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Abstract—Frequent Itemset Mining (FISM) attempts to find
large and frequent itemsets in bag-of-items data such as
retail market baskets. Such data has two properties that
are not naturally addressed by FISM: (i) a market basket
might contain items from more than one customer intent
(mixture property) and (ii) only a subset of items related to a
customer intent are present in most market baskets (projection
property). We propose a simple and robust framework called
LOGICAL ITEMSET MINING (LISM) that treats each market
basket as a mixture-of, projections-of, latent customer intents.
LISM attempts to discover logical itemsets from such bag-
of-items data. Each logical itemset can be interpreted as a
latent customer intent in retail or semantic concept in text
tagsets. While the mixture and projection properties are easy
to appreciate in retail domain, they are present in almost all
types of bag-of-items data. Through experiments on two large
datasets, we demonstrate the quality, novelty, and actionability
of logical itemsets discovered by the simple, scalable, and
aggressively noise-robust LISM framework. We conclude that
while FISM discovers a large number of noisy, observed, and
frequent itemsets, LISM discovers a small number of high
quality, latent logical itemsets.

Keywords-Frequent Itemset Mining, Market basket analysis,
Indirect and Rare Itemsets, Semantically Associated Itemsets,
Apriori Algorithm.

I. INTRODUCTION

Bag-of-items data, such as market baskets in retail or
tagsets in text, is growing at a tremendous rate in many
domains. A retail market basket comprises of products
purchased by a customer in a store visit. A tagset comprises
of a set of keywords describing an object (e.g. YouTube
video, Flickr image, or a movie, etc.). Bag-of-items data
mining attempts to discover novel patterns, create actionable
insights, engineer predictive features, and drive intelligent
decisions from such data.

More than a decade ago, Frequent Itemset Mining
(FISM) [1] powered by the Apriori algorithm [2] became
the standard for finding large and frequent itemsets in
bag-of-items data. As the vocabulary and data size grew,
scaling the original Apriori algorithm became the primary
focus of research. This lead to a number of innovations
in scalable data structures and algorithms, some of which
are highlighted in Section II-A. Several other paradigms
such as rare itemset mining [15], [14], indirect association
mining [10], etc, emerged to address limitations of, and

expand applications of the original FISM framework.
A common observation in traditional (direct) FISM is that

it generates a very large number of noisy itemsets of which
very few are really useful, novel, or actionable. In case of
indirect association mining, where (potentially noisy) direct
links are used to induce indirect associations, there is always
a danger that the noise gets exaggerated and spurious indirect
associations get created.

Figure 1. A hypothetical market basket (solid black circle) composed
of items from two logical itemsets (red dotted circles), representing latent
customer intentions.

In this paper, we first explore the underlying nature of the
bag-of-items data to explain the inability of FISM to reduce
noise and generate more useful itemsets. We then develop
an alternate itemset mining framework that addresses the
subtle nuances of such data more naturally than FISM does.
We start with the following definitions, observations and
assumptions1:
• Define Logical Itemset as a set of items that completes

a customer intent in retail domain or semantic concept
in a text or vision domain.

• These logical itemsets are latent in the data and the
goal of LISM is to discover them in a completely
unsupervised fashion.

• The observed bag-of-items data may be best described
as a mixture-of, projections-of, latent logical item-

1This looks similar to, but is not exactly the same as, the topic-model
argument that forms the basis of Latent Dirichlet Allocation [24] in text
mining.



sets, i.e. it has two fundamental properties: the mixture
property and the projection property.

– Mixture property: In retail, each market basket
might contain more than one customer intent.
Similarly, in text domain, each tagset might contain
more than one semantic concept.

– Projection property: In retail, each market basket
contains only a subset of products associated with
a customer intent. Similarly, in text domain, each
tagset contains only a subset of keywords associ-
ated with a semantic concept. In other words, a
complete logical itemset is rarely present in its
entirety in the bag-of-items data.

