
Interpolation Based Tracking for Fast Object
Detection In Videos

Rahul Jain, Pramod Sankar K.*, C. V. Jawahar
Center for Visual Information Technology

IIIT-Hyderabad, INDIA

{rahuljain@research., pramod sankar@research., jawahar@}iiit.ac.in

Abstract—Detecting objects in images and videos is very
challenging due to i) large intra-class variety and ii) pose/scale
variations. It is hard to build strong recognition engines for
generic object categories, while applying them to large video
collections is computationally infeasible (due to the explosion
of frames to test). In this paper, we present a detection-by-
interpolation framework, where object-tracking is achieved by
interpolating between candidate object detections in a subset of
the video frames. Given the location of an object in two frames
of a video-shot, our algorithm tries to identify the locations
of the object in the intermediate frames. We evaluate two
tracking solutions based on greedy and dynamic programming
approaches, and observe that a hybrid method gives significant
performance boost as well as speedup in detection. On 6 hours
of HD quality video, we were able to cut-down the detection time
from 10000 hours to 1500 hours, while simultaneously improving
the detection accuracy from 54% (of [1]) to 68%. As a result
of this work, we build a dataset of 100,000 car images, spanning
a wide range of viewpoints, scale and make; about 100 times
larger than existing collections [2], [3].

Index Terms—Object Detection, Object Tracking, Video.

I. INTRODUCTION

One of the first steps towards understanding videos is to rec-

ognize the objects present in them. Accurate object recognition

in videos would have significant impact in applications such as

human-computer interaction, robotics, surveillance, computer-

assisted driving, etc. However, there are many challenges

toward localizing objects in videos: i) the relative motion of

object(s) and camera results in a large variety of viewpoint and

scale changes with-in a given video, ii) the motion blur across

frames of a video is more pronounced, than in photographs,

iii) the intra-class variety of most categories is much larger

than those trained for, and iv) large quantities of data need

to be processed for each video, since each second of a video

consists of 25 frames/images.

In recent years, there has been significant progress in

recognising generic objects such as chair, bus, potted plant,
etc. from images [2]. Object recognition is typically posed as

a classification problem. Features and classifiers are carefully

selected and trained for this purpose. Use of dense SIFT-

like descriptors and SVM-like discriminative classifiers have

become the widely accepted candidates for visual recogni-

tion [4], [5], [6]. The localization of objects is typically

performed using the sliding-window technique [7]. A window

*Pramod Sankar K. is now with Xerox Research, Webster, USA.

Fig. 1. Car detections from our approach in frames where [1] could
not localize the same object with such accuracy. We use the localization in
neighboring frames to interpret the location in any given frame, resulting in
more accurate and faster detection.

is moved across the image, each window is classified against

the recognition engine. Multiple scales and aspect-ratios are

used for the sliding window to cover different viewpoints.

However, there are two issues with applying standard object

localization approaches to video data. Firstly, due to the

motion of the object, a wide variety of novel viewpoints and

aspect ratios are encountered for a given object. It is almost

impossible to train classifiers to handle such large variations.

Hence traditional classifiers typically fail in many instances

where the object is in an untrained orientation. Secondly,

traditional recognition schemes are computationally intensive.

A typical detection algorithm [1] runs at 1 frame/minute,

which is not suitable to handling large volumes of data. Due

to the slow nature of object detectors, researchers refrain from

applying them on every frame, instead applying them only on

every 10th or 25th frames.

In this paper, we shall propose an algorithm that addresses

both these issues for object localization in large collection of

videos. The premise of our work is that detectors need not be

agnostic within a given video. An object found in one of the

frames of the video, is very likely to appear in other frames

of the same video. In such cases, the appearance of the object

could be learnt and used to perform a more accurate classi-

fication. Further, we use KD-Trees to speedup matching of

detections and candidate windows, which would otherwise be

computationally expensive. Some example results are shown

in Figure 1, where a typical object detector performs poorly or

misses the object altogether, we are able to accurately localize

the object. The contributions of our paper are:

1) Augmenting state-of-the-art object detectors with track-

ing mechanisms, thus improving detection performance

by 14% over videos.

