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Abstract

This paper presents a realtime, incremental multibody
visual SLAM system that allows choosing between full 3D
reconstruction or simply tracking of the moving objects.
Motion reconstruction of dynamic points or objects from
a monocular camera is considered very hard due to well
known problems of observability. We attempt to solve the
problem with a Bearing only Tracking (BOT) and by in-
tegrating multiple cues to avoid observability issues. The
BOT is accomplished through a particle �lter, and by inte-
grating multiple cues from the reconstruction pipeline. With
the help of these cues, many real world scenarios which
are considered unobservable with a monocular camera is
solved to reasonable accuracy. This enables building of a
uni�ed dynamic 3D map of scenes involving multiple mov-
ing objects. Tracking and reconstruction is preceded by mo-
tion segmentation and detection which makes use of ef�cient
geometric constraints to avoid dif�cult degenerate motions,
where objects move in the epipolar plane. Results reported
on multiple challenging real world image sequences verify
the ef�cacy of the proposed framework.

1. Introduction

Vision based SLAM [4, 7, 9, 14, 23] and SfM systems [6]
have been the subject of much research and are �nding ap-
plications in many areas like robotics, augmented reality,
city mapping. But almost all these approaches assume a
static environment, containing only rigid, non-moving ob-
jects. Moving objects are treated the same way as out-
liers and �ltered out using robust statistics like RANSAC.
Though this may be a feasible solution in less dynamic en-
vironments, but it soon fails as the environment becomes
more and more dynamic. Also accounting for both the static
and moving objects provides richer information about the
environment. A robust solution to the SLAM problem in
dynamic environments will expand the potential for robotic
applications, like in applications which are in close proxim-
ity to human beings and other robots. Robots will be able
to work not only for people but also with people.

The last decade saw lot of developments in the �multi-
body� extension [18, 20, 24] to multi-view geometry. These
methods are natural generalization of classical structure
from motion theory [6] to the challenging case of dynamic
scenes involving multiple rigid-body motions. Thus given
a set of feature trajectories belonging to different indepen-
dently moving bodies, multibody SfM estimates the number
of moving objects in the scene, cluster the trajectories on
basis of motion, and then estimate the model as in relative
camera pose and 3D structure w.r.t. each body. However all
of them have focused only on theoretical and mathematical
aspects of the problem and have experimented on very short
sequences, with either manually extracted or noise-free fea-
ture trajectories. Also the high computation cost, frequent
non-convergence of the solutions and highly demanding
assumptions; all have prevented them from being applied
to real-world sequences. Only recently Ozden et al. [16]
discussed some of the practical issues, that comes up in
multibody SfM. In contrast, we propose a multibody visual
SLAM system, which is a realtime, incremental adaptation
of the multibody SfM. However the proposed framework
still offers the �exibility of choosing the objects that needs
to be reconstructed. Objects, not chosen for reconstruction
are simply tracked. This is helpful, since certain applica-
tions may just need to know the presence of moving ob-
jects rather than its full 3D structure or there may not be
enough computational resource for realtime reconstruction
of all moving objects in the scene. The proposed system is
a tightly coupled integration of various modules of feature
tracking, motion segmentation, visual SLAM, and moving
object tracking while exploring various feed-backs in be-
tween these modules. Fig. 1 illustrates system pipeline and
outputs of each different modules.

Reconstructing 3D trajectory of a moving point from
monocular camera is ill-posed: it is impossible, without
making some assumptions about the way it moves. How-
ever object motions are not random, and can be parame-
terised by different motion models. Typical assumptions
have been either that a point moves along a line or a conic
or on a plane [1] or more recently as a linear combination of
basis trajectories [17]. Target tracking from bearings-only
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Figure 1. The input to our system is monocular image sequence. Various modules of feature tracking, motion segmentation, visual SLAM and Moving
Object tracking are interleaved and running online. The �nal result is an integrated dynamic map of the scene including 3D structure and 3D trajectory of
the camera, static world and moving objects.

