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ABSTRACT

MRF models have shown state-of-the-art performance for
many computer vision tasks. In this work, we propose a
non-local MRF model for image completion problem. The
goal of image completion is to fill user specified “target” re-
gion with patches of“source” regions in a way that is visually
plausible to an observer. We represent the patches in the tar-
get region of the image as random variables in an MRF, and
introduce a novel energy function on these variables. Each
variable takes a label from a label set which is a collection
of patches of the source region. The quality of the image
completion is determined by the value of the energy func-
tion. The non-locality in the MRF is achieved through long
range pairwise potentials. These long range pairwise poten-
tials are defined to capture the inherent repeating patterns
present in heritage architectural images. We minimize this
energy function using Belief Propagation to obtain globally
optimal image completion.

We have tested our method on a wide variety of images
and shown superior performance over previously published
results for this task.
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1. INTRODUCTION
Image completion is an important and challenging com-

puter vision task. The goal of an image completion algo-
rithm is to reconstruct the missing regions within an image
in a way that is visually plausible to an observer. In most
cases, the missing region (called the target region) is filled in
by using the information from the rest of the image (called
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(a) Object Removal

(b) Reconstruction

Figure 1: Many successful applications of our
method. (a) Object removal: the signboard on the
window is successfully removed. (b) Reconstruction:
the originally broken Colosseum has been success-
fully reconstructed using our approach.

the source region). Image completion is an important part
of many computer vision applications such as scratch re-
moval, object removal and reconstruction of damaged archi-
tectural parts in an image. Moreover, image completion has
applications in the field of photo editing and restoration.
Image completion is a highly researched area in computer
vision [4, 5, 7, 8, 10, 11]. Although due to the complex-
ity of the images, results leave a lot to be desired. In this
work, we propose a non-local MRF technique to complete
images. (Note that non-local MRF [15] has been success-
fully applied to image restoration in past). The beauty of
our formulation is in its capability to use non-local repeating
patterns in MRF energy minimization framework. We use
Belief Propagation [12] to find the minimum of this energy
i.e., the optimal image completion. Few successful appli-
cations of our method are shown in Figure 1. It can be
seen that our method performs well for the tasks like object
removal, reconstruction etc.

India has one of the greatest architectural monuments in
the world. With advances in computer vision techniques,
it is now possible to capture the glory of heritage architec-



tural images for both showcasing and preservation for future
generations. Our work can be considered as a small step to-
wards this. We primarily focus on completion of images
taken from Indian heritage architectures. (Although we also
test our method on many other images to show the general-
ity of the method).

Contributions. The contribution of this work is two
fold, (1) We propose a non-local optimization framework to
capture repeating patterns inherently present in the image
(especially, the images of our interest i.e. heritage architec-
tural images). We model these repetitions via long range
potentials in MRF. (2) We prove that the proposed energy
function is sub-modular as well as semi-metric. This proof
guarantees that the energy function can be efficiently min-
imized via move making algorithm like α-β swap [2]. How-
ever, the study of energy minimization techniques is beyond
the scope of this work. Hence, we restrict ourself to Belief
Propagation for the implementation of our method.

Outline of the paper. The remainder of the paper is or-
ganized as follows. We discuss related work in Section 2. In
Section 3, the image completion problem is formulated as a
labeling problem. In this section, we also give the reasoning
behind long range potentials and define a novel non-local
MRF energy function such that its minimum corresponds
to the globally optimal image completion. In Section 4, we
prove that the proposed non-local MRF energy function is
sub-modular and semi-metric. We then discuss experimental
settings and present results of proposed method in Section 5.
Finally, Section 6 concludes our work.

2. RELATED WORK
There has been significant research in the field of image

completion. Various approaches have been put forward over
the last few decades. The approaches can be grouped into
four major categories: (1) Statistical Methods, (2) Partial
Differentiation Equation (PDE)-Based Methods, (3) Exem-
plar Based Methods, (4) Global Optimization based Meth-
ods.