2) Speeding up object detection in videos; about twice as

fast as state-of-art.

3) An approach to build a large dataset of 100K cars, con-

sisting of various types-of-cars, viewpoints and scales.

2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics

978-0-7695-4599-8/11 $26.00 © 2011 IEEE

DOI 10.1109/NCVPRIPG.2011.31

102



II. PREVIOUS WORK

In the literature, object detection modules are typically

designed for specific classes of objects, such as faces and

person/pedestrians. Face detection is performed using simple

features based on Haar-wavelets [8]. Histogram of Oriented

Gradients (HoG) descriptors were designed and effectively

used for the task of pedestrian detection [9], which was later

applied to generic object detection [10], [11].

In case of videos, the detection time is an important crite-

rion. There are two common approaches to speeding up object

detection: the first is a cascade based approach [8], while the

other is by using random forests [12]. Zhu et al. [13] integrated

classifier-cascades with HoG [9], while Vedaldi et al. [7]

uses a cascade of classifiers with progressively increasing

complexity, for generic object detection. The major drawback

of cascade-based approaches is that one cannot recover from

the mistakes committed early in the cascade. The second

approach of random forests [12], [14], uses multiple decision

trees which typically use simple decision functions at each

node. However, they have the disadvantages of over-fitting

and lack of a principled method to tune and improve their

classification performance.

In another direction of work, detection is used as a step in

tracking objects. Kernel tracking [15] is typically performed

by computing the motion of the object from one frame to the

next. Such approaches are popular in the surveillance industry,

to track objects, typically from a fixed camera. Apart from

pure motion models, appearance of the object can be very

useful in tracking objects. For example, SIFT features on facial

regions was used to build ‘tubes’ of face detections within a

shot [16], while clothing and hair information was used to

track at longer intervals in [17]. In cases where object motion

is hard to model, especially of non-rigid objects, the problem

of tracking is re-posed as one of successive detection [18]. The

tasks of detection and tracking are combined into a unifying

framework in [19], and applied on tracking people in cluttered

scenes.

III. DETECTION AS INTERPOLATION

Typical object detection considers each video as a bag-

of-frames, thereby ignoring the temporal ordering and visual

overlap present in videos. In a sliding window approach, each

window of the video frames is considered as an isolated

test case, and the classifier is applied on them separately.

This results in a linear time complexity for these techniques,

resulting in detection times of the order 1 frame/minute [1]. It

is commonly observed that the detector accurately localizes

an object in one frame, while it fails to locate the object

in the very next frame, even in the presence of little visual

variation. In this paper, we shall propose a joint detection-

tracking approach, that effectively incorporates the temporal

overlap in a video, to speedup as well as improve and object

localization.

Let us assume that we are given the detection of an object

in the first and last frames of a video-shot. Such a seed
can be obtained by using manual annotation or by using a

strong (albeit expensive) object detector. Manual annotation

was traditionally considered expensive, but in recent times,

crowd-sourced image labeling using online games [20] or with

Mechanical Turk have become very common [21].

Given such seed detections, the problem is to infer the

position of the object in the intermediate frames. We observe

that the object traces a smooth but unknown path in the 3D

volume of space-time. Example paths of cars in the space-

time volume are shown in Figure 2 (left). Thus, the problem

of object detection at every frame, can be reposed as one of

identifying the path of the given object through the space-

time volume. Such a search would benefit from the fact that

the appearance of the object remains relatively unchanged

through the video-shot. Since the object to be detected in

each frame is known from the seeds, the search can focus on

identifying exactly those windows that belong to the selected

object; instead of comparing them with the variety of objects

present in the training set of a typical classifier. For example,

given the detections for a red Ferrari, the detector can focus

only on finding the same red Ferrari in intermediate frames.