sensors (which is also the case for a monocular camera) has
also been studied extensively in �Bearings-only Tracking�
(BOT) literature [2, 10] where statistical �lters seems to be
the method of choice. This same monocular observabil-
ity problem gives rise to the so called �relative scale prob-
lem� [5, 16] in multibody SfM. In other words since each
independently moving body has its 3D structure and cam-
era motion estimated in its own scale, it results in a one-
parameter family of possible, relative trajectories per mov-
ing object w.r.t. static world. This needs to resolved for a re-
alistic, uni�ed reconstruction of the static and moving parts
together. Ozden et al. [5] exploited the increased coupling
between camera and object translations that tends to appear
at false scales and the resulting non-accidentalness of object
trajectory. However their approach is mostly batch process-
ing, wherein trajectory data over time is reconstructed for
all possible scales, and the trajectory which for say is most
planar is chosen by the virtue of it being unlikely to oc-
cur accidentally. Instead, we take a different approach by
making use of a particle �lter based bearing only tracker to
estimate the correct scale and the associated uncertainty.

In realtime visual SLAM systems, moving objects have
not yet been dealt properly. In [25], a 3D model based
tracker runs parallel with the MonoSLAM [4] for tracking
a previously modelled moving object. This prevents the
visual SLAM framework from incorporating moving fea-
tures lying on that moving object. But the proposed ap-
proach does not perform moving object detection; so mov-
ing features apart from those lying on the tracked moving
object can still corrupt the SLAM estimation. Sola [22]
does an observability analysis of detecting and tracking
moving objects with monocular vision. To bypass the ob-
servability issues with mono-vision, he proposes a BiCam-
SLAM [22] solution with stereo cameras. A similar stereo
solution has also been proposed recently by [12]. All these
methods [12, 22, 25] have a common framework in which
a single �ltering based SLAM [4] on static parts is com-
bined with moving object tracking (MOT), which is of-
ten termed as SLAMMOT [12]. Unlike SLAMMOT, we
adopted multibody SfM kind approach where multiple mov-

ing objects are also fully reconstructed simultaneously, but
our framework still allows simple tracking if full 3D struc-
ture estimation of moving object is not needed.

We propose a realtime incremental multibody visual
SLAM algorithm. The �nal system integrates feature track-
ing, motion segmentation, visual SLAM and moving ob-
ject tracking. We introduce several feedback paths among
these modules, which enables them to mutually bene�t each
other. We describe motion cues coming from SfM estimate
done on that moving object and several geometric cues im-
posing constraints on possible depth and velocities, made
possible due to reconstruction of static world. Integration
of multiple cues reduces immensely the space of possible
trajectories and provides an online solution for the relative
scale problem. This enables a uni�ed representation of the
scene containing 3D structure of static world, moving ob-
jects, 3D trajectory of the camera and moving objects along
with associated uncertainty. As concluded in Sec.4.2 of [17]
and also in BOT literature, dynamic reconstruction with
mono-vision is good only when object and camera motion
are non-correlated. To avoid this, existing methods resorted
to spiral camera motions [12], multiple photographers [17]
or uncorrelated camera-object motion [5]. We do not have
any restrictive assumptions on the camera motion or envi-
ronment. Instead, we extract more information from recon-
struction pipeline in form of cues. We assume a calibrated
monocular camera moving arbitrarily through a dynamic
scene. Objects need to be rigid for reconstruction, otherwise
they can simply be tracked. Estimation of ground-plane and
the assumption of objects moving over it improves results
but is not essential. We brie�y discuss the motion segmen-
tation framework in Sec. 2, followed by our visual SLAM
framework (Sec. 3) and Moving Object Tracking (Sec. 4)
using ef�cient Lie Group theory. We present various cues
and the process of integrating them to tracking framework.
We then describe the Uni�cation (Sec. 5) module wherein
we show how the BOT solves the relative scale problem,
which is then used to build a uni�ed representation of a dy-
namic scene. Results of the proposed system on multiple
real image datasets are shown in Sec. 6.



2. Feature Tracking & Motion Segmentation
Feature tracking module tracks existing feature points,

while new features are instantiated. The motion segmenta-
tion module segments these feature tracks belonging to dif-
ferent motion bodies and maintains it with time. We discuss
them brie�y (see [8] for in-depth discussion) as following.