Statistical Methods.
These methods make use of parametric statistical mod-

els for image completion. These models (wavelet coeffi-
cients [13], colour histogram [6]) are used for representation
of image characteristics. The idea is to estimate the miss-
ing region and fill it using an iterative process. Initially, the
output image is generated keeping the missing regions as
pure noise. These regions undergo iterative noise reduction
to produce the final output. Statistical methods are only
useful in case of texture synthesis. Moreover, they produce
blurred outputs for natural images.

PDE-Based Methods.
Partial Differential Equation (PDE) based methods use

diffusion process for image completion. The idea is to start
the region-filling from the boundary of the missing region
and then propagate towards the interior. The boundary
filling uses diffusion process simulated by solving the par-
tial differentiation equations. In [1] region-filling is done
by propagating image Laplacians in the direction of the
isophotes. Chan et al. [3] use variational model for region
filling.

PDE-based approaches perform well in cases where the

missing region is smooth and non-textured. However, they
fail in case of large inpainting regions.

Exemplar-Based Methods.
Exemplar based techniques have been the most successful

approaches in presence of large unknown regions. The visi-
ble patches of the image are used as a training set to infer
the unknown parts which are then filled by simply copy-
ing the content of these known patches. Exemplar based
techniques have been widely used for image completion re-
cently. Criminisi et al. [4] propose a priority-based mecha-
nism which combines texture synthesis and isophote driven
inpainting for image completion. This approach, though
isophote driven, is not capable of maintaining the structural
consistency of the image. Hung et al. [8] propose Bezier
curves to determine missing edge information, hence pre-
serving structure consistency. The damaged regions are then
inpainted using exemplar based methods. However, there
are three major pitfalls of these methods. Firstly, the con-
fidence map is computed based on heuristics and may not
be applicable to a general case. Secondly, once a patch has
been assigned to an unknown region, it cannot be changed.
Finally, the greedy approach leads to a bias caused due to
selection of a few incorrect patches in the priority based
mechanism. These incorrect completions have a spiraling
effect which destabilizes the inpainting process.

Global Optimization based methods.
There has been huge interest in the discrete optimization

community for image completion problem in recent years [5,
14]. However, these methods do not take advantage of re-
peating patterns inherently present in many architectural
images. On other hand, we model the repetitions in the en-
ergy function itself and thus define a better energy function
for the problem. Closest to our work is [10]. Here authors try
to tackle the drawbacks of the Exemplar-based approach by
posing image-filling as a discrete global optimization prob-
lem. It uses the exemplar-based framework and Markov
Random Field (MRF) for image completion. The idea is to
minimize the energy of the MRF using Priority-Belief Prop-
agation (Priority-BP) optimization scheme. The approach
works well for majority of the cases. However, in the im-
ages where repetitions are prominent, it produces relatively
poor output. The method ignores the fact that repetition,
if present, may carry critical information about the miss-
ing region. Contrary to this, we incorporate the repetition
present in the image by including long-range potentials and
find the global minima of the non-local MRF energy.

3. THE IMAGE COMPLETION PROBLEM
Given a source region S and a target region T the image

completion problem is to fill the target region such that it
agrees with its surroundings. We define the image comple-
tion problem in a labeling problem framework where over-
lapping spatial positions in image can be considered as a set
of sites and patches of size w × h sampled from source re-
gion can be considered as labels. In other words, site is a set
S = {X0, X1 . . . Xm} where each Xi is a spatial position of
size w×h in the image. Similarly, label L = {L0, L1, . . . , Ln}
is a set where each Li is a patch of size w× h sampled from
source region S . Figure 2 shows the formulation of image
completion as a labeling problem.



Each site Xi can take a random value xi = {L0, . . . , Ln}.
The labeling problem here is to find the optimal function
f∗ : S → L. Optimality criteria is defined based on qual-
ity of the image completion. In general, this is an NP-hard
problem. However it can be solved approximately by find-
ing the minimum of the Gibbs energy (also known as MRF

energy) of following form:

E(x) =
m∑

i=1

Ei(xi) +
∑

N

Eij(xi, xj). (1)

Ei(·), Eij(·) and N corresponds to data term, smoothness
term and neighborhood system defined in MRF respectively.
The data term measures the agreement with the available
observations whereas the smoothness term is used to enforce
spatial coherence. The minimum of this energy function
corresponds to the optimal image completion.

