallel kernel to perform singleton elimination.
First a flag array is created with 0 if a prefix is a singleton – that
is, it is different from its predecessor and its successor – and 1
otherwise. An exclusive prefix sum of the flag array gives us
the destination indices for each remaining string. We compact
the original records with flag of 1 using a scatter primitive
and the destination indices. Singleton elimination reduces
the problem size for the subsequent iterations and reduces
the memory requirements. In practice, singleton elimination
improves the string sort performance by 1.1× to 4.5× as
shown in Table III. The use of library primitives for scan and
scatter helps in adapting to other systems.

B. Optimal Key Length and Adaptive Segment Ids

The radix sort primitives support keys of lengths 1, 2, 4
and 8 bytes efficiently on current Nvidia GPUs. Beyond 8

Fig. 3. Performance of Thrust’s fixed-length sort primitive with varying key
length.

Dataset Details Size (MB) After Sort Tie Length
Max. Avg.

artificial-2 106 same strings of A repeated ≈ 100 times 98 101 101
artificial-4 107 strings of characters a to i 162 80 13
artificial-5 106 strings containing A but varying length (1 to 100) 50 100 50
dictcalls 100187 strings of opcodes 2.2 35 15
random 106 random strings of length ≈ 100 97 5 2
words 107 ≈ 10 million words with no duplicates 118 48 7

url 107 = 10 million strings containing urls 305 215 29
genome 31623000 ≈ 30 million strings of a, t, g, c 302 9 8

sentences ≈ 1.8 million sentences from gutenberg project 124 63 17
pc-filelist ≈ 10 million strings containing filepaths 656 180 59

TABLE I. DETAILS OF THE DATASETS USED IN OUR EXPERIMENTS. WE CREATE AND USE SENTENCES AND PC-FILELIST TO PARTICULARLY
BENCHMARK OUR CODE ON TYPICAL DATASETS WITH HIGH NUMBER OF TIES. THE OTHER DATASETS ARE STANDARD DATASETS USED IN PREVIOUS

STRING SORTING LITERATURE [9], [18].

Dataset Thrust Comparator Sort Our GPU String Sort Speed
Up αMem.

Setup Sort Total Mem.
Setup

Iterations
(k)

Sort
(t1)

Scatter/
Scan (t2)

CUDA
Kernels (t3) Total

artificial-2 122 2652 2744 91 15 35 31 61 219 12.5 3.6
artificial-4 113 5699 5813 106 15 197 44 87 436 13.3 1.6
artificial-5 97 1808 1906 60 17 69 24 20 175 10.8 1.6
dictcalls 81 32 113 50 6 7 3 1 62 1.8 1.5
random 182 75 257 70 1 6 1 5 84 3.0 2
words 105 2016 2122 97 9 97 22 35 252 8.4 1.5

url 155 8559 8714 153 37 416 102 264 936 9.3 1.8
genome 155 14064 14219 275 2 189 92 164 720 19.7 2.3

sentences 131 895 1026 79 11 65 18 36 199 5.1 1.8
pc-filelist 230 9003 9234 225 33 705 164 313 1409 6.5 1.6

TABLE II. COMPARISON OF RUNTIME (IN MILLISECONDS) OF THE THRUST COMPARATOR BASED STRING SORT AND OUR GPU STRING SORT. THE
TABLE SHOWS THE SPLIT IN RUNTIMES FOR DIFFERENT STEPS OF OUR STRING SORTING ALGORITHM. THE VALUE α = (t1 + t2 + t3)/t1.

bytes, the values are tupled together and compared with 2 or
more standard comparisons [3]. Figure 3 shows the normalized
sorting time (per byte of the key) on an Nvidia GeForce GTX
580 GPU for different key lengths. Beyond 8-byte keys, there
is a sharp increase in this normalized per byte sorting cost.
This suggests that the individual sorting steps should use 8-
byte keys for maximum performance. This number may be
different on other accelerators and on future Nvidia GPUs.
Our algorithm should use appropriate key-lengths on each.