2.1. Feature Tracking

In order to detect moving objects, we should be able to
get feature tracks on the moving bodies also. Thus contrary
to conventional SLAM, where features belonging moving
objects are not important, we need to pay extra caution to
feature tracking in this scenario. In each image, a number
of salient features (FAST corners [19]) are detected while
ensuring the features are suf�ciently spread all over the im-
age. A subset of these, detected in keyframes of the visual
SLAM are made into 3D points. The extra set of tracks
helps in detecting independent motion. In order to preserve
feature tracks belonging to independent motions, we do not
perform restrictive matching initially. Instead the feature
matching is performed in two stages. In the 1st stage, fea-
tures are matched over a large range so as to allow matches
belonging to moving objects. A preliminary segmentation
and motion estimate is made using this coarse matching.
Finally when the camera motion estimate is available, we
resort to guided matching which yields a larger number of
features. In this stage, we make full use of the camera mo-
tion knowledge, while matching features.

2.2. Multibody Motion Segmentation

The input to motion segmentation framework are feature
tracks, the camera relative motion in reference to each re-
constructed body from the visual SLAM module, and the
previous segmentation. The task of motion segmentation
module is that of model selection so as to assign these
feature tracks to one of the reconstructed bodies or some
unmodelled independent motion. Ef�cient geometric con-
straints are used to form a probabilistic �tness score for
each reconstructed object. With each new frame, existing
features are tested for model-�tness and unexplained fea-
tures belong to either unmodeled moving object, possibly
new object or outliers. The geometric constraints are a
combination of Epipolar constraint and Flow Vector Bound
(FVB) [8]. The FVB constraint helps detecting dif�cult de-
generate independent motions, where points move along the
epipolar plane and thus making the epipolar constraint use-
less. This is important as they are very common in real
world (e.g. motion of other moving cars as seen from a
camera-mounted car). A recursive Bayes �lter continuously
updates the probability of a feature moving independently
w.r.t. a body based on these geometric constraints. More de-
tails can be found in [8]. Computation of the 3D structure,
in the form of depth bound (DB) detailed later in Sec. 4.2

helps in setting a tighter bound in FVB constraint, which
results in more accurate independent motion detection.

3. Visual SLAM Framework
Visual SLAM or SfM estimates the camera pose denoted

as gtCW and map points XW 2 R3 w.r.t. a certain world
frame W , at a time instant t. The structure coordinates XW
are assumed to be constant i.e. static in this world frame evi-
dent from the absence of time t in its notation. In the multi-
body VSLAM scenario, the world frame W can be either
the static world frame S or a rigid moving object O, chosen
for reconstruction. The 4�4 matrix gCW contains a rotation
and a translation and transforms a map point from world co-
ordinate frame to camera-centred frame C by the equation
XC = gCWXW . It belongs to the Lie group of Special
Euclidean transformations, SE(3). The tangent space of an
element of SE(3) is its corresponding Lie algebra se(3),
so any rigid transformation is minimally parameterised as a
6-vector in the tangent space of the identity element. We de-
note this minimal 6-vector as � := (vT!T )T 2 R6, where
the �rst three elements is an axis-angle representation of ro-
tation, while the later three represents the translation. The
� 2 R6 represents the twist coordinates for the twist matrix
b� 2 se(3). Thus a particular twist is a linear combination of
the generators of the SE(3) group, i.e.

b� =
6X

i=1

�iGi =
�
b! v
0 0

�
j b! 2 so(3); v 2 R3 (1)

Here �i are individual elements of � andGi are the 4�4 gen-
erator matrices which forms the basis for the tangent space
to SE(3). And b! is a skew-symmetric matrix obtained from
the 3-vector !. The exponential map exp : se(3)! SE(3)
maps a twist matrix to its corresponding transformation ma-
trix in SE(3) and can be computed ef�ciently in closed
form. Changes in the camera pose gCW is obtained by pre-
multiplying with a 4 � 4 transformation matrix in SE(3).
Thus the camera pose evolves with time as:

gt+1
CW = �gtgtCW = exp(b�)gtCW (2)