Figure 1 shows a hypothetical example of the mixture-
of, projections-of, latent customer intents in retail. Consider
a market basket with four products (shown in solid black
circle). These products come from two different customer
intents, each represented by a logical group of products
(shown in red dotted circles). In other words, (a) the market
basket is composed of products from more than one cus-
tomer intent (mixture property) and, (b) the market basket
does not contain all products in either of the two intents
(projection property). It only contains a subset of products
associated with each intent. This could happen for various
reasons: the customer already has the other items in those
intents, she might purchase the remaining items in the intents
elsewhere or at some other time, or she might not even be
aware that the other items complete her intents, etc.

The noise due to the mixture property and the incomplete-
ness due to the projection property make it challenging to
discover the latent logical itemsets from bag-of-items data.
A complete logical itemset will have a very low support as it
hardly occurs in the data - thanks to the projection property.
Also, each frequent itemset discovered by the traditional
FISM framework might have sufficient noise in it - thanks
to the mixture property. Finally, also note that some logical
items might occur more rarely in the data than others. In
fact, in some cases, it might be more useful to find rare
itemsets [15] rather than frequent itemsets.

It should be fairly obvious from this discussion as to why
frequent itemset framework is not a natural framework for
discovering logical itemsets and why we need a radically
different framework for finding logical itemsets in such data.
It should also be obvious that unless we effectively deal with
the mixture-of-intents noise, in the bag-of-items data, any
indirect association mining will suffer from the propagation
of this noise to higher order associations.

One approach to find logical itemsets could be the tra-
ditional topic models such as LDA [24]. But they may not
be directly applicable here for several reasons: (i) LDA is
more suitable when a typical bag-of-items is much larger
as in bag-of-words in text or bag-of-visual-words in images,
(ii) LDA depends on the weight (e.g. term frequency of a

term in the document) of each item in the bag but bag-
of-items inherently do not have such weights - an item is
either present or not present in the bag. (iii) The scaling and
convergence properties of LDA will make it prohibitively
costly to apply on such thin data, where the number of bags
is typically much larger than the size of each bag, and (iv)
finally, LDA requires us to specify apriori the number of
concepts (or latent customer intents) to discover - something
that is already hard in the text domain and will be even
harder in the retail domain.

In this paper, we propose a simple and intuitive framework
called the LOGICAL ITEMSET MINING (LISM) to find all
the logical itemsets in bag-of-items data in an unsupervised
and scalable fashion. This addresses the mixture and projec-
tion properties highlighted above in a novel fashion and is
able to discover a relatively small number of very precise
and high quality logical itemsets even if they have a low (or
even zero) support in the data. In contrast, FISM typically
discovers a large number of noisy itemsets. We first describe
some of the prior work in FISM and indirect associations
mining in Section II. Then we describe the LISM framework
in detail in Section III. Finally we demonstrate through both
subjective and objective empirical evidence the quality of
results obtained by the LISM framework on two large public
datasets, IMDB and FLICKR, described in Section IV-A.

(a) IMDB (b) Flickr

Figure 2. Distribution of Maximal Frequent Itemsets w.r.t. Size and
Threshold for IMDB and Flickr dataset. As the itemset size increases or
the support threshold decreases, the number of frequent itemsets generated
grows exponentially.

II. BACKGROUND

A. Frequent Itemset Mining

The FISM framework was originally developed for market
basket analysis in retail domain where frequent itemsets can
be used to improve store and catalogue layouts, increase
cross sell and up sell, and do product bundling. FISM re-
ceived a lot of attention since the introduction of association
rule mining by Agrawal [1] in 1993. It really took off with
the introduction of the elegant Apriori algorithm [2] that
addressed the core problem of combinatorial explosion in
itemsets by using the anti-monotonicity property of itemsets.
According to this property: If an itemset is not frequent, any
of its supersets cannot be frequent. Figure 2 demonstrates the
effect of support threshold and itemset size on the number



of itemsets discovered by FISM. FISM typically generates
a very large number of maximal frequent itemsets, most of
which tend to be noisy or meaningless.

