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Abstract

K-Means is a popular clustering algorithm with wide
applications in Computer Vision, Data mining, Data Visu-
alization, etc. Clustering is an important step for indexing
and searching of documents, images, video, etc. Clustering
large numbers of high-dimensional vectors is very compu-
tation intensive. In this paper, we present the design and
implementation of the K-Means clustering algorithm on the
modern GPU. All steps are performed entirely on the GPU
efficiently in our approach. We also present a load balanced
multi-node, multi-GPU implementation which can handle
up to 6 million, 128-dimensional vectors. We use efficient
memory layout for all steps to get high performance. The
GPU accelerators are now present on high-end workstations
and low-end laptops. Scalability in the number and dimen-
sionality of the vectors, the number of clusters, as well as in
the number of cores available for processing are important
for usability to different users. Our implementation scales
linearly or near-linearly with different problem parameters.
We achieve up to 2 times increase in speed compared to the
best GPU implementation for K-Means on a single GPU.
We obtain a speed up of over 170 on a single Nvidia Fermi
GPU compared to a standard sequential implementation.
We are able to execute one iteration of K-Means in 136
seconds on off-the-shelf GPUs to cluster 6 million vectors
of 128 dimensions into 4K clusters and in 2.5 seconds to
cluster 125K vectors of 128 dimensions into 2K clusters.

1. Introduction

Unsupervised clustering is a means to discover the struc-
ture inherent in a large volume of data. Applications of this
are abound in Computer Vision, Data Mining, Search, etc.
The derived clusters help in understanding and visualizing
the original data more efficiently and effectively. Many prob-
lems use large numbers of data items of high dimensionality
and large number of natural groupings or clusters. Clustering
such data is computationally very expensive. The users of
such processing are no longer limited to large institutions;
smaller institutions, research groups, and even individuals
may need similar processing. For instance, clustering could

be a first step towards organizing one’s personal collection
of photographs using computer vision based techniques. The
state of the art scene descriptors like SIFT [10] used in
computer vision are typically 128 dimensional, in case of
GIST [12] upto 580. Many times researchers are forced to
use low dimensional data due to computational limitations.
The computation needed will be heavy even for modest
photo collections. A fast, scalable, and available clustering
approach is necessary to solve this problem.

We present the design and implementation of a fast and
scalable K-Means clustering algorithm in this paper. K-
Means is the most commonly used clustering technique
[11], with a sequential time complexity of O(nkd+1 log n),
where n is the input size, d the dimensionality, and k the
number of clusters. We attempt to bring its running time to
a practical range by exploiting all computing resources. We
concentrate on the highly available multi- and many-core
accelerator architectures for our implementation to increase
the reach of the approach. Accelerators are common today
and are likely to remain so in the future. Graphics Processing
Units (GPUs) are now part of most PCs and laptops. While
the specific hardware available may change over time, their
availability is likely to remain. Our K-Means algorithm is
implemented completely on the GPU. The closest center
finding and the mean evaluation are done efficiently on
the GPU. We also extend our approach to a multi-GPU
framework. GPUs provide practical parallel programming
to a large number of users. Our objective is to provide a
solution that scales well with all aspects of the problem
size and the number of available cores. We show significant
performance improvement even on GPUs found on laptops.

Our K-Means implementation exploits the parallelism
within each data item as well as among the different data
items. This is essential to utilize the hardware resources
under the massively multithreaded model. We perform label
assignment and mean evaluation completely on GPU. The
data transfer between CPU and GPU is minimized as a
result. We use the K-Means++ [1] algorithm for generating
initial cluster centers for better clustering. Our approach
performs better than prior GPU implementations. Implemen-
tation on different generations of GPUs was done to study
their respective architectural features. We achieve perfor-



mance nearly 170 times faster than a standard single-core
CPU implementation on the GPU. We scale our algorithm
for large n, using multi-GPU approach. We achieve linear
scaling in the running time in the number of vectors and
the dimensionality, and superlinear scaling in the number of
clusters. The running time scales linearly with number of
data objects, feature space and clusters chosen.