Thus, it can avoid unnecessary comparisons of the candidate

windows with a black car or a blue bus, vis-a-vis the support

vectors of an SVM classifier.

Suppose, the object in the first frame has a location and

scale of L1 = (x1, y1, w1, h1), while the object in last frame

k of the video-shot is at Lk = (xk, yk, wk, hk). If the object

and camera are both stationary, the intermediate locations of

the object in the video-shot would remain exactly the same

as the first and last coordinates. If relative motion between

the object and camera is a straight line, the object locations

can be interpolated in the 4D coordinate space defined by the

location and scale parameters. However, if the relative motion

of the object with the camera is arbitrary, then the interpolation

needs to take into account the appearance of the object. If the

appearance of a window Wi is represented by any reasonable

feature named FWi
, then the interpolation uses the distance

between two windows Wi and Wj (from two different frames

in the videos) is defined by:

dWi,Wj = α · ||FWi , FWj ||+ (1− α) · ||Li, Lj ||.
Here, the first component ||FWi

, FWj
|| is a distance computed

over the features of the windows Wi and Wj , and the

second component ||Li, Lj || measures the distance between

the windows in the position/dimension space. We now present

two techniques that can be used to obtain object detections

without explicit recognition.

Greedy Extrapolation The greedy extrapolation method

performs a one-directional search in the temporal dimension.

Given a detection Li in frame i, the localization Li+1 of

the object in the next frame is assumed to be very close,

||Li+1, Li|| < ε. Using the statistics of the distribution of

location and scale, the search is limited to within 100 and 50

pixels along the horizontal and vertical directions respectively,

of the given seed detection. Six different aspect ratios are

created for each given seed detection, and the pruned search

window is scanned with a sliding window. Each window

103



Fig. 2. Depiction of the optimal interpolation method using a multi-stage
graph, solved with Dynamic Programming.

obtained is matched with the seed detection and the closest

window is declared as the detection in the current frame. The

newly obtained detection is used as the seed for localizing in

the next consecutive frame. Typically, the greedy extrapolation

needs to be restarted, if the detection strays off-the-course from

the actual object path, which is very common in real datasets.

Optimal Interpolation The interpolation method does a

bi-directional search of the sliding window space, in the

temporal direction. The path of the object is constrained to

begin and end at the given detection seeds at the first and

last (or any two) frames. Let us call the detection in the first

frame, the source, and the last frame as the target. The video-

shot can now be modeled as a directed multi-stage graph,

such as the one depicted in Figure 2 (right). Each stage

of the graph, consists of nodes representing each window

of the frame. Edges are present only across the different

stages, and absent within each stage. The edge weight is

given by the distance wj,k = dWj ,Wk
defined above, where

Wj ∈ Framei and Wk ∈ Framei+1. The cost of a given

path wsource, wsource+1, ..., wtarget−1, wtarget, is given by∑
i∈[source,target] wi,i+1.

The optimal path from source to the target should minimize

this objective function. While a naive exhaustive search on all

paths is expensive, this function can be solved efficiently using

Dynamic Programming (DP). At each frame Framei, the

optimal path from the source to each window Wj ∈ Framei

is stored along with the accumulated distance. Thus at each

stage of the multi-stage graph, only the optimal path to each

window needs to be stored along with the cost associated with

each path. When the target is reached in the graph, the optimal

path is simply the minimum cost path from the source. The

corresponding path from the source to the target, is output

as the interpolated track of the given object. This process is

depicted in Figure 2 (right).

A. Speeding up with Indexing Schemes

A single frame typically generates 50-60K sliding windows.

Matching candidate windows across frames is thus an ex-

pensive task of order O(N2). A brute force matching would

require about 4.5 hours for each pair of frames. However, the

need for exact matching can be speeded-up using approximate

nearest neighbor search. With approximate-NN, the data is

indexed and nearest neighbors are obtained from those data

points that fall in the same index.