Data term.
The data term computation for image completion prob-

lem is not straightforward because only boundary sites are
visible whereas interior sites are hidden. (Recall that in any
image completion problem user provides a mask which needs
to be filled). Without loss of generality each patch (xis and
Lis) can be represented as a vector of size w×h. i.e. patches
can be represent as a vector in a vector space as follows.

xi = [xi0 , . . . , xil ]
T

Li = [Li0 , . . . , Lil ]
T ,

where l = w×h and each xii is either hidden or in [0, 255]3 .
Whereas Lii ∈ [0, 255]3, ∀i. To distinguish visible and hid-
den nodes, we introduce a binary vectorK = {k1, k2, . . . , kl}
such that km takes value 0 if xim is hidden and 1 otherwise.
We define the unary cost of random variable xi taking label
Li as follows.

Ei(xi = Li) =
l∑

m=0

km(xim − Lim)2. (2)

In other words, data term measures the agreement between
random variable xi and label Li in terms of sum of squared
distance (ssd) of known pixels. Thus, the cost of xi taking
label Li is low if the sum of squared distance (ssd) between
xi and Li is low.

Smoothness term.
The data term alone cannot give coherent completion.

To enforce coherency in the completed image, we define a
smoothness term such that overlapping region of neighbor-
ing labels have least sum of squared distance. We define the
smoothness term as follows.

Eij(xi = Li, xj = Lj)

=

size(ψ)∑

m=0

δ(Xim ∈ ψ) ∧ δ(Xjm ∈ ψ)(Lim − Ljm )2. (3)

Here ψ is the overlapping region between sites (i.e. patches)
Xi andXj . δ(·) is an indicator function. The process of data
and smoothness term computation is pictorially depicted in
Figure 3.

Figure 2: Image Completion as a labeling problem.
Overlapping patch positions in image and patches
sampled from source region represent sites and la-
bels respectively. The labeling problem here is to
find the optimal labeling from sites to labels.

Figure 3: Data term and smoothness term computa-
tions. Data term is agreement from the labels to the
node in terms of ssd. Only visible area contributes to
ssd. Smoothness term is computed based on ssd in
overlapping regions of labels. (note that labels here
are basically a collection of patches) (Best viewed in
colour).

Long range potentials.
In addition to the data and smoothness terms, we wish to

capture the inherent repetitive patterns present in heritage
architectural image. To achieve this, we add an extra term
in the MRF energy which we call as long range pairwise
potentials. The long range pairwise potential are defined
between a patch and its repeating offset at distance τ . (We
describe the repeating offset computation in the next subsec-
tion). This long range potential forces a node to take similar
label to a patch at offset τ . Mathematically, the long range
potential Elr(·, ·) is defined as follows.

Elr(xi = Li, xk = Lj) =

l∑

m=1

km(xim − Ljm )2. (4)

Note that here xi and xk are non-local i.e. they are at
distance τ . (Here τ is a repeating offset, in other words the
image has a repeating pattern at offset τ ). This definition
of long range potential ensures less penalty if xi and xk take
similar labels.

Thus we modify Equation 1 to non-local MRF energy as



Figure 4: Many architectural images contain repeat-
ing patterns. One such example is shown here (Best
viewed in colour).

follows.

E(x) =
∑

Ei(xi)+
∑

N

Eij(xi, xj)+
∑

dist(xi,xk)=τ

Elr(xi, xk).

(5)
Once the energy is formulated, the problem of image com-

pletion becomes equivalent to finding the configuration x∗

corresponding to the global minima of the energy function.
The graph construction corresponding to this energy func-
tion and the inference (energy minimization) are discussed
in Section 3.2.