2. Related Work

K-Means has been worked on by many researchers.
Pelleg and Moore [16] employed kd-trees to improve the
K-Means algorithm. Weber and Zezula [18] found that
bounding trees do not scale well with increasing dimensions.
Elkan [5] used triangle inequality to reduce unnecessary
distance calculations based on distance from the previous
centers and maintaining a look up table between old and
new centers. Although there was a reduction in distance
evaluations by a factor of nearly 10, for high values of k the
book keeping turned out to be a dominant expense. There
have been attempts to run K-Means on the GPU. Hall and
Hart [6] in their implementation on NVIDIA’s GeForceFX
5900 Ultra used the fragment shader to fetch input data from
texture memory and cluster center from the constant memory
for metric evaluation. Their approach was constrained in
dimensionality due to texture memory limitation.

Che et al. [4] and Zechner et al. [21] perform some steps
of K-means on the GPU, where every thread is associated
with a data object sequentially evaluating its label but the
evaluation of new means was done entirely on CPU. Hong-
Tao et al. [8] in their approach further moved the new center
evaluation partially on the GPU, achieving a speedup of 70
on NVIDIA GeForce 8800 GTX for small clusters but the
rearrangement of input vectors as per labels was done on
the CPU. In GPUMiner Wenbin et al. [19] discussed two
approaches for small and large input data due to the limited
device memory on GPU and streamed data whenever size
exceeded and achieved a speed up of 50-88 on GTX 280.
Its drawback is poor memory utilization and high space
requirements for large k. HPKmeans by Wu et al. [20]
considered GPU memory hierarchy to utilize the bandwidth
efficiently. The used constant and texture memory for their
caches and shared memory for frequently accessed data.
Li et al. [9] moved the mean evaluation on GPU using a
divide and rule approach. The input data is divided into n/M
chunks where M is a multiple of number of SM’s. Partial
centroids are evaluated on GPU iteratively and eventually
sent to CPU for final processing. Their approach would not
be beneficial for large n. Zhang et al. [22] used a document
clustering technique MSF (Multi Species Flocking) based
on neighbour flock mates within a certain range by defining
force components (Separation, Alignment and Cohesion)
which is not sensitive to initial state. But the complexity of

Figure 1. The Fermi Architecture

the algorithm is quadratic and also requires message passing
amongst nodes.

The prior GPU approaches exploited the parallelism of
the multiple data items only. Data objects were independent
and were assigned to a single thread. The evaluation on
each dimension can also be parallelized, which we exploit.
We propose an implementation on the multiple GPUs with
multiple threads computing the label for a single data object.
The new mean evaluation is also entirely performed on GPU
using fast scalable sort [15] and rearranging of input vectors.
We use the transpose primitive to increase data coherence
and achieve good performance.

3. GPU Architecture

In this section, we describe NVIDIA’s GPU architectures
briefly. The GPU has a manycore architecture, which is
being used on applications that require high computational
power. NVIDIA’s Fermi architecture [14] has 16 Streaming
Multiprocessors (SM) as shown in Figure 1 with each SM
having 32 cores, so on the whole it has 512 CUDA [13]
cores. Every core in an SM executes the same instruction.
The function calls are made in the form of kernels which
unleash multiple threads to perform a task in a Single
Instruction Multiple Data (SIMD) fashion.

Every SM has registers divided equally among its threads.
Each thread has a private local memory. The off-chip global
device memory per card can be accessed by every thread in



the grid but consumes hundred of clock cycles for a single
fetch. The performance of applications requiring frequent ac-
cess of some data can exploit the shared memory. The Fermi
architecture has a single unified memory request path for
loads and stores using the L1 cache per SM multiprocessor
and unified L2 cache that services all operations. L1 cache
is configurable to support both shared memory and caching
of local and global memory operations. The 64 KB memory
can be configured as either 48 KB of Shared memory with
16 KB of L1 cache or vice-versa. By configuring 48 KB of
shared memory, programs that make extensive use of shared
memory performed up to three times faster. The lifetime of
this memory is same as that of a block. Fermi features a 768
KB unified L2 cache that services all load, store, and texture
requests. The L2 provides efficient, high speed data sharing
across the GPU. Apart from the global device memory the
GPU has Constant and Texture memory too. The salient
features of Fermi architecture are double precision, faster
context switching, faster atomic operations, and multiple
kernel execution.