The world points XW are �rst transformed to camera frame
and then projected in the image plane using a calibrated
camera projection model CamProj(:). This de�nes our
measurement function ẑ as:

ẑ =
�
u
v

�
= CamProj(gCWXW ) (3)

In each visual SLAM, the state vector x̂ consists of a set
of camera poses and reconstructed 3D world points. The
optimization process iteratively re�nes this state vector x̂
by minimizing a sum of square errors between current x̂
estimate and observed data ẑ. The incremental updates



in optimization are calculated as in Eq. 2 at the tangent
space around identity se(3) and mapped back onto mani-
fold. This enables minimal representation during optimiza-
tion and avoids singularities. Also the Jacobians of the
above equations needed in the optimization process can be
readily obtained in closed form. Due to this advantages,
the Lie theory based representation of rigid body motion is
becoming popular among recent VSLAM solutions [9, 23].
We again use this Lie group formulation in tracking of the
moving object described in section 4.

The monocular visual SLAM framework is that of a stan-
dard bundle adjustment visual SLAM [7, 13, 23]. A 5-
point algorithm with RANSAC is used to estimate the ini-
tial epipolar geometry, and subsequent pose is determined
by camera resection. Some of the frames are selected as
keyframes, which are used to triangulate 3D points. The
set of 3D points and the corresponding keyframes are used
in by the bundle adjustment process to iteratively minimize
reprojection error. The bundle adjustment is initially per-
formed over the most recent keyframes, before attempting a
global optimization. Our implementation closely follows to
that of [7, 13]. While one thread performs tasks like camera
pose estimation, keyframe decision and addition, another
back-end thread optimizes this estimate by bundle adjust-
ment. But there are couple of important differences with
the existing SLAM methods, namely its interplay with the
motion segmentation, bearing only object and feature track-
ing module, reconstruction of small moving objects. They
are discussed next.

3.1. Feedback from Motion Segmentation

The motion segmentation prevents independent motion
from entering the VSLAM computation, which could have
otherwise resulted in incorrect initial SfM estimate and lead
the bundle adjustment to converge to local minima. The
feedback results in less number of outliers in the SfM pro-
cess of a particular object. Thus the SfM estimate is bet-
ter conditioned and less number of RANSAC iterations is
needed. Apart from improvement in the camera motion esti-
mate, the knowledge of the independent foreground objects
coming from motion segmentation helps in the data asso-
ciation of the features, which is currently being occluded
by that object. For the foreground independent motions, we
form a convex-hull around the tracked points clustered as an
independently moving entity. Existing 3D points lying in-
side this region is marked as not visible and is not searched
for a match. This prevents 3D features from unnecessary
deletion and re-initialization, just because it was occluded
by an independent motion for some time.

3.2. Dealing Degenerate Con�gurations

In dynamic scenes, moving objects are often small com-
pared to the �eld of view, and often appear planar or has

very less perspective effects. Then both relative pose es-
timation and camera resection faces ambiguity and results
in signi�cant instability. During relative pose estimation
from two views, coplanar world points can cause at most
a two-fold ambiguity. So we use 5-point algorithm from
3 views to resolve this planar degeneracy, exactly as de-
scribed in [15]. Though theoretically, calibrated camera re-
section from a coplanar set of points has a unique solution
unlike its uncalibrated counterpart, it still suffers from am-
biguity and instability as shown in [21]. So for seemingly
small and planar objects we modi�ed the EPnP code as in
Sec. 3.4 of [11] to initialize the resection process, which is
then re�ned by bundle adjustment.

4. Moving Object Tracking

A monocular camera is a projective sensor that only pro-
vides the bearing information of the scene. So moving ob-
ject tracking with mono-vision is a bearings-only tracking
(BOT) which aims to estimate the state of a moving target
comprising of its 3D position and velocity. A single BOT
�lter is employed on each independently moving objects.
At any time instant t, the camera only observes the bear-
ing of tracked feature on the moving object. We consider
the moving object state vector as gtOS 2 SE(3), represent-
ing 3D rigid body transformation of the moving object O in
the static world frame S. Due to inherent non-linearity and
observability issues, particle �lter has been the preferred ap-
proach [2] for BOT. In this section we develop a formulation
of the particle �lter based BOT that integrates multiple cues
from static world reconstruction.