We pack the segment ids and prefix strings into the key.
We can use 4 bytes to represent the segment id and the rest for
subsequent string bytes. This will process the strings slower
when the number of segments are small. We adapt to the
number of segments and use the minimum number of bytes
to represent the segment id at each step. This varies from 0
bytes for the first step (all strings are in the same segment) to
3 bytes in practice in our examples (problem size itself was
less than 224 except in one case). The remaining bytes are
used to load the prefix strings. This adaptive scheme allows us
to compare more number of characters in each step, reducing
the number of iterations. On low entropy data the adaptive
scheme allows us to have fewer bytes for the segment id,
which implies more characters are compared per sort step
and more new segments can be identified. For high entropy
data, segment id consumes more bytes and relatively lesser
number of characters are compared per sort step. This is still
reasonable because strings are already highly segmented and
only a few more comparisons are needed to resolve ties. The

results in Table IV show that we get significant speed up with
the adaptive scheme.

IV. RESULTS AND PERFORMANCE ANALYSIS

We use efficient parallel primitives provided by the Thrust
Library (v1.6.0) [3]. Our setup has Nvidia GeForce GTX 580
GPU (compute v2.0) and we use CUDA software version
4.0. We also demonstrate our results on Nvidia Tesla K20C
(compute v3.5), with the Kepler architecture. For K20C, we
use CUDA software version 5.0. We present the performance
of our string sorting algorithm on different datasets (Table I)
in this section. The runtimes that we measure for all CPU
and GPU algorithms are typically in milliseconds and do not
include the File I/O time.

A. Thrust performance on varying key size

Figure 3 presents the performance of Thrust’s fixed-length
radix sort primitive for different key lengths. The key length
changes from 1 to 16 bytes. The total time divided by the key
length in bytes, to sort 1 to 30 million random keys plus 4-
byte value per key record, is shown in the figure. The per byte
sorting time reduces as key length varies from 1 byte to 8 bytes.
Beyond 8 bytes, Thrust shifts to a slower merge sort algorithm
[3]. This results in a sharp increase in the per byte sort time.
The optimal per byte sort time is thus obtained for 8 byte keys.
We, therefore, fix the key size to 8 bytes for the GPU radix
sort operations we perform. Please note that this parameter

Dataset
With Singleton

Elimination - Time (ms)
Without Singleton

Elimination - Time (ms) Speed Up

artificial-2 367 357 0.9
artificial-4 601 2237 3.7
artificial-5 299 317 1.1
dictcalls 28 38 1.3
random 23 31 1.3
words 423 1340 3.1

url 1160 5331 4.5
sentences 219 408 1.8
pc-filelist 1723 4791 2.7

TABLE III. COMPARISON OF RUNTIME (IN MILLISECONDS) OF OUR
GPU STRING SORTING ALGORITHM WITH AND WITHOUT THE
OPTIMIZATION OF SINGLETON REMOVAL. TO DECOUPLE THE

OPTIMIZATIONS AND STUDY THEM SEPARATELY WE MAINTAIN A FIXED
SEGMENT ID SIZE IN ABOVE EXPERIMENTS. THE RUNTIME IMPROVES

WITH SINGLETON REMOVAL.

may vary on other GPUs and certainly on other accelerators.
The k parameter in Algorithm 1 can be set to the optimum
value when adapting our method to other architectures.

B. Datasets

The details of the datasets used in our experiments are
given in Table I. The top 8 (artificial-2 to genome) are standard
datasets used in the CPU string sorting literature [9], [18].
They have data of varying size from natural sources such
as list of english words, urls, genome sequences as well
as synthetic ones such as list of repeated strings of same
character (artificial-2), list of repeated strings of same character
but varying lengths (artificial-5), random strings (random),
words formed from a few characters (artificial-4), etc. Good
performance on these datasets indicates the robustness of the
sorting algorithm. The GPUs are particularly good to process
larger datasets. Hence, we create additional datasets such as
pc-filelist and sentences. The pc-filelist was
created by listing all (≈ 2 million) files on a typical server
class machine starting with the root character “/”. This was
replicated 5 times with a different prefix for each copy (viz.
”node1/” to ”node5/”) to obtain a dataset of 10 million strings.
For the sentences dataset, we extract sentences from ≈ 40
e-books of the Gutenberg project. Large after-sort tie length
is an indicator of the difficulty of sorting a dataset [6]. These
strings have many ties to each other since many files share
common base directory path and many sentences have similar
beginning. This makes them difficult, yet not artificial, inputs
for string sorting. Their large size also allows us to test for
the scalability of our approach. These datasets as well as our
code will be available for others to use.