4. K-Means Algorithm

K-Means is an unsupervised clustering algorithm for
vectors proposed by MacQueen [11]. Given a set X ⊂ Rd of
n points in a d-dimensional space and an integer k ≥ 2, the
problem is to partition X into k disjoint nonempty subsets
(S1, S2.., Sk) along with a set C = c1, ..., ck of correspond-
ing centers such that the vectors in Si is closest to the center
ci than any other cj for a pre-defined distance measure.
The sequential K-Means algorithm iteratively (Algorithm 1)
calculates the distance between every input vector to each
of the current centers and assigns it a label i between 1 and
k based on the center ci it is nearest to. In a second step,
each center ci is updated to the mean of all vectors with
the label i. This 2-step process is repeated until no vector
changes the label or another convergence condition is met.
The computations incurred per iteration may be given by
O(nkd) as the distance from each input point to each center
needs to be calculated.

Algorithm 1 K-Means Algorithm
1: Input {xi|i = 1...n} ⊂ Rd and a set C = c1, ..., ck of

initial centers
2: Membership evaluation : Assign each vector xi to

cluster cj with a label j for which the distance(xi,cj) is
minimum among the current cluster centers.

3: Mean evaluation : Evaluate new centers c′j as the mean
of all vectors xi that was assigned the label j.

4: Check condition for convergence, if true then conver-
gence is achieved else go back to step 1 with the set of
new centers C ′

The first task is to select the initial centers in order to
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Figure 2. n input vectors of d dimensions are stored in
row major format in the GPU global memory.

cluster the input data. They could be selected randomly from
the set of points. This could result in large number of iter-
ations before convergence. We use the K-Means++ scheme
to generate the initial centers which are spread out [1]. In
K-Means++, the first center is selected at random from the
input vectors. The subsequent ones are selected based on the
probability of distance D(xi)

2 from the previous selected
center. K-Means++ is computationally more expensive but
reduces the overall computation time in practice by lowering
the number of iterations.

4.1. Single GPU Implementation

The implementation is divided into two parts: membership
evaluation and mean evaluation. We have extended the
parallelism to the computation done on the d components
of each input and center vector. The input vectors and
cluster centers are stored in row major format to enable fast
coalesced reading of the whole vector using d threads.

4.1.1. Data Layout. The n input vectors are arranged in a
row major format as shown in Figure 2. This provides per-
fectly coherent memory accesses as consecutive components
of each vector is worked on by consecutive CUDA threads.

4.1.2. Membership Evaluation. To generate the member-
ship labels, we need to evaluate the distance of each input
vector with all cluster centers. We process q input vectors in
each CUDA block as shown in Figure 3. The membership
kernel processes these using a q×d geometry for the block.
The total number of blocks is p = n/q. The minimum
square distance and the corresponding cluster number is
stored for each of the q vectors in the shared memory of the
block. Component-wise distances are evaluated in parallel
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Figure 3. Layout of the CUDA blocks. Each block
evaluates new labels for q input vectors and writes to
membership array

and stored in the shared memory. The distance for a pair of
vector and cluster center is evaluated using a log reduction
of these values. This is compared with the current minimum
distance for updation if necessary.