3.1 Repeating Offset Computation
Many archaeological monument images contain repeating

patterns. One such example is shown in Figure 4. These
repeating patterns vary in complexity which makes image
completion a challenging task. The repetitive pattern may
carry significant information about the region which is to be
completed (inpainted). Hence, the idea is to make use of
various repetitions present in the input image and boost the
region-filling.

The repetitions can be of any size and along any direction.
In order to capture both we make use of (p, q) offset (τ ,
repeating offset) pairs which correspond to the x-direction
and y-direction repetition offsets respectively.

In this step, we compute offsets that can effectively rep-
resent the inherent repetition in the image. We use the fact
that patches which are part of the repetition will repeat with
some common offset. The distance between a patch and its
nearest similar patch will account for the repetition offset.
Offset Generation consists of following steps.

1. Finding Nearest Similar Patches.
For every patch in the source region of the image we find

the nearest most similar patch. For every patch P belonging
to the source region,

τ (x) = argminτ ||P (x)− P (x+ τ )||2; |τ | > θ.

Here τ is a 2D-coordinate offset (p, q), P (x) is the patch
centered at x. P (x + τ (x)) is the nearest similar patch. τ
represents the offset obtained for the pixel x. The simi-
larity is defined using the sum of squared differences (ssd)
between the patches. Lesser ssd corresponds to higher sim-
ilarity. The parameter θ represents the threshold radius for
the nearest patch. The patch must lie outside this range.

Figure 5: The proposed graphical model. There are
two types of nodes in the graph: visible (in boundary
and source region) and hidden (in interior region of
target). Hidden nodes are shown by filled circles.
Local pairwise potentials are shown via red edges
and non-local long range potentials are shown via
green edges. We use loopy belief propagation for
inference in this graphical model (Best viewed in
colour).

This is just to ignore the nearby patches which are likely
to be similar but do not contribute towards the repetition
offset. This threshold varies with the images based on their
sizes. In our testing, θ was set to be 1/15th of the maximum
of image height and image width.

The brute force search for the nearest patch can be compu-
tationally expensive as for each patch we need to traverse en-
tire source region. Therefore, to overcome the high compu-
tation cost, we use Approximate Nearest Neighbour(ANN).
Using approximate nearest neighbour,

τ (x) = ANN(P (x)); |τ | > θ.

2. Histogram and Offset Generation.
Once we obtain the offsets corresponding to each pixel in

the source region, we need to combine the results in order
to obtain the correct repetition offsets. To achieve this we
represent τ as a 2D-plane and generate histogram count of
the all τ offsets i.e.

H(τ ) =
∑

τ(x) δ(τ (x) = τ ).

H(τ ) gives the count of the number of patches having
their individual offset as τ . Now, to get the prominent repe-
tition offsets, we analyze the histogram counts of the offsets
and select offsets with highest count. Since the image may
contain many repetitive patterns which are prominent, thus
we generate the top C offsets to capture varied repetitions
(C = 10 was used in our experiments).

3.2 Graph Construction and inference
We solve the energy minimization problem on a corre-

sponding graph, where each random variable is represented
as a node in the graph. Nodes in 4-neighborhood system are
connected via edges. To capture repeating patterns in the
image, we also join non-local nodes at offset τ . (This offset
is computed based on the procedure described Section 3.1).
We further group nodes in this graph into two categories:
visible and hidden. The nodes belonging to source region



Figure 6: Overview of our method. First user selects a mask. Based on user selected mask a graph is con-
structed where each node represent an overlapping spatial position in the image. These nodes are connected
via a 4-neighborhood system N . Moreover, to capture inherent repeatability, two nodes at distance of re-
peating offset are also connected (these edges are shown in yellow colour). To find repeating pattern in the
image we use approximate nearest search (ANN). After graph construction, graph is labeled using popular
inferencing technique: BP. The final output of our method is shown in the right most image (Best viewed in
colour).

and boundary of target region are visible, however interior
nodes of the target regions are hidden. Each node takes a
label from label set L = {L0, L1, . . . , Ln} where each Li is a
patch of size w×h. The cost of a node taking some label Li
is determined by the unary cost defined in Equation 2. Fur-
ther, the joint cost of two neighboring and non-local nodes
taking label Li and Lj defined in Equation 3 and 4 respec-
tively, give the weights to edges. Similar to [10], if a node is
highly likely to take some label, we declare that node “com-
mitted” and give higher priority to it for sub-sequent infer-
ence procedure. The proposed graphical model is shown and
explained in Figure 5.