C. Comparison to Enhanced Thrust Sort

In Table II, we compare the performance of our radix sort
based GPU string sort to Thrust’s comparator based string sort
described in section II-B. We use the implementation of Thrust
comparator based method that is available as part of a suffix
sorting code2. This implementation is very slow as it does not
support bulk copy of the user-defined string class. Copying
one string at a time is very slow. We enhanced the code to
support bulk transfers so as to facilitate its running on large
datasets. Table II shows that we obtain a speed ups ranging

2https://github.com/bzip2-cuda/bzip2-cuda/tree/master/lib

Dataset Fixed Size Segment Id Adaptive Size Segment Id Speed
Up# Iterations Total Time # Iterations Total Time

artificial-2 26 367 15 127 2.8
artificial-4 21 601 15 328 1.8
artificial-5 26 299 17 113 2.6
dictcalls 9 28 6 11 2.5
random 2 23 1 12 1.9
words 13 423 9 154 2.7

url 54 1160 37 782 1.4
genome 3 1488 2 445 3.3

sentences 16 219 11 119 1.8
pc-filelist 46 1723 33 1182 1.4

TABLE IV. COMPARISON OF RUNTIME (IN MILLISECONDS) OF OUR
GPU STRING SORTING ALGORITHM WITH AND WITHOUT THE

OPTIMIZATION OF ADAPTIVE SIZE FOR SEGMENT BYTES. THIS SHOWS
THAT OUR ADAPTIVE SCHEME REDUCES THE NUMBER OF ITERATIONS

AND PROVIDES US A SIGNIFICANTLY BETTER RUNTIME.

from 1.8× to 19.7×. We analyze and justify this performance
in the following sections.

Sort Time and Total Time: Table II shows the split of
the times taken by different steps of the string sort for all
the datasets. The memory setup time includes the time for
allocating memory on GPU as well as doing all the data
transfers between CPU and GPU. We also measure the time
taken by the sort primitive (t1), scatter/scan primitives (t2)
and the CUDA kernels that perform the remaining operations
(t3). We see from the results that sorting is the most expensive
step on all large datasets. The only exception is artificial-2
dataset, which sorts arrays of equal values each time. Thrust
handles this specially and provides very fast sorting [14].
Typically, if we exclude the memory setup time, we see that
the total time varies in a small band of 1.5 to 2.3 times the
time for the radix sort. We denote this by a factor α, shown
in the last column of Table II. In practice, as of today, we can
empirically expect α to be bound by ≈ 2.5 for our algorithm.

Expected vs. Achieved Time: Given that the basic sorting
primitive takes on average time t per iteration, the total time
for an iteration can be estimated to be α× t. With k iterations,
then estimated total time is α × t × k. If the throughput of
fixed-length radix sort primitive is given in p MKeys/s and if
the string sorting problem has size N million strings, then the
estimated time per iteration is 1000/p×N milliseconds. Thus,
the expected total time for string sort in milliseconds is

Texp(ms) = α× 1000/p×N × k ≈ t1 + t2 + t3. (1)