The distance and membership evaluation are performed
using Algorithm 2. We ignore the square root function
for distance comparison to reduce computation. We store
the following onto the shared memory: s data holds the
input vectors, s dist stores square of the differences for
every dimension, min y and membershipy store the global
minimum distance and label for vector id y. The calculations
are done differently for the current and earlier generation
of GPUs. The syncThreads call ensures that threads in a
block which have completed the task wait for other threads
to finish the task before executing the next instruction.
On earlier generation GPUs, shared memory per SM was
restricted to 16 KB. The centers were accessed via texture
memory and l of them were loaded first onto the shared
memory. The ql distance evaluations were done by the
kernel then. The current generation GPUs (Fermi) have
an L2 cache and thrice as much as shared memory. This
helps in dedicating the shared memory for input vectors
and distance evaluations. We load the cluster centers directly
from the global memory. The L2 cache help us achieve good
performance as all blocks access the same set of centers. We
observed that the performance was good for 1500 centers
of 128 dimensional vectors. The performance deteriorated
sharply when the number of centers were increased. This
is because L2 cache exceeded its limit and relied on global
memory for accessing the additional centers. So in GTX
480 we send centers in batches of approximately 1500
making efficient use of L2 cache. It is, however, important
to select the optimum block dimension, number of vectors
processed per block, shared memory utilization on a per

block basis, etc., so that the GPU is efficiently utilized. We
tried varying these above mentioned parameters to find an
optimal estimate which gives us high performance.

Algorithm 2 Membership Evaluation
Input: I Data, Centers
Output: Membership
ti ← Thread Id in a block
dim← Vector dimension
distyz ← Distance between vector y and center z
miny ← Minimum distance of vector y from a center
s distyz ← Distance components

1: for y = 1 to n in parallel do
2: membership y, s data y[dim]
3: s datay[]← I Datay[]
4: for z = 1 to k clusters do
5: s distyz[ti] = (s datay[ti]− centerz[ti])

2

6: SyncThreads
7: for i = dim/2 to 0 do
8: if Tidx ≤ i then
9: Add s distyz[2 ∗ ti + i] to s distyz[ti]

10: end if
11: SyncThreads
12: i← i/2
13: end for
14: distyz = s distyz[0]
15: if miny ≤ s distyz[0] then
16: miny ← s distyz[0]
17: Membershipy ← y
18: end if
19: end for
20: end for

4.1.3. Center Evaluation. Center evaluation involves find-
ing the sum of all vectors with the same label. For a parallel
approach this task involves concurrent writes since data
objects having the same membership may add the histogram
count at a time. One significant contribution of this paper
is implementing the entire process of mean evaluation on
the GPU. Algorithm 3 shows the sequence of kernel calls
made for center evaluation. In our approach Input data is
partitioned into k clusters of different sizes to find the sum.
We sort the input vectors based on their labels, using the
split primitive [15]. The SplitSort kernel brings the records
with each label together. This is done by forming a list of
64-bit records combining the new label value and global
index of the input vector. We split this using the label value
as the key as shown in Figure 4, shuffling the original global
index order. The gather primitive [15] is used subsequently
to rearrange the input vectors in the order of labels using
the index after the split. The gather primitive moves data
efficiently, using coalesced read/write operations. We mark
the cluster boundaries using the function get Boundaries()



based on the change in sorted labels. These are used to sum
the vectors belonging to the same label using segmented
scan [17]. Using histogram() function we finalize the count
of each cluster. The vectors with similar label are now
grouped together using Rearrange() so that the list can
be summed component-wise to compute the new centers.
The row major storage of the vectors make component-
wise addition uncoalesced in memory accesses and hence
inefficient on the GPUs. We solve this problem by converting
the input vectors to a column major format, i.e., to a n× d
arrangement from the d × n one. This is done using an
efficient transpose operation that uses the shared memory
efficiently [2]. The components are now arranged consec-
utively. The use of transpose is a significant contribution
towards the mean evaluation. We use a segmented sum scan
of the list of nd elements divided into kd segments. The
kernel call Compact() then extracts the new means from the
result obtained by segmented scan. Transpose operation is
performed once again to revert back the values from row ma-
jor storage. The final kernel call Divide() gives us the new
means for this iteration. All steps are performed using full
occupancy and exploit the hardware well. Once we have the
new means we check for the convergence condition which
if failed we go back with these new centers and evaluate
new labels again else we terminate the algorithm. Attaining
convergence typically depends on the initial seeding (K-
Means++) of data objects. The use of initial seeding depends
on the type of clustering application. Our mean evaluation
was able to fix the concurrent write problem which most
of the previous approaches failed to solve. Also the pure
coalesced memory access for data rearrangement proved to
be vital step in enhancing mean evaluation on GPU.