4.1. Particle Filter based BOT

The uncertainty in pose of the object is represented by
the poses of set of particles giS and their associated weights.
Each particle’s state denoted by gtiS 2 SE(3) represents its
pose w.r.t. S at a time instant t. We continue with Lie group
preliminaries discussed in Sec. 3. We assume an instanta-
neous constant velocity (CV) motion model, which is con-
sidered the best bet and most generic for modeling an un-
known motion. Mean velocity between two intervals is rep-

resented by the mean twist matrix eb�ti = 1
�t ln(gti(g

t�1
i )�1),

where eb� 2 se(3) is the mean twist matrix associated
with the mean six dimensional velocity vector e� 2 R6.
The motion model of the particle then generates samples
according to the pdf i.e. probability distribution function
p(gt+1

iS jg
t
iS ; b�ti). Each component of the mean velocity

vector has a gaussian error with a standard deviation �j ,
j 2 f1; : : : 6g. To transform this gaussian distribution in
R6 to SE(3) space the following procedure is used. We
de�ne a vector � 2 R6, whose each component �j is sam-
pled from the GaussianN (0; �2

j ), then b� is the twist matrix



associated with �j . Then b�ti = eb� eb�ti generates samples in
the twist matrix space of R4X4 corresponding to the gaus-
sian errors centered at the mean velocity vector. Then the
dynamic model of the particle generates samples that ap-
proximate the pdf given before as

gt+1
iS = exp(b�) exp(eb�ti�t)g

t
iS (4)

The measurement model that predicts the location of a par-
ticle with SE(3) pose gt+1

i in the image as

ẑt+1
i =

�
ut+1
i
vt+1
i

�
= CamProj(Trans(gt+1

CS g
t+1
i )) (5)

Here Trans(:) operator extracts the translation vector asso-
ciated with the SE(3) pose of the particle andCamProj(:)
is the camera projection Eq. 3. The weightwi of the particle
is updated as wt+1

i = 1p
(2�)�

exp( (z�ẑi)0(z�ẑi)
2�2 ), where z

is the actual image coordinate of the feature being tracked.
The particles then undergo resampling in the usual particle
�lter way: particles with a higher weight have higher prob-
ability of getting resampled.

4.2. Ground Plane, Depth Bound & Size Bound

The structure estimation of the static world from vi-
sual SLAM module helps in reducing the possible bound
in depth. Instead of setting the maximum depth to in�nity,
known depth of the background allows to limit the depth of
a foreground moving object. The depth bound (DB) is ad-
justed on the basis of depth distribution of static world map
points along the particular frustum of the ray. This bound
gets updated as the camera moves around in the static world.
The 3D point cloud of the static world is used to estimate
the ground-plane (GP). Using the fact that most real world
objects move over the ground plane, we can add constraints
to the velocity vector such that its height above the ground
plane is constant. Both the above cues ignored that we
are able to track multiple features of the object. At wrong
depths, this points may be reconstructed to lie below the
ground-plane or too much above it. This criteria of size and
unrealistic reconstructions is used to get an additional depth
constraint. All these cues constraints the possible depth or
velocity space. Integration of these depth and velocity con-
straints into the BOT �lter is discussed in Sec. 4.4.

4.3. Initialization

Initialization is an important step for performance of par-
ticle �lter in BOT. For a moving object which enters the
scene for the �rst time, particles are initialized all along the
ray starting from the camera through the image point which
is the projection of a point on the dynamic object being con-
sidered. A uniform sampling is then used to initialize the
particles at various depths inside that bound [dmin; dmax]

computed from the depth bound cue described previously
in Sec. 4.2. The velocity components are initialized in a
similar manner. At each depth, number of particles with
various velocities are uniformly sampled so that the speeds
lie inside a predetermined range [smin; smax] along all pos-
sible directions. When a previously static object starts mov-
ing independently, we can do better initialization than uni-
form sampling: we initialize the depth as normal distribu-
tion N (bd; �2), where bd is the depth estimate obtained from
the point’s reconstruction as part of the original body.