Fixed-length radix sort primitive of thrust offers a sorting
performance of 1GKeys/s = 1000 MKeys/s [14]. But in prac-
tice, on our architecture, we achieve a throughput of 500 to 760
MKeys/s from the radix sort primitive, thus we fix p = 750 in
equation 1 and calculate the expected runtime for α = 2.5. The
results in Table V show that we achieve better runtime than the
expected time on artificial-4, words, pc-filelist and url datasets
(each of which has 10 million strings and also long ties). Such
an analysis, shows that we can predict the performance of
the string sorting algorithm based on a fixed-length sorting
primitive. This prediction needs parameters such as input size
(N), performance of the fixed-length sort primitive (p) and
max ties in the input (i.e. some indicator of the value of k).
Our results in Table V, show that our achieved performance
is within practical limits of the expected performance in many

Dataset Achieved Runtime
(t1 + t2 + t3)

Expected Runtime
(α× 1000/p×N × k)

artificial-2 127 50
artificial-4 328 500
artificial-5 113 57
dictcalls 11 2
random 12 4
words 154 300

url 782 1233
genome 445 200

sentences 119 66
pc-filelist 1182 1100

TABLE V. ACHIEVED VS. EXPECTED RUNTIME (IN MILLISECONDS)
FOR OUR RADIX SORT BASED GPU STRING SORTING ALGORITHM.

cases and it justifies the speed up that we obtain over other
methods.

Singleton Elimination and Adaptive Segment ID: Removal
of singletons progressively reduces the sorting problem size.
This allows the fixed-length sorting primitive to perform
better. In equation 1, this translates to reducing the impact of
N in successive iterations. Table III shows that we achieve
a speed up between 1.1 to 4.5 for different datasets after
eliminating singletons. There is no speed up for the artificial-2
dataset, since it consists of equal strings and no singletons
are found. For url, artificial-4 and pc-filelist datasets, which
have large number of strings and long ties we see that our
singleton elimination technique performs particularly well
giving us a speed up of 4.5, 3.7 and 2.7 respectively. Using
the minimum number of bytes for the segment id field enables
us to reduce the total number of iterations as more number
of characters are compared per iteration. This reduces k in
equation 1. Table IV shows that we achieve a further speed up
of 1.4× to 3.3× by using the adaptive scheme for segment id
bytes. Both, these optimizations aim at reducing the expected
runtime for our GPU algorithm and also yield good results in
practice.

Thrust Comparator based String Sort: The enhanced Thrust
sort for strings using a custom comparator performs poorly
(Table II). This is due to the use of the slower merge sort
as well as the loading successive characters from the high-
latency global memory to resolve ties. These accesses need to
be performed repeatedly per string in every merge step. Our
method loads the string from start till the ties are resolved
only once per sort step. Our approach makes full use of the

Dataset % Time used by Thrust Primitives
(t1 + t2)/(t1 + t2 + t3) × 100

artificial-2 51
artificial-4 73
artificial-5 82
dictcalls 90
random 58
words 77

url 66
genome 63

sentences 69
pc-filelist 73

TABLE VI. THE % OF TOTAL TIME (W/O MEMORY SETUP) USED FOR
EXECUTION BY THE THRUST SORT, SCATTER AND SCAN PRIMITIVES. ON

AN AVERAGE, 70% OF THE TOTAL TIME IS UTILIZED BY THRUST
PRIMITIVES.

Dataset GTX 580 (Fermi) K20C (Kepler) Speed Up
artificial-4 436 472 0.92

url 936 899 1.04
genome 720 642 1.21

pc-filelist 1409 1121 1.25
pc-filelist ×2 - 2574 -

TABLE VII. COMPARISON OF RUNTIME (IN MILLISECONDS) ON THE
KEPLER K20C AND GTX 580 GPU. PC-FILELIST DATASET IS REPLICATED

TWICE (≈ 20Mstrings) TO CREATE PC-FILELIST ×2. K20C CAN
PROCESS THIS LARGE INPUT BECAUSE OF ITS HIGH GLOBAL MEMORY,

WHICH IS NOT POSSIBLE ON GTX 580.

fact that the fixed-length radix sort primitive ensures limited
global memory accesses [14]. Reducing the high latency global
memory accesses and exploiting fast primitives of radix sort
and scan, help us achieve much better performance than the
comparator based string sort of Thrust, Table II shows that we
achieve a speed up of 5 to 10 on large datasets.