Algorithm 3 Kernel sequence for evaluation of new centers
Input: I data, Membership
Output: new centers

1: sorted Membership← SplitSort(Membership, Key)
2: flag hist← get Boundaries(sorted Membership)
3: hist scan← Segscan(Sorted Membership, Flag hist)
4: Histogram← Histogram(Hist scan, Flag hist)
5: data sorted← Rearrange(I data, Sorted index)
6: transp data← Transpose(Data sorted)
7: flag scan← get Boundaries(sorted membership)
8: seg scan← Segscan(transp data, flag scan)
9: sum← Compact(seg scan)

10: total sum← Transpose(sum)
11: new centers← Divide(total sum, histogram)

4.2. Multi-GPU Implementation

A single GPU device with limited global memory makes
it hard to process large number of high dimensional input
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Figure 4. The membership array is sorted on the labels.
The input vectors are then rearranged to bring those
with the same labels together

vectors. We present a multi-GPU approach which removes
some of the memory limitations. Algorithm 4 describes
our approach using Gk GPU devices and Z nodes. Figure
5 shows the data partition amongst the Gk GPUs and Z
nodes. The input vectors are partitioned uniformly among
all available GPUs. When devices have different capabilities,
the partitioning should be done on the basis of the capability
of the device like number of cores and available device
memory. The cluster centres are copied to all GPUs as they
occupy much less space. One of the CPUs serves as the
master node (Figure 5) and distributes the data to other
nodes. The cluster centers are broadcast to all nodes and
copied to all GPUs at the start of each iteration. We can truly
exploit the computational power of each device and balance
the load distribution. This frame work may be adopted in
cases where we have large number of GPU devices available
on multiple nodes.

Each GPU performs operations similar to the single GPU
implementation. It first computes the new membership for
each input vector in its partition. Then, the partial sums of
its share of vectors for each of the K clusters is computed on
the GPU. This data is sent to the CPU of the node along with
the size of each new cluster. This data is accumulated at the
CPU and send to the master node. The master node computes
actual cluster centres from the data, which is broadcast to
each GPU via its node CPU for the next iteration. This
ensures that all O(n) work is performed on the parallel
GPUs while some of the O(k) work is performed on the
CPU. In practice, the work on the CPU is small compared
to membership evaluation.

The number of clusters k is much smaller than the number



Figure 5. For multinode, multi-GPU configuration, the
input vectors are partitioned among the GPUs of all
nodes without duplication. The cluster centres are
copied to each GPU in each node.

of vectors n. Typically k ≈
√
n and hence it is fine to

have all centres stored in each GPU. In Computer Vision,
visual vocabulary is built using high values of n – in tens
of millions – depending upon the application. The number
of clusters is typically 5000 for such data. In each node,
the GPU to CPU bandwidth is reasonably high, to the order
of 4GB/s. The cluster centres consist of kd numbers, which
comes to 2MB of data for 5K vectors of 128 dimensions. The
partial sums can thus be sent in less than 1 millisecond to
the CPU. Since the CPU aggregates all data from its GPUs,
an equal amount of data needs to be sent from each node to
the master node. We used a commodity LAN to connect the
network which takes 10-20 milliseconds for such a transfer.
A proper HPC cluster will have better bandwidth. At the start
of each iteration, the new cluster centres need to be broadcast
to all nodes, which involve exactly the same amount of
data transfer as partial sums. Transferring input data across
the nodes is a one time cost. The communication times are
not significant for such large data sets as the membership
evaluation takes several seconds even on the GPUs.