4.4. Integrating Depth and Velocity Constraints

Depth and velocity constraints play a very important
role in improving the tracker performance, even in scenar-
ios which are otherwise unobservable for a bearing only
tracker. This reduces the space of state vectors to some con-
strained set of state vectors denoted as . This can be imple-
mented as the motion model, by sampling from a truncated
density function ps, de�ned as:

ps =
�
p(gt+1

iS jg
t
iS ; b�ti) gt+1

iS 2  
0 otherwise

(6)

Here, non-truncated pdf over motion model, p(gt+1
iS jg

t
iS ; b�ti)

is evaluated from Eq. 4. To draw samples from this trun-
cated distribution, we use rejection sampling over the distri-
bution, until the condition giS 2  is satis�ed. This method
of rejection sampling is sometimes inef�cient. So in our
implementation, we restrict the number of trials and if it
still does not lie inside  , we �ag those particles for lower
weight in the measurement update step.

5. Uni�cation
The output of the system can only be fully explored when

we have a uni�ed 3D dynamic map of the scene containing
structure and trajectory of both static and moving objects.
As discussed next, this requires solving some challenges
but it also enables a new cue. The uni�ed output can be
used to generate dynamic 3D occupancy maps, which also
takes into account the most likely space to be occupied by a
moving object in the next instant.

5.1. Relative Scale Problem

From visual SLAM on rigid moving objects, we obtain
camera pose gtCO 2 SE(3) and object points XO 2 R3

with respect to the object frameO. We also have the camera
pose gCS in the static world frame S. Thus con�guration of
the moving object O w.r.t. static world S can be obtained as
gOS = g�1

COgCS . Expanding this equation in the homoge-
nous representation we obtain:
�
ROS tOS

0 1

�
=
�
RT
CS �RT

CStCS
0 1

� �
RCO tCO

0 1

�
(7)



Equating the rotation and translation parts of Eq. 7, we ob-
tain ROS = RT

CSRCO & tOS = RT
CStCO�RT

CStCS . We
can obtain the exact ROS , but from monocular SfM, we can
only obtain tCO and tCS up to some unknown scales [6].
We can �x the scale for tCS , i.e. for the static background
as 1, and denote the scale for tCO as the unknown relative
scale parameter s. Then the trajectory of the moving object
is 1-parameter family of possible trajectories given by

tOS = sRT
CStCO �RT

CStCS (8)

All of these trajectories satisfy the image observations, i.e.
projection of the world points on the moving object are
same for all the above trajectories. This is a direct conse-
quence of the depth unobservability problem of monocular
camera. Thus even after reconstructing a moving car, we
are not able to say whether it is a toy car moving in front
of the camera, or a standard car moving over the road. So
we need to estimate this relative scale, and only when the
estimated scale is close to the true scale, the reconstruction
will be meaningful.

Unlike Ozden et al. [5], we take a different approach
by employing the particle �lter based BOT on a point of
the moving object to solve the relative scale problem. The
state of the moving object (i.e. position and velocity) and
the associated uncertainty is continuously estimated by the
tracker and is completely represented by its set of particles.
The mean of the particles is thus the best estimate of the
moving point from the �ltering point of view and with the
assumptions (state transition model) made in design of the
�lter. When the BOT is able to estimate the depth of a mov-
ing point up to a reasonable certainty, we can use this depth
to �x the relative scale, and get a realistic multibody recon-
struction. Apart from the online nature of the solution, the
BOT can also estimate the state of an object, for which re-
construction is not possible. Denoting the posterior depth
estimate as obtained by BOT of a point on the moving ob-
ject by dBOT , and dSFM as depth of the same point as com-
puted by the visual SLAM on that object. The map points
XO and camera poses gCO are scaled by s = dBOT =dSFM ,
before being added to the integrated map.