Time spent on Thrust Primitives: Table VI presents the
fraction of total execution time that is spent using Thrust
primitives of sort, scan and scatter. This measure is an indicator
of the adaptability of our methods to newer implementations
and architectures. For large datasets with long ties (i.e., url,
aritificial-4, sentences, pc-filelist) we see that greater than 65%
of the time is used by Thrust primitives. On an average the
Thrust primitives use 70% of the execution time. These results
show that our algorithm without any redesign can benefit well
from any future improvements to these primitives or the basic
architecture.

D. Comparison to Davidson et al. [6]

We compare with the method by Davidson et al. using
the CUDPP code from them3 [6]. This code is still under
development and lacks a few optimizations mentioned in their
paper. It presently does not scale to the input size that we use
for most datasets. On the wiki-words dataset they used, we
obtained a runtime of 20 ms, while they reported about 14
ms in their paper [6]. This is an easy dataset, with very few
ties (average ≈ 5) and only 1 million elements. Hence, the
small difference in runtime is not very significant. Scalability
to large datasets is a particular strength of our approach since
it is totally based on the radix sort primitive, as opposed
to the slower merge sort they use. On 1 million random

3http://code.google.com/p/cudpp/source/checkout

Dataset Our GPU String Sort CPU String Sorts
Burstsort MSD Radix Sort

artificial-2 219 880 2496
artificial-4 436 4000 4468
artificial-5 175 730 948
dictcalls 62 50 44
random 84 166 188
words 252 3700 2968

url 936 9270 8832
genome 720 8210 9888

sentences 199 - 968
pc-filelist 1409 24920 13220

TABLE VIII. COMPARISON OF RUNTIME (IN MILLISECONDS) OF OUR
GPU STRING SORTING ALGORITHM WITH STATE-OF-THE-ART CPU

ALGORITHMS FOR STRING SORT. FOR THESE EXPERIMENTS, WE USE THE
NVIDIA GTX 580 GPU AND INTEL CORE2DUO E7500 CPU.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7
x 10

6

Length of Ties (After Sort)

N
u

m
b

e
r
 o

f
S

tr
in

g
s

Words Dataset

original deviation/8 (69ms)

original deviation/4 (80ms)

original deviation (154 ms)

original deviation x 2 (382 ms)

original deviation x 4 (515 ms)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5
x 10

6

Length of Ties (After Sort)

N
u

m
b

e
r
 o

f
S

tr
in

g
s

PC−Filelist Dataset

original deviation/8 (145 ms)

original deviation/4 (275 ms)

original deviation/2 (556 ms)

original deviation (1182 ms)

Fig. 4. In this figure, we vary the deviation of the sorted ties histogram for two datasets: words (less ties) and pc-filelist (high ties). To reduce the deviation by
a factor of k, we take every kth character of each string. To increase deviation by a factor of k, each character of the string is replicated k times. The runtimes
for our GPU algorithm are indicated in the legend. Datasets having histograms with low deviation are easier to sort than those with high deviation. The runtime
varies linearly with the change in deviation, indicating we can even handle inputs with high ties as efficiently as possible.

strings and a larger words dataset with 10 million strings, their
implementation takes 27 ms and 2100 ms respectively. Our
string sort takes only 12 ms and 154 ms respectively on these
datasets, we get a speed up of 2 to 13×. The comparison will
be more meaningful only when a fully optimized and stable
version of their code is available.