5. Results

We evaluate the performance of our approach on
NVIDIA’s 8600, Tesla S1070 with 4 Tesla T10 devices,
and GTX 480 GPUs. For sequential implementation, we
use a 32 bit Intel (2.4 GHz, 1GB RAM) Core 2 duo. For
the multi GPU implementation we used all four Tesla T10
devices connected over a commodity LAN and also the GTX
480 device. For the sequential results we used Sardi’s [7]
implementation for K-Means. The input for our K-Means
implementation were SIFT vectors. SIFT vectors are high
dimensional vectors which represent a key point in an image,

Algorithm 4 Multi-GPU K-Means algorithm
Input: I data, Centers, No of Nodes Z, No of GPUs - G
Output: Membership, new centers

1: Partition the input data into chunks proportional to
number of cores, Global memory on each GPU for every
node and transfer them to each of the GPUs.

2: Broadcast the k cluster centers to all the GPU nodes.
3: for G GPUs in parallel do
4: Perform membership evaluation using Algorithm 2

for own partition.
5: Perform mean evaluation using algorithm 3 to calcu-

late partial centers on each device and send them back
to respective Nodes.

6: end for
7: Every node performs summation of partial means col-

lected from their respective GPUs.
8: Nodes send these partial sum to the Master node.
9: Perform final summation to evaluate new centers for the

next iteration on the Master Node.
10: Check for convergence. If true exit else go to step 2

with new centers.

which are clustered to build vocabulary for classification pur-
poses. These are generated using Lowe’s [10] implementa-
tion. We use one float to store each dimension. We compare
with the latest approach on GPU and with a standard CPU
implementation as a reference to show how the accelerators
can enhance the performance in practice for someone using
the CPU. The timings given below are average timing for
20 iterations. The iteration time includes labelling and new
mean evaluation. In our experiments, we use our own GPU
implementation of K-Means++ for selecting initial clusters.
It is an expensive evaluation consuming a time equivalent to
2-4 iterations of K-Means for large n but has been found to
drastically reduce the number of iterations. This extra time
can be shared by all the iterations which is generally high
for large input data. For an input size of 10K we observed it
took almost 74 iterations to converge using random centers
for initialization and only 15 iterations using K-Means++.
Initialization using K-Means++ was found to provide a 2-
fold speedup compared to initialization using random initial
centers. We have performance timings for inputs upto 6
million vectors of 128 dimension. By varying the cluster
centers k, dimension d and input size n, we study the
scalability of our approach.

For the Fermi GPU implementation, we process 2 input
vectors per block (i.e., q = 2). We loop over the cluster
centers, taking four centers (i.e., l = 4) a time. Each CUDA
block uses 256 threads in a row major format contributing
two membership values after looping over all centers. The
centers were accessed globally via texture memory for the
Tesla and the global memory for the Fermi via L2 cache.
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Figure 6. Running time per iteration in seconds for
different input sizes for d = 128 and k = 4K.
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The amount of shared memory used by 2 input vectors
and performing 8 distance evaluations was 5136 KB. We
achieved an occupancy of 83% for the above parameters
on GTX 480. This combination of parameters gave the best
performance in practice. The looping over all centers is the
time consuming part of membership kernel.

We also show results on the IBM CellBE platform. We

perform the membership on the SPUs by streaming the
cluster centres in each iteration. Centre evaluation is also
performed on the SPU by bringing vectors of selected labels
to it. The SIMD intrinsics work very well for the large
vectors we use. Buehrer et al. [3] made use of single
instruction multiple data (SIMD) intrinsics. The architecture
is slightly dated, but our results help to compare it with
the GPUs. The running times shown in Table 1 provide a
comparison between CPU, CellBE and different generations
GPUs for different combinations of n and k. The speedup
obtained is from 170 on a GTX480, over 400 using 4 Tesla
T10 devices and almost 25 on CellBE.

Input # clust- CPU Tesla GTX 4× IBM
Size n ers k T10 480 T10 CellBE
10 K 80 1.3 0.119 0.18 0.097 0.389
50 K 800 71.3 2.73 1.73 0.891 11.2

125 K 2K 463.6 14.18 7.71 2.47 58.4
250 K 4K 1320 38.5 27.7 7.45 149.7
500 K 4K 5985 72.2 54.9 14.9 339
1 M 8K 28936 268.6 170.6 68.5 1356

Table 1. Running time per iteration of K-Means on
different GPUs, CellBE and the CPU for 128

dimensional vectors. The timings given are in seconds.