Over the recent years, with the increase in itemset data,
many efficient algorithms based on hash-based techniques,
partitioning, sampling and using vertical data formats have
emerged. Some of the notable ones are: FP-Growth [3], Eclat
algorithm [4], Apriori by Borgelt [6], kDCI algorithm [7],
DCI algorithm [7], and lcm [8]. Primary focus of most of
these algorithms is to make FISM framework more scalable,
practical, and efficient.

B. Indirect and Rare Association Rule Mining

FISM can only discover direct relationships observed in
the data. However, deeper insights can come from indirect
associations [9], [10], [11], [12], [13]. Recently, Liu et
al. [18] suggested a hypergraph-based method for discover-
ing semantically associated itemsets. In principle, our logical
itemset approach is similar to their work at a high level but
is substantially different in details. For example, we also
restrict our model to pair-wise relationships only, but we use
a different class of much simpler and noise-robust measures
of associations. Our framework is much simpler and intuitive
compared to [18]. In spite of the strong theory, the results
presented in [18] have reasonable amount of noise that we
believe is due to the mixture-of-intentions noise in the data.
Our LISM framework, on the other hand, generates very
high quality results both for high and low frequency itemsets.

While most of the focus in traditional data mining is on
frequent itemsets, there is a large body of work on rare
itemset mining as well. Finding rare itemsets are especially
useful in biology and medical domains, where rare events
are more important than common ones or in applications
such as outlier detection, belief contradiction, and exception
finding, etc. Szathmary [15], [14] present the first algorithm
designed specifically for rare itemset mining. Haglin [16]
designed an algorithm for finding minimal infrequent item-
sets based on SUDA2 algorithm for finding minimal unique
itemsets [17].

Logical itemset mining is frequency agnostic. It discovers
rare itemsets as well as common itemsets as long as they
are logical. In Section IV-B, we show examples of some of
the logical itemsets that have been discovered by LISM on
both the FLICKR and IMDB datasets.

III. LOGICAL ITEMSET MINING

As mentioned in Section I, discovering logical itemsets
in bag-of-items data has two core problems. First, the noise
due to the mixture-of-intentions property and second, the
incompleteness due to the projection property. The LOGICAL
ITEMSET MINING framework, described in detail in this sec-
tion, addresses both these problems and attempts to discover

many logical itemsets in the data2. LISM framework has four
stages:

1) Counting stage where co-occurrence counts between
all pairs of items is computed in one pass through the
data.3

2) Consistency stage where these co-occurrence counts
are converted to consistency values, quantifying the
statistical significance or information content of seeing
each pair of items together vs. random chance.

3) Denoising stage where the co-occurrence consisten-
cies are cleaned further to address the mixture-of-
intents property.

4) Discovery stage where logical itemsets in the form
of cliques are discovered in the co-occurrence consis-
tency graph by addressing the projection property.

Before we describe these four stages in detail, some notation:
Let V = {vm}Mm=1 denote the Vocabulary of all unique
items in the data (e.g. all products sold by a retailer, all
keywords in the tagset corpus, etc.). Let X denote the bag-
of-items data with N data points:

X =

{
x(n) =

{
x
(n)
`

}Ln

`=1
⊂ V

}N
n=1

, (1)

were Ln is the size of the nth bag, x(n).

A. Stage-1: LISM-Counting

Three types of statistics are counted in a single data pass:
1) Co-occurrence counts, ψ (α, β) = ψ (β, α), for every

pair of items (α, β) ∈ V×V is defined as the number
of bags in which both items “co-occur”:

ψ (α, β) =

N∑
n=1

δ
(
α ∈ x(n)

)
δ
(
β ∈ x(n)

)
, (2)

(where δ(bool) is a Dirac delta function which is 1
if bool is true and 0 otherwise). Co-occurrence counts
below a threshold θcooc are set to zero. The resulting
M×M (M = |V| = vocabulary size) Co-occurrence
counts matrix, Ψ = [ψ(α, β)] is sparse and symmetric.
The time complexity of computing this matrix in
one pass through the data is O

(∑N
n=1

(
Ln

2

))
. The

space complexity of storing this matrix isO(M2λcooc)
where λcooc is the sparsity factor of the co-occurrence
counts matrix. Note that the threshold θcooc might be
used to control the degree of noise in the counting.