Inference.
For Inference of the proposed graphical model, we use pop-

ular message passing based inferencing algorithm known as
loopy Belief propagation (BP). Belief propagation was first
proposed in [12]. It iteratively tries to find the Maximum-
a-Posteriori (MAP) estimate by propagating messages (be-
liefs) from nodes to its neighbors. (Recall that in MAP-
MRF framework MAP is equivalent to the global minima
of the MRF energy). Although theoretically loopy BP does
not guarantee convergence for grids, but experimentally it
has been shown that it yields a strong local minima for a
wide range of computer vision problems [17].

The proposed method is summarized in Figure 6.

4. SUB-MODULARITY AND METRICITY
In this section, we prove that the non-local MRF energy

function defined in Equation 5 is sub-modular and semi-
metric.

Statement 1. The energy function defined in Equation 5
is a sub-modular function for every pair of labels.

Proof. A function of single variable is trivially a sub-
modular function [9]. Thus, it would suffice if we prove that
the pairwise terms Eij(·, ·) and E

lr
ij (·, ·) are sub-modular for

every pair of labels. To proof the sub-modularity, we need
to prove the following:

∑
i
E(Li, Li) ≤

∑
i6=j E(Li, Lj), ∀i, j.

Since E(·, ·) is a sum of squared distance between two vec-
tors, thus E(Li, Li) = 0,∀i. Moreover, sum of squared dis-
tance between any two not-equal vectors is always positive,

which implies, E(·, ·) is a sub-modular function. This proof
of sub-modularity can be easily extended to long range po-
tentials without loss of generality. Further, since the sum
of sub-modular functions is a sub-modular function [16], the
energy function defined in Equation 5 is a sub-modular en-
ergy function for every pair of labels.

Statement 2. The energy function defined in Equation 5
is a semi-metric.

Proof. The energy function defined in Equation 5 is ba-
sically composed of sum of squared distance (ssd) between
two vectors, thus it would be sufficient to prove ssd as a
semi-metric. Here we show that the sum of squared distance
(ssd) has all the three necessary and sufficient properties to
be a semi-metric. We also show that ssd does not hold tri-
angular inequality always, thus is not a metric.
1.Non-negativity: ssd between two vector is always greater
than zero i.e.

ssd(Li, Lj) ≥ 0, ∀i 6= j.

2.Identity of indiscernibles: ssd between two vector is equal
to zero iff both the vectors are equal, i.e.,

ssd(Li, Lj) = 0 ⇐⇒ i = j, ∀i, j.

3.Symmetricity: ssd between two vector is a symmetric
function,i.e.

ssd(Li, Lj) = ssd(Lj , Li), ∀i, j.

4.Triangular in-equality: In order to attempt to prove this
let us first start with the Euclidean distance between two
vectors. Let dist(Li, Lj) be Euclidean distance between vec-
tors Li and Lj . Then, since Euclidean distance holds trian-
gular in-equality, we can write.

dist(Li, Lj) ≤ dist(Li, Lk) + dist(Lk, Lj), ∀k.

Squaring above equation yields,
ssd(Li, Lj) ≤ ssd(Li, Lk) + ssd(Lk, Lj)+

2 dist(Li, Lk)dist(Lk, Lj).

Recall that ssd is a square of Euclidean distance. Now
since Euclidean distances are non-negative, i.e. 2 dist(Li, Lk)
dist(Lk, Lj) ≥ 0, in other words we can always find Li, Lj
and Lk such that,



ssd(Li, Lj) ≥ ssd(Li, Lk) + ssd(Lk, Lj).

Thus, ssd between two vector does not hold the triangular
in-equality. In other words, ssd is not a metric.

From above arguments, we prove that the energy function
defined in equation 5 is a semi-metric.