Figure 6 shows a plot of time per iteration for different n
with a fixed dimension of 128 and k = 4000. A single GPU
provided a speed up ranging from 50-170 with increasing n.
The multi-GPU results shown use 4× Tesla devices. Figure
7 shows the variation of running time with the dimension d.
We can deduce that the performance varies nearly linearly
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Figure 8. Running time per iteration in seconds for
different numbers of clusters for n = 50K and d = 128



Input Number of Approach [8] with Our Version
Size: n Centers: k [8] Lazy eval of [8]
30 K 1,000 2.955 1.63 0.945
50 K 2,000 10.11 5.2 3.14

125 K 2,000 18.8 8.1 7.41
250 K 4,000 78.3 37.4 26.7

Table 2. Running time in seconds on a GTX480 of
Hong-Tao et al. [8] approach with and without lazy

evaluation and our approach for d=128

input size and the number of dimensions. The distance
evaluation time vary linearly with d and the number of
distances linearly with n.

Figure 8 shows the dependence of the running time on k,
the number of cluster centers. The variation in performance
was slightly more than linear. Increasing centers not only
add up more work in membership evaluation step but also
divergence in the mean evaluation on GPU.

The scalability in the number of cores of the GPU can
be seen on low end card like 8600 with 32 cores and
limited device memory (256 MB). We limit the input size to
200K vectors and compared the individual performance of
8600 (peak performance 100 GFLOPS) with that of Tesla
(peak performance of 1TB) and GTX 480 (peak performance
of 1.35TB). For low input size the performance of 8600
compared to other high end cards is shown in Figure 9.
GTX 480 boosted the speed on an average by a factor of
1.5-1.8 compared to Tesla. The significant points are that
the 8600 also was able to give good performance and the
algorithm scales well with increasing number of cores.
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Figure 9. Running time on 8600, T10, and GTX480
GPUs for small input values, d=128, k=80 for n=10k and
k=1k for rest.

K-Means involves large amount of distance evaluations.
Most of them do not affect current membership of the data
object. The approach by Hong-Tao et al. [8] evaluate all
these distances. We added a lazy evaluations step in which
threads whose running sum of the distance exceeds the
present minimum exiting early. This can eliminate unnec-
essary evaluations, but can introduce thread divergence on
the GPUs. This is not very serious as the terminated threads
only abstain from the computations. Table 2 compares the
result of the implementations of the prior method with our
modification as well as with of our new method. We have
not used lazy evaluation in our implementation technique.
Lazy evaluation speeds up computation by a factor of 2 for
large d. Our fully parallel implementation further speeds up
by roughly 1.5 over the lazy evaluation method for large n
and k.

We compare our approach with that of Li et al. [9] with
the best performance so far and with Wu et al. [20]. Table
3 shows the comparison of various approaches on GTX 280
hardware. Unfortunately Wu et al. did not provide results
for high dimensional data. The computation iterates over the
dimensions and cluster centers. Our performance was nearly
4 times better than Wu et al. For low dimensional data Li et
al. perform marginally better. As the dimension or number
of clusters increase, our performance improve by a factor of
2 or better.

Table 4 shows a comparison of timings for increasing
input size on single GPU and Multi-GPU devices. The blank
values in the table are due to limited global memory on
devices we were not able to run experiments on single GPU
device for large datasets and had to rely on Multi-GPU
approach. We have used Open Message Passing Interface
(MPI) for node to node communication in case of multi
node multi GPU using 4×Tesla devices on node A and GTX
480 on node B. The scalability of n is dependant on total
number of devices across the nodes. We maximized n up
till the point where devices can handle data since they have
global memory restrictions. So if we have large number of
devices available we may scale our performance to a larger
n and d.