2) Marginal counts, ψ (α) is defined as the number of
pairs in which the item α ∈ V occurred with some
other item in the data. This is obtained by adding
each row of the full co-occurrence counts matrix:

ψ(α) =
∑

β∈V,α 6=β

ψ(α, β), (3)

2Discovering all logical itemsets is an NP-hard problem.
3This stage is akin to finding all frequent itemsets of size 2.



3) Total Counts, ψ0, defined as the total number of pairs
in which some item co-occurred with some other item
in the transaction data. This is obtained by adding all
the elements in the co-occurrence count matrix4.

ψ0 =
1

2

∑
α∈V

ψ(α) =
1

2

∑
α∈V

∑
β∈V

ψ(α, β) (4)

These three counts are then converted into co-occurrence
and marginal probabilities5:

P (α, β) =
ψ(α, β)

ψ0
, P (α) =

ψ(α)

ψ0
(5)

B. Stage 2: LISM-Consistency

FISM depends on the support i.e. frequency as a key
statistic on itemsets. In fact, the pair-wise co-occurrence
counting in Equation (2) in LISM is the same as finding
all frequent itemsets of size 2 with a support threshold of
θcooc. Consider the two examples where using co-occurrence
counts does not make sense:
• High Co-occurrence Noise Consider a pair of common

products such as DVD and Shoes sold by a retailer.
Since both are high volume by themselves, they might
co-occur in a large number of market baskets. This
is an artifact of mixture-of common intents. We need
a mechanism to ignore this high co-occurrence count.
Unfortunately, if we raise the support thresholds too
high, we might loose valid co-occurrences with lower
counts.

• Low Co-occurrence Signal Consider a pair of
rare products such as home-theatre-system
and high-definition-TV. While the joint co-
occurrence count for this pair of products might be
low, the “confidence” (using the FISM terminology)
- measured by the conditional probability of seeing
one product given the other - might still be high. To
keep such low frequency co-occurrences, the support
threshold will have to be reduced substantially, which
in turn will result in addition of lot of spurious product
pairs.

Thus, we need a systematic mechanism to remove deceptive
high co-occurrences that are an artifact of mixture-of-intents
noise, while at the same time preserve the important low co-
occurrence counts that contain important logical connections
between pairs of rare products.

The first fundamental difference between FISM and LISM
is that instead of using the joint probability as it is, LISM
normalizes these co-occurrence counts by the priors of the
two items. This not only addresses the noise due to mixture-
of-intents (the deceptive high co-occurrence counts), but will
also preserve the rare but logical co-occurrence between

4Note that we divide this sum by 2 due to double counting in the
symmetrical matrix.

5Laplacian smoothing might be used to compute these probabilities

products (important low co-occurrence counts). In LISM,
we call this statistical significance measure as the Co-
occurrence Consistency defined as the degree with which
the actual co-occurrence of a pair of items compares with
random chance. In other words, if the actual joint probabil-
ity, P (α, β), is more compared to the random chance, (e.g.
P (α)P (β)) then the two items are said to have co-occurred
with high consistency. There are a number of measures that
can be used here. We list a few candidates here. See [25] for
a more exhaustive list of measures that can be used here.
• Cosine

φcsn(α, β) =
P (α, β)√
P (α)P (β)

∈ [0, 1] (6)

• Jaccard Coefficient

φjcd(α, β) =
P (α, β)

P (α) + P (β)− P (α, β)
∈ [0, 1] (7)

• Point-wise Mutual Information

φpmi(α, β) = max

{
0, log

(
P (α, β)

P (α)P (β)

)}
∈ [0,∞]

(8)
• Normalized Point-wise Mutual Information

φnmi(α, β) =
φpmi(α, β)

− logP (α, β)
∈ [0, 1] (9)

We use normalized point-wise mutual information in this
paper, as it is bounded and addresses a well known problem
with point-wise mutual information, that PMI exaggerates
rare items/pairs more. A threshold θconsy is used to remove
all product pairs whose consistency is below this threshold.
The resulting co-occurrence consistency matrix is used to
find logical itemsets, but before that there is scope to reduce
even more noise in this matrix.