5.2. Feedback from SfM to BOT

For the objects chosen for reconstruction, a successful
reconstruction of the moving object from the visual SLAM
module can help to improve the bearing only tracking
(BOT). As described in Sec. 5.1, there exist a 1-parameter
family of possible solutions for the trajectory of a moving
point. Let dSFM denote the depth of the tracked moving
point from the camera in the object frame, and diS be the
depth of ith particle from the camera pose in the static world
frame. Using Eq. 8, the

tiS = siRT
CStCO �RT

CStCS (9)

where si = diS=dSFM . Thus for a particle at particular
depth, SfM on the moving object gives a unique estimate of
the particle translation. This information can be used dur-
ing measurement update, and also to set the motion model
for the next state transition. Thus when SfM estimates are
available this can act as a secondary observation. The ob-
servation function is then given by Eq. 9. The measurement
update computes a distance measure between the particle
positions estimated from Eq. 9 and the predicted position of
the particle by motion model. Thus particles having differ-
ent velocity than that estimated by the SfM, but still lying on
the projected ray can now be assigned lower weights or re-
jected. For the particles which survived the resampling after
this measurement update, the motion models of the particles
are set in accordance with that estimated by Eq. 9. Let the
twist matrix corresponding to this transformation estimate
given by SfM for a particle i be denoted as \�ti;SFM . The
particle i is then sampled based on the motion model given
by the pdf p(gt+1

iS jg
t
iS ; �ti;SFM ), which essentially generates

a particle with mean

gt+1
iS = exp( \�ti;SFM�t)gtiS (10)

Between two views, SfM estimate obtained from Visual
SLAM module reduces the set of possible trajectories from
all possible trajectories lying along the two projection rays,
to an one-parameter family of trajectories as given by Eq. 8.

6. Experiments
6.1. System Results

The system has been tested on a number of publicly
available real image datasets1, with varying number and
type of moving entities. Figures are best viewed on screen.

Figure 2. Results on the CamVid dataset. The top image shows output of
motion segmentation. The bottom left image shows the reconstruction of
the static world and a moving car at certain instant. Particles of the BOT
are shown in green and the trajectory of camera is colored red. Bottom
right image also shows the estimated 3D trajectory of the moving car.

1Additional results available at project website



Figure 3. Results on the Versailles Rond Sequence. Top image samples
some segmentation results from the sequence. The middle image shows
an instance of the online occupancy map. Shaded region shows the most
likely space to be occupied in next 16 frames (around 1s). Bottom image
demonstrates the reconstruction and trajectories of two moving cars.

Figure 4. Results for the Moving Box sequence

Camvid Sequence: We tested our system on some dy-
namic parts of the CamVid dataset [3]. This a road sequence
involving a camera mounted on a moving car. The results on
this sequence is highlighted in Fig. 2. It shows the camera
trajectory and 3D structure of static background. Recon-
struction and the 3D trajectory of a moving car in the scene
as produced by the system are also shown. Note the high
degree of correlation between camera and the car trajectory,
which makes it challenging for both motion segmentation
and relative scale estimation.

Versailles Rond Sequence: This is an urban outdoor se-
quence taken from a fast moving car, with multiple num-
bers of moving objects appearing and leaving the scene.
Only left of the stereo image pairs has been used. Fig. 3
shows the results of the integrated map produced by the al-

gorithm. The middle image shows an instance of the online
occupancy map, consisting of the 3D reconstruction of two
moving cars, corresponding BOT tracker and most likely
occupancy map of the moving objects in next instant. Bot-
tom of Fig. 3 demonstrate the reconstructed trajectory of
two moving cars, shown in red and blue.

Moving Box Sequence: This is same sequence as used
in [25]. A previously static box is being moved in front of
the camera which is also moving arbitrarily. However un-
like [25], our method does not use any 3D model, and thus
can work for any previously unseen object. As shown in
Fig. 4 our algorithm reliably detects the moving object just
on the basis of motion constraints. However, the foreground
moving box is nearly white and thus provides very less fea-
tures for reconstruction. This sequence also highlights the
detection of previously static moving objects. Upon detec-
tion, 3D map points lying on the moving box are deleted
and their 3D coordinates are used to initialize the BOT as
described in Sec. 4.3.