The approximate NN approach of ours uses KD-Trees [22].

A KD-Tree partitions the feature space with axis-parallel

hyperplanes. The algorithm splits the data in half at each

level of the tree on the dimension for which the data exhibits

the greatest variance. When multiple randomized trees are

built, the split dimension is chosen randomly from the first D
dimensions on which data has the greatest variance. Multiple

trees define an overlapping split of the feature-space. These

trees are looked up for NNs, by comparing the query with

the bin-boundary at each level of the tree(s). The stopping

criterion for the search is determined by parameters set by the

user. Building a KD-tree from n points takes O(n log n) time,

by using a linear median finding algorithm. Inserting a new

point takes O(log n) and querying for nearest neighbors takes

O(n1−1/k +m), where k is the dimension of the KD-Tree and

m is the number of nearest neighbors

For KDTrees, we use the FLANN software provided

by [22]. In the implementation, the algorithm first traverses

the KD-tree and adds the unexplored branches in each node

along the path to a priority queue. It then finds the closest

center in the priority queue to the given query, and uses this

node to restart the traversal. The process is stopped when a

predetermined number of nodes are visited.

B. Hybrid Approach

From our experiments (see Table I), we observed that the

greedy approach is fast but inaccurate. We observe that greedy

approach works well on short sequences of frames, but fails

over longer ranges. This is mostly due to the influence of

background features in the windows, that confuse the matching

scheme. It was observed that the features on the background

are more stable than those on the car, especially when the pose

of the car changes. Thus the extrapolation slowly drifts to the

background. In the DP based approach, this drifting of the

detection window is checked by the constraint that the final

detection has to coincide with the target, which is known to

be a location of the car. However, the DP based algorithm is

slower than the greedy approach.

It is thus natural to combine both the techniques to create

a fast and accurate detector. In the hybrid approach, the DP is

not applied on every frame but only on equally spaced frames

(say every K-th frame). The DP returns a set of most plausible

detections at each K-th frame. The intermediate detections

between these pairs of every K-th frame, is performed using

the greedy approach. The results of the hybrid approach at

various K values is given in Table I (below). As is expected,

the hybrid method works best at a K = 5, as against larger

steps, while sampling at one frame per second (K=25), results

in a loss of performance in comparison with a full-fledged

detection.

IV. EXPERIMENTS

The dataset we consider for this paper comes from the

popular BBC TV show Top Gear [23]. We evaluate the per-

formance of our algorithms over 200 randomly selected shots

from three episodes of Season 15 of Top Gear. Groundtruth

104



PHOW PHOG
Baseline [1] Greedy DP Greedy DP

Accuracy 0.54 0.44 0.66 0.43 0.62
Time/frame 67 17 42 8 36

Hybrid Algorithm (PHOG)
Baseline [1] K = 5 K = 10 K=25 K = 50

Accuracy 0.54 0.59 0.53 0.47 0.39
Time/frame 67 16 12 10 9

TABLE I
(ABOVE)DETECTION PERFORMANCE AND DETECTION TIME (IN

SECONDS), FOR THE VARIOUS PROPOSED ALGORITHMS. (BELOW)
DETECTION PERFORMANCE FOR THE HYBRID ALGORITHM; WITH A K OF

5 WE OBTAIN ACCEPTABLE PERFORMANCE WITH 4 TIMES SPEEDUP.

is created on two random frames extracted from each of these

shots, for which the car in each frame is manually outlined.

The performance of the car detectors is evaluated by the

overlap measure [2] and defined as Overlap = Intersection
Union .

Intersection is defined as the region that is common to both

the inferred detections and the groundtruth, while Union is

their combined area.

Pre-processing The video is first segmented to shots, using

color histograms computed on multiple spatial blocks of each

frame. The distance between two adjacent frames is computed,

and a distance threshold is learnt from a small training dataset.

We choose a tight distance threshold to ensure high precision

of shot detection.

Seeds The initial seed detection that drive the extrapola-