C. Stage-3: LISM-Denoise

Some mixture-of-intents noise was removed by converting
co-occurrence counts to co-occurrence consistencies. This,
however, does not completely eliminate the entire noise from
the consistency matrix. We need to do further denoising
using the following intuition. In the first pass through the
data, all pairs of items in a market basket are counted as
there is insufficient knowledge to know whether a pair of
items is noise (e.g. mouse, hammer, in example shown
in Figure 1) due to mixture-of-intents property or signal
(e.g. mouse, speakers) i.e. they really belong to the
same customer intent. After computing the co-occurrence
consistencies after the first pass, however, some knowledge
is created, as to whether a particular product pair in a
bag is signal or noise. The assumption, we are making
is that in each iteration, in spite of the mixture-of-intents
noise, product pairs that are likely to belong to an eventual
logical itemset will remain connected. In fact, we observe,



Tag Before Denoising After Denoising
bride 0.3257 0.5750

reception 0.3720 0.5728
marriage 0.3195 0.5658

cake 0.1699 0.3629
love 0.0148 0.2449

honeymoon 0.0183 0.2262
jason 0.2081 0
chris 0.1461 0

Table I
EFFECT OF DENOISING ON THE TAG “wedding” IN FLICKR DATASET.

as expected, that the consistency strength between within-
logical-itemset pairs grows and consistency strength between
across-logical-itemset-pairs shrinks as seen in Table I.

The iterative denoising algorithm uses the co-occurrence
consistencies obtained in the previous iteration to remove
noisy co-occurrence counts in the next iteration, recom-
pute the margin and total from these cleaned up counts
and then, compute the consistencies in the next iteration.
Let ψ(t)(α, β) and φ(t)(α, β) denote co-occurrence counts
and co-occurrence consistencies in the tth iteration of the
denoising procedure. Then, denoising, using the following
update ∀(α, β) ∈ V ×V: ψ(0)(α, β) > θcooc,

ψ(t+1)(α, β)← ψ(0)(α, β)δ(φ(t)(α, β) > θconsy) (10)

The margin and total counts are updated in each iteration
as well, using Equations (3) and (4). Note that, we don’t
need to make another pass through the data, but just reuse
the co-occurrence counts computed in the first iteration. As
denoising happens, the overall quality of the resulting con-
sistency matrix improves. The following quality is measured
in each denoising iteration.

Q(Φ(t)) =
∑

(α,β)∈V×V

P (t)(α, β)φ(t)(α, β). (11)

Empirically, we observed that denoising converges very
quickly in two to three iterations, where convergence is mea-
sured by the fraction of co-occurrence counts that become
zero in any iteration. A significant improvement was seen
in the quality of the final logical itemsets obtained after
the denoising procedure. Table I shows how the iterative
procedure affects the consistency of tag wedding with
some other tags of FLICKR dataset. Here the consistency of
tag wedding with relevant tags dress & reception
increases significantly after the first iteration itself and
decreases to zero for irrelevant tags such as chris &
jason.

To give an idea about the final consistency matrix after
denoising, the top consistent tags associated with some
random tags are shown in Table II.

D. Stage 4: LISM-Discovery

The first three stages provide several knobs to robustly
reduce the mixture-of-intents noise in the data: (i) ignoring

Tag Most consistent tags in IMDB dataset
food lifestyle, money, restaurant, drinking, cooking
road truck, motorcycle, car, road-trip, bus

singer singing, song, dancing, dancer, musician
suicide suicide-attempt, hanging, depression, mental-illness, drowning

hospital doctor, nurse, wheelchair, ambulance, car-accident
Tag Most consistent tags in Flickr dataset
art painting, gallery, paintings, sculpture, artist

france paris, french, eiffeltower, tower, europe
island tropical, islands, newzealand, thailand, sand

animals zoo, pets, wild, cats, animal
airplane flying, airshow, fly, military, aviation

Table II
TOP 5 MOST CONSISTENT TAGS FROM THE IMDB AND FLICKR

DATASETS

.