E. Performance on the Kepler GPU

Table VII compares the performance of our string sort
on Nvidia K20C and Nvidia GTX 580 GPU. K20C is of
a different architecture family (kepler) and has a relatively
slower clock speed of 706 MHz as compared to 772 MHz
of GTX 580 (fermi). But, it has a global memory of ≈ 5GB
and can process much larger inputs than GTX 580 (≈ 2GB
global memory). It also has 2496 cores, while the GTX 580
has only 512. In our experiments on sorting random integer
data with the Thrust sort primitive, we see that the K20C
performs only marginally better as compared to GTX 580.
Thus, using the K20C we achieve a speedup of 1.21 and
1.25 on genome and pc-filelist datasets respectively. On an
even larger dataset, pc-filelist ×2, created by concatenating the
pc-filelist dataset twice, K20C gives a runtime of 2.57s. The
same dataset takes about 38.1s and 27.8s on the CPU using
Burstsort and MSD radix sort respectively (i.e. speed up of 14
and 10). Also, the global memory limit in GTX 580 GPU is
prohibitive for processing this large input. Thus, the new K20C
GPU gives slightly better performance and is scalable to much
larger inputs as compared to GTX 580. Note, since our code
is primarily primitive based, no tuning of the thread/block grid
parameters is required to achieve speed up on Kepler. Also,
any future improvements to the primitives that result from new
features viz. dynamic parallelism, hyperQ etc. of the Kepler
architecture will be directly inherited by our string sort.

F. Comparison with CPU Algorithms

Table VIII compares the performance of our GPU string
sorting algorithm with the state of the art CPU algorithms for
string sorting: Burstsort [17], [18] and MSD radix sort [9]. For
Burstsort, we use the code provided by the authors of [17]. For
MSD radix sort we use the efficient code available as part of a

standard string sorting library4. The speedup is very significant
except on the very simple dictcalls dataset. This gives a feel
of the speed up that can be expected using a GPU for those
who use string sorting on the CPU.

G. Performance with After-Sort Tie Length

The sorted ties histogram quantifies the difficulty of sorting
a given dataset [6], [9]. For each string, the average of number
of prefix characters that match to the strings just before and
after it in the sorted order is called its tie-length. This measure
is an upper bound on the number of prefix characters that can
match to the given string from the entire dataset. The histogram
of these tie-lengths is called the sorted ties histogram. If the
sorted ties histogram is short (i.e. deviation is small) and steep,
many strings have small tie lengths. Such an input is easy to
sort. On the other hand, if it has a large spread (i.e. deviation
is large), there are many strings with long ties and the dataset
is difficult to sort.

The words dataset has strings that are smaller in length. The
average tie length is 7 characters. To study the performance
of our algorithm with respect to average tie-length, we modify
the sorted ties histogram of this dataset as follows. We increase
the deviation by a factor of k by replicating every character of
the given string k times. Similarly, we reduce the deviation by
a factor of k by taking every kth character of each string. Note,
area under the curve remains the same for all these modified
histograms. From Figure 4, we see that when deviation changes
by a factor of 1/8, 1/4, 2 and 4, the runtime changes by 0.4×,
0.5×, 2.4× and 3.3× respectively. Our runtime demonstrates
a near-linear scaling with deviation. On reducing the deviation
below 1/4, the tie length becomes so low that only 1-2 sort
operations are required. Similarly for the pc-filelist dataset,
we change deviation by factors of 1/2, 1/4 and 1/8 and
obtain runtimes that are 0.47×, 0.23× and 0.12× the original
runtime. The pc-filelist dataset was designed as a stress test for
our algorithm, with a large number of strings (10 million) and
very long ties. A near-linear performance on different spreads
of histograms for this dataset shows that our algorithm can
handle the entire spectrum of sorted ties histogram efficiently.

4https://github.com/rantala/string-sorting

The pc-filelist dataset is such that we use up all memory
available on the GPU to perform the sort. Increasing the devi-
ation will involve replicating the characters and will require
more memory. To handle such cases, we can modify our
approach to stream successive prefixes of all strings to the GPU
memory periodically to substitute the used prefixes. This can
be explored in our future work and will allow our algorithm to
scale to even larger input size. It is not as straightforward to
scale merge sort algorithms, because they will require entire
strings to be in memory to perform iterative comparisons at
least for the final merge step.