6.2. Discussion

We have shown results for multibody visual SLAM un-
der highly correlated camera-object motion, degenerate mo-
tion, arbitrary camera trajectory and changing number of
moving entities. Also the algorithm is online (causal) in
nature and also scales to arbitrary long sequences.

Smooth Camera Motions: Moving object reconstruc-
tion and tracking from a smoothly moving camera is very
challenging. It becomes unobservable for a naive BOT, and
results in very high correlation and thus rendering the meth-
ods of [17, 5] unsuitable. Left of Fig. 5 shows the trajec-
tory of a single point on the 5th moving car of Versailles
Rond sequence for three different scales. Contrary to [5],
the trajectories at wrong scales does not show any acciden-
talness or violation of heading constraint, which proves its
ineffectiveness for relative scale estimation from smoothly
moving cameras. Our tracking framework coupled with the
various feedbacks is able to provide a realistic estimate and
also captures the high uncertainty present in such cases.
Typical road scenes also involves frequent degenerate mo-
tions, making them hard even for detection. Right image of
Fig. 5 shows an example of degenerate motion detection, as
the �ow vectors on the moving person almost move along
epipolar lines, but they are being detected due to usage the
FVB constraint (Sec. 2.2) which gets improved by incorpo-
rating feedback from static world reconstruction.

Comparison of different cues to BOT: Fig. 6 shows im-
provement in bearing only tracking for different cues. Left
graph shows the depth variance obtained for a moving car
in CamVid sequence. Since it is only tracked through BOT,
no SFM cue is available. Whereas the right �gure compares
the performance for 3rd moving car in Versilles Rond se-
quence. As seen in Fig. 6, feedback from SfM has the high-



Figure 5. LEFT: Moving object trajectory for three different scales of
0.04, 0.11 and 0.18, where 0.11(red) being the correct scale. RIGHT: De-
generate motion detection. Epipolar lines in Grey, �ow vectors after ro-
tation compensation is shown in orange. Cyan lines show the distance to
epipolar line. Moving Features detected are shown as red dots.

est effect in decreasing the uncertainty among all cues. For a
particular particle of BOT �lter, the ground-plane (GP) cue
constraints possible velocities to lie parallel to the plane.
Whereas SFM cue to BOT restricts it to an unique velocity
vector for each depth of the particle. Depth and Size bounds
can perform well even for highly correlated motions.

Figure 6. Comparison of different cues to the BOT namely Depth Bound
(DB), Ground Plane (GP) and SFM feedback.

System Details: The system is implemented as threaded
processes in C++. The open source libraries of TooN,
OpenCV and SBA (for bundle adjustment) are used
throughout the system. Runtime of the algorithm depends
on lot of factors like the number of bodies being recon-
structed, total number of independent motions being tracked
by the BOT, image resolution and bundle adjustment rules.
The system runs in realtime at the average of 14Hz (more
dataset speci�c runtime details in supplementary material)
in a standard laptop (Intel Core i7) compared to 1 minute
per frame of [16], with up to two moving objects being si-
multaneously tracked and reconstructed.

7. Conclusions
We presented a multibody visual SLAM system which

is an adaptation of multibody SfM theory in similar lines
as visual SLAM is for standard of�ine batch SfM theory.
We believe the proposed algorithm is one of the �rst sys-
tems to obtain a fast incremental multibody reconstruc-
tion across long real-world sequences involving dif�cult
degenerate and highly correlated motions, arising from a
smoothly moving monocular camera. The different mod-
ules of motion segmentation, visual SLAM and moving ob-
ject tracking were integrated and we presented, how each
module helps the other one. We present a particle �lter

based BOT algorithm, which integrates multiple cues from
the reconstruction pipeline. The integrated system can si-
multaneously perform realtime multibody visual SLAM,
tracking of multiple moving objects and uni�ed represen-
tation of them using only a single monocular camera.
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