Property FLICKR IMDB
Original data size 3,546,729 449,524

Original vocab size 656,291 120,550
Final data size 2,710,578 395,802

Original Keywords/bag 5.42 9.13
Cleaned keywords/bag 2.94 5.13

Table III
CHARACTERISTICS OF FLICKR AND IMDB DATASETS

very low frequency co-occurrence counts via the threshold
(θcooc), (ii) converting these counts into consistencies via
prior normalization (iii) ignoring low co-occurrence consis-
tencies via the threshold θcons, and (iv) iterative denoising
of co-occurrence consistency. By this time, it is expected
that:

• Intra (within) Logical Itemset Consistencies are
high: While the projection property suggests that the
entire logical itemset has a very low support, subsets of
logical itemsets will still have high consistency because
every time at least two products (tags) from the same
intent (concept) are in the same market basket (tagset),
co-occurrence consistency between them goes up.

• Inter (across) Logical Itemset Consistencies are
low: This is related to the mixture-of-intents noise
removal in the first three stages. Any noise related to
cross intention products or cross concept tags will be
removed in the first three stages.

The sparse and symmetric co-occurrence consistency graph
is thresholded and binarized such that an edge between two
items is present if their co-occurrence consistency is above
the threshold θconsy .

A LOGICAL ITEMSET, given this graph, is defined as a set
of items L = (`1, `2, ..., `k) such that each item in this set
has a high co-occurrence consistency with all other items
in this set. In order to find the largest logical itemsets, we
just have to find all maximal cliques in the binarized co-
occurrence consistency graph. The problem of finding all
maximal cliques in a graph is NP-hard with the worst case



time complexity of O(3n/3) for a graph with n vertices [20].
A large amount of improvements have been made over
classical algorithm by Bron and Kerbonsch [19] (e.g. [21])
for finding all maximal cliques.

Dharwadker [22] proposed a approximate polynomial-
time algorithm (polynomial to the number of vertices) for
finding a maximal clique in all known examples of graphs.
The algorithm stops as soon it finds a maximal clique of
fixed size k and during this process finds maximal cliques of
size < k. We used this algorithm for finding maximal cliques
of different sizes in our binarized co-occurrence consistency
graph by setting a very high value of k.

IV. EXPERIMENTS

A. Datasets Used

Typical benchmark datasets used in FISM are located at
the FIMI repository [5]6. In these datasets, the vocabulary is
obfuscated as the focus is mostly on scale improvements and
not quality improvements. Since our focus is primarily on
quality improvements and to demonstrate the logical item-
sets discovered, we worked with two datasets, FLICKR [23] 7

tagsets and IMDB keywords8, where the item dictionary is
available and the number of data points is large. Due to the
large data size and memory and computational limitations,
the following preprocessing was applied to both datasets:
• Compute frequency of all items (keywords in this case),
• Keep only top 1000 most frequent keywords,
• Remove low freq. keywords from each tagset
• Remove all bags with less than two keywords9

Table III shows the Original and Cleaned data statistics.

B. Logical Itemsets Discovered

Our main result is the quality of the Logical itemsets
discovered. Table VI and IV contain examples of logical
itemsets found in the FLICKR and IMDB datasets respec-
tively. These tables are sorted first in descending order
of itemset size and for each size in descending order of
frequency in the data. There are three key properties to notice
about these logical itemsets discovered:
• Large sizes: As shown in figure 2, the number of

frequent itemsets generated grows exponentially with
itemset size. In contrast, large (> size 5) logical item-
sets are easily found in the data. Since we are using a
clique finding algorithm, the main complexity comes
from the NP-hard problem of finding all maximal
cliques in the graph. Various parameters such as the
count and consistency thresholds might be used to
control the sparsity of the co-occurrence consistency
graph and therefore the complexity, noise, and quality