Input dim 1 Tesla GTX 480 4×Tesla 4×Teslas +
Size: n d Device Device Devices GTX 480

1 M 128 120.4 73.3 33.6 22.8
1.5 M 128 181.7 95.6 47.2 34.8
3 M 128 364.2 - 89.671 67.4
6 M 128 - - 183.8 136.7

16 M 16 220.4 - 57.8 40.9
32 M 16 - - 116 84.3

Table 4. Running time per iteration in seconds for
different input sizes on 1 T10, GTX480, 4× Tesla

devices, and 4× T10 + GTX480 for k=4K.



Input Dimension Number of Our Li et al. [9] Wu et al. [20]
Size: n d Centers: k K-Means K-Means K-Means

2 Million 8 400 1.27 1.23 4.53
4 Million 8 100 0.734 0.689 4.95
4 Million 8 400 2.4 2.26 9.03

51,200 64 32 0.191 0.403 -
51,200 128 32 0.282 0.475 -

Table 3. Running time in seconds of our approach and those of Li et al. and Wu et al. on a GTX280.

CPU 1 Tesla GTX 480
n, d, k New

Label
New
Mean

New
Label

New
Mean

New
Label

New
Mean

50K, 32, 34 33.5 2.28 0.104 0.24 0.073 0.2
0.5M, 32,34 207.78 16.67 0.316 0.4 0.248 0.29
0.5M, 128,2k 2499 548 42.3 1.9 24.5 2.9
1M, 128, 4k 11864 2604 113 7.6 69.2 4.1

Table 5. Times for the labelling and mean evaluation
steps per iteration in seconds

Membership evaluation consumes a major percentage of
total time of each K-Means iteration. Table 5 shows time
division for label evaluation and new mean evaluation. The
efficient mean evaluation performed on the GPU results in
its time share to about 6% of total time for large input of
high dimension. For low d, k the mean evaluation consumes
major time but with increasing parameters its share reduces.

5.1. Performance: Discussions

The membership evaluation step is both computation and
memory bandwidth intensive. Each input vector needs to
compute its distance with each cluster centre. A single
distance evaluation needs 3d floating point operations (one
subtraction, one multiplication, and one addition to find the
sum). The max finding uses K comparisons per vector. Thus
the total computations are bound by 4NKd. This comes to
4 × 220 × 212 × 27 or 2 terra floating point operations per
iteration for 1M vectors of 128 dimensions with 4K clusters.
A single Tesla, with a peak compute power of 1 TFLOPS,
should be able to perform these in 2 seconds if fully utilized.
Membership evaluation also loads all K cluster centers from
the global memory for each input vector. This results in a
memory traffic of 4NKd bytes per iteration for 4-byte float
data. This comes to 2 terrabytes of memory reads, which
should take about 20 seconds if the rated peak bandwidth
of 100GB per second can be sustained. Table 5 shows the
total time to be about 113 seconds on 1 Tesla GPU. This
shows that the average effective performance we obtain is
off by a factor of 7 from the peak. The achieved absolute
performance is better by a factor of 4 using 4 Teslas, though
the average utilization is the same. This leaves the possibility
for significant future speedup by utilizing the resources more
efficiently.

6. Conclusions

We presented the design and implementation of the K-
Means clustering algorithm entirely one or more GPUs in
this paper. We achieved high performance on different GPU
generations using the massive parallelism supported by the
CUDA model. Our implementation is scalable in the prob-
lem size, the number of dimensions, the number of centers,
and the number of available cores on the available GPU.
The multi-GPU approach produced nearly linear speedups
with large data. Our multi-GPU framework can efficiently
solve the clustering problem using multiple nodes each with
multiple GPUs. Even low end GPUs found on laptops are
shown to provide speedups of 10-20 compared to the CPU
version.

The performance we achieve are indicators of the perfor-
mance that can be obtained on future accelerators, in our
view. Such accelerators are becoming more common and
are likely to play key roles in different computation steps
performed by individuals on their PCs. Scalability to large
vectors and problems is important as all aspects of data
handled by even individual users is growing very fast.
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