The proof of sub-modularity and semi-metricity of the
energy functions also guarantees that popular move mak-
ing algorithm α-β swap can be efficiently used to find the
global minima of this energy with a constant approxima-
tion [2]. However, the study of various energy minimization
techniques is beyond the scope of this work. Reader is en-
couraged to see [2] for details of the move making algorithms.

5. EXPERIMENTS AND RESULTS
In this section, we present a detailed evaluation of our

method on a large collection of images captured from In-
dian heritage sites. To show the generality of the method,
we also include few synthetic images and natural images in
our test datasets. Given an image and user provided mask,
our problem is to complete the masked region in a way that
is visually plausible to observer. We evaluate various com-
ponents of our approach to justify our choices. We compare
our method with the well known exemplar based method [4].

The dataset for our experiments comprises of a large va-
riety of images of Indian Heritage sites including Hampi,
Konark, Golkonda Fort etc. We take 70 images of resolu-
tions varying from 350 × 250 to 640× 480.

Approximate Nearest Neighbour.
In the process of repetition offset computation, we use

Approximate Nearest Neighbour1 technique in order to find
the most similar patches. Using ANN, we are able to bring
down the processing time significantly. For a resolution of
100 × 100, a brute force method takes around 2 minutes
to process the entire image and generate the offsets. With
ANN, the time is reduced to 0.1 seconds. In order to make
the process faster, we scale the image by a factor of 0.5 and
then process for offset generation. The threshold radius (θ)
is set to 1/15th of the maximum of the image width and
height. We club a group of offsets if their mutual distance
is less than or equal to 1. C = 10 most frequent offsets are
chosen for our experiments.

Inference.
In our experiments, the patch size is set dynamically as

per the image resolution and aspect ratio with the minimum
dimension of 4× 4. For all the examples, the belief thresh-
olds for pruning and confidence is set to −2ssd0 and −ssd0
respectively, where −ssd0 represents a predefined mediocre
ssd between the patches. We use independent implementa-
tion of Priority-BP [10] for inference.

Figure 7 shows the results of object removal using our
method. In the first row, hand and head of the person is
successfully removed. In second row, we show an image from
Golkonda where the signboard is removed with a minute de-
fect. On the other hand, greedy algorithm like [4] clearly
fails in removing these objects. We demonstrate the per-
formance of proposed method in ruined wall reconstruction
in Figure 5. The purposed method which models repeating

1http://www.cs.umd.edu/~mount/ANN/

patterns via long range potentials clearly shows superiority
over exemplar based inpainting for this task. Apart from
object removal and ruined wall reconstruction we also use
our method for an interesting application known as back-
ground replacement. The results of background replacement
is shown in Figure 5. In this example the background of the
Taj Mahal is replaced by a natural scene from a different
image. These promising results can be applicable in show-
casing heritage images in many visually attractive ways.

We also study the importance of long range potentials.
Introduction of long range potentials not only yields us a
better energy function to minimize, but one can also see no-
ticeable difference in many visual results. We show a couple
of them in Figure 5.

The current algorithm is not designed to capture repeat-
ing patterns having a rotation relationship and hence the
proposed method fails in these cases, as shown in Figure 5.

Reader is encouraged to refer our supplementary material
for additional results and comparisons.

6. CONCLUSIONS
In this work we address the problem of image completion.

The image completion problem is formulated in a princi-
pled framework. We model the repeating patterns inher-
ently present in images using long range potentials and solve
the problem in non-local MRF framework. We prove that
the proposed MRF energy is sub-modular and semi-metric.
Experimental results on a wide collection of images show
that we clearly outperform popular technique like exemplar
based inpainting [4].
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by the user. (b) A natural scene image taken as source region S for image completion. (c) The background
of the Taj Mahal is replaced by natural scene by the proposed method.
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Figure 11: Failure case. (a) The original image with selected mask. (b) Output of exemplar based approach
(c) Output of proposed approach. The current algorithm does not take care of patterns having a rotation
relationship and hence fails for the above case.
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