V. CONCLUSIONS

We presented an efficient string sort method for the GPUs,
based on the fast radix sort primitive in the paper. We got a
speed up of more than 10 over the best GPU string sorting
approaches. Our approach scales to larger datasets easily.
Reducing memory movement, removing singleton segments
early, and consuming maximum number of string bytes in each
sort-step are the key factors behind our high performance. Most
of the time was spent on optimized primitives from available
libraries. We presented results on a variety of natural and
synthetic datasets. The analytical expected runtime matched
the actual time quite closely.

We would like to explore the scalability of our method
to extreme conditions in the future, when the set of strings
to be sorted does not fit the GPU memory. Our method can
handle this by streaming parts of the dataset from the CPU
as and when needed, as we need to access the string strictly
from the left to the right only. Strings can thus be divided into
sections by columns and streamed to the GPU. The streaming
can overlap with the computations to get very high throughput
in string sort. We are exploring this currently.

REFERENCES

[1] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzen-
macher, J. D. Owens, and N. Amenta. Real-time parallel hashing on
the gpu. ACM Trans. Graph., 28(5):154:1–154:9, Dec. 2009.

[2] D. S. Banerjee, P. Sakurikar, and K. Kothapalli. Fast, scalable parallel
comparison sort on hybrid multicore architectures. In Workshop On
Accelerators for Hybrid Exascale Systems (AsHES), IPDPS’13, 2013.

[3] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for
cuda. GPU Computing Gems Jade Edition, page 359, 2011.

[4] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and
searching strings. In Proceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’97, pages 360–369, 1997.

[5] D. Cederman and P. Tsigas. Gpu-quicksort: A practical quicksort
algorithm for graphics processors. J. Exp. Algorithmics, 14:4:1.4–
4:1.24, Jan. 2010.

[6] A. Davidson, D. Tarjan, M. Garland, and J. D. Owens. Efficient parallel
merge sort for fixed and variable length keys. In Innovative Parallel
Computing, page 9, May 2012.

[7] K. Garanzha and C. Loop. Fast ray sorting and breadth-first packet
traversal for gpu ray tracing. In Computer Graphics Forum, volume 29,
pages 289–298. Wiley Online Library, 2010.

[8] B. He, N. K. Govindaraju, Q. Luo, and B. Smith. Efficient gather and
scatter operations on graphics processors. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, 2007.

[9] J. Kärkkäinen and T. Rantala. Engineering radix sort for strings. In
Proceedings of the 15th International Symposium on String Processing
and Information Retrieval, SPIRE ’08, pages 3–14, 2009.

[10] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha.
Fast bvh construction on gpus. In In Proc. Eurographics 09, 2009.

[11] N. Leischner, V. Osipov, and P. Sanders. Gpu sample sort. In 2010 IEEE
International Symposium on Parallel Distributed Processing (IPDPS),
pages 1–10, 2010.

[12] P. M. McIlroy, K. Bostic, and M. D. McIlroy. Engineering radix sort.
COMPUTING SYSTEMS, 6:5–27, 1993.

[13] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal.
SIGPLAN Not., 47(8):117–128, Feb. 2012.

[14] D. Merrill and A. Grimshaw. High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for GPU
computing. Parallel Processing Letters, 21(02):245–272, 2011.

[15] R. A. Patel, Y. Zhang, J. Mak, and J. D. Owens. Parallel lossless
data compression on the GPU. In Proceedings of Innovative Parallel
Computing (InPar’12), May 2012.

[16] N. Satish, M. Harris, and M. Garland. Designing efficient sorting
algorithms for manycore gpus. In Parallel Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–10, 2009.

[17] R. Sinha and A. Wirth. Engineering burstsort: Towards fast in-place
string sorting. In C. McGeoch, editor, Experimental Algorithms, volume
5038 of Lecture Notes in Computer Science, pages 14–27. 2008.

[18] R. Sinha, J. Zobel, and D. Ring. Cache-efficient string sorting using
copying. J. Exp. Algorithmics, 11, Feb. 2007.

[19] V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan. Fast minimum
spanning tree for large graphs on the gpu. In Proceedings of the
Conference on High Performance Graphics 2009, HPG ’09, pages 167–
171, New York, NY, USA, 2009. ACM.