6http://fimi.ua.ac.be/
7http://www.flickr.com
8http://www.imdb.com
9since single items don’t contribute to pairwise co-occurrences

Size Freq. Logical Itemset

7 18
family-relationships father-daughter-relationship
mother-daughter-relationship brother-sister-relationship
teenage-girl sister-sister-relationship girl

7 11 husband-wife-relationship marriage infidelity adultery
extramarital-affair unfaithfulness affair

6 4331 conundrum vocabulary number-game math-whiz word-
smith oxford-english-dictionary

6 83 photographer judge competition model photography
fashion

6 37
family-relationships father-son-relationship mother-son-
relationship brother-brother-relationship brother-sister-
relationship dysfunctional-family

6 26 lawyer judge trial courtroom witness court

5 88 murder police detective police-detective murder-
investigation

5 25 robbery thief theft bank-robbery bank
5 18 police policeman police-officer police-station police-car
4 685 murder killer killing murderer
4 67 blood gore zombie splatter
4 43 seduction obsession voyeurism voyeur
4 24 spy espionage secret-agent british
4 18 brother mother father sister
3 902 deception duplicity deceit
3 309 blood knife stabbing
3 123 gun shooting criminal
3 79 superhero mask based-on-comic-book
3 36 rifle shooting revolution
2 1116 martial-arts kung-fu

Table IV
EXAMPLES OF LOGICAL ITEMSETS DISCOVERED IN IMDB DATASET

Size Freq. Logical Itemset
10 18 airplane airport plane flying flight aircraft air jet ..
7 35 music rock concert show band live guitar
7 0 animals africa wildlife lion rhino safari elephant
6 39 baby kids children boy child kid
6 35 beach sea ocean sand surf waves
6 24 cat cats cute pet kitten kitty
6 13 nyc newyork newyorkcity manhattan ny brooklyn
5 15 bike race motorcycle racing motorbike
5 1 fire police ambulance rescue emergency
4 7 light reflection window glass
4 6 mountain hiking hike trail

Table V
RARE LOGICAL ITEMSETS DISCOVERED IN FLICKR DATASET

of the logical itemsets obtained. On these datasets,
FISM took prohibitively large number of resources
(ram, cpu) that for sizes above 5, we were not even
able to generate maximal frequent itemsets on these
two datasets.

• Meaningful Logical Itemsets: LISM is developed
with the promise of noise-robustness and high quality
results. Note that almost all the logical itemsets discov-
ered in both datasets are quite meaningful and have very
little noise. Compared to the results obtained in [18],
the results obtained here, on even much larger datasets,
are significantly better.



• Low frequencies: Unlike FISM that looks for high
frequency itemsets, LISM is frequency agnostic. Once
the co-occurrence consistency graph is created, the
logical itemsets are discovered directly from the graph.
Statistics on these logical itemsets discovered is com-
puted in the second pass through the data. Tables VII
and V show examples of rare itemsets discovered by
LISM in IMDB and FLICKR datasets respectively.

Thus overall, we conclude that LISM generates a small
number of high quality, latent itemsets while FISM pro-
duces a very large number of noisy, observed itemsets from
the data. This is possible because fundamentally, LISM
decouples the observed noisy bag-of-items data from
the latent logical itemsets via a highly noise free and
scalable co-occurrence consistency graph. This unique and
novel property of LISM makes it highly effective in dealing
with the bag-of-items data compared to the FISM and other
frequency based frameworks.

Size Freq. Logical Itemsets
7 194 girl woman model beautiful sexy beauty pretty
6 877 racing sport performance team 911 motorsport
5 1821 rescue shelter found hurricanekatrina nola
5 164 art street graffiti streetart stencil
5 157 blue red green yellow purple
5 148 tree fall autumn leaves leaf
5 85 sky sunset clouds sun sunrise
5 78 city architecture building downtown buildings
4 838 ice sports youth hockey
4 504 london england uk unitedkingdom
4 475 travel vacation islands holidays
4 469 bridge francisco golden gate
4 446 paris france tower eiffeltower
4 414 lake mountains hiking climbing
4 369 california usa sanfrancisco roadtrip
4 333 germany football soccer worldcup
4 327 nikon digital camera set
4 327 canada vancouver bc britishcolumbia
4 324 fish diving underwater scuba
4 313 snow winter ice cold
4 288 europe spain madrid espa
4 244 travel vacation trip adventure
4 229 me portrait selfportrait self
3 1609 china beijing greatwall
3 1212 germany berlin deutschland
3 563 wedding family reception
3 387 washington july fireworks
3 312 art museum history
3 213 family mom dad
3 187 art sculpture statue
3 86 street road sign

Table VI
EXAMPLES OF LOGICAL ITEMSETS DISCOVERED IN FLICKR DATASET

V. CONCLUSION

Efficient frequent itemset mining is used ubiquitously for
finding interesting and actionable insights in bag-of-items
data in a variety of domains such as retail, text, vision, bi-
ology, etc. In this paper, we propose an alternate framework

Size Freq Logical Itemset

13 0
independent-film student-film experimental women ed-
ucational human-rights asian alternative underground-
film hispanic docudrama asian-american ..

10 7
satire parody television celebrity sketch-comedy joke
actor-playing-multiple-roles comedian humour enter-
tainment

10 1
school teacher teenage-girl student teenage-boy high-
school bully classroom basketball teacher-student-
relationship

9 5 religion church christian prayer god catholic bible chris-
tianity faith

9 0 dog cat bird anthropomorphism anthropomorphic-
animal rabbit mouse pig cow

8 9 singer song singing musician piano guitar band concert
8 0 beach boat island swimming fishing sea fish ocean
8 0 boat island ship fishing sea fish ocean storm
7 4 castle king princess fairy-tale witch queen prince

7 4 interview actor behind-the-scenes film-making making-
of filmmaking director

7 3 funeral cemetery death-of-mother coffin graveyard grief
grave

7 0 nightmare guilt hallucination insanity psychiatrist para-
noia mental-illness

7 0 forest nature river mountain lake woods tree
7 0 boat nature water river fishing lake fish
6 5 alien robot future outer-space spaceship space

6 2 ghost fear nightmare hallucination supernatural-power
curse

6 0 politics corruption politician mayor election speech
6 0 children christmas girl orphan little-girl doll
6 0 computer scientist science time-travel future outer-space
6 0 maid inheritance mansion wealth butler servant
6 0 politics corruption politician mayor election speech
5 9 doctor hospital nurse ambulance heart-attack
5 5 scientist science professor laboratory experiment
5 2 reporter newspaper politician journalist scandal
5 0 artist painting obsession photography writing
5 0 ghost supernatural demon witch curse
4 7 kidnapping bound-and-gagged abduction tied-to-chair
4 2 anime student japan based-on-manga
4 1 betrayal corruption conspiracy greed

Table VII
EXAMPLES OF rare LOGICAL ITEMSETS DISCOVERED IN IMDB

DATASET

to FISM, called the Logical Itemset Mining that is simple,
scalable, and highly effective in dealing with the mixture-
of-intents-noise and projection-of-intents-incompleteness of
bag-of-items data. Results on two large bag-of-items datasets
demonstrate the high quality of logical itemsets discovered
by LISM. The LISM framework is highly noise-robust, uses
only two passes through the transaction data and stores only
sparse pair-wise statistics and is therefore, highly scalable.
It is able to discover logical itemsets, that are not obvious
in the data and is also able to generalize to novel logical
itemsets with zero support.

LISM can be improved in several ways: (i) Instead of
using binarized graph to find logical itemsets, the original
weighted co-occurrence consistency graph can be used to
find soft logical itemsets as opposed to the hard logical



itemsets, as in the current version. Further, as frequent
itemsets has been extended to indirect frequent itemsets,
similarly, it is straightforward to find higher order co-
occurrence consistencies that span across items, that don’t
have direct co-occurrences in the data. Finally, scaling and
parallelizing the maximal clique finding algorithms and
extending them to the notion of soft maximal cliques will
make LISM even more practical for larger datasets and for
a variety of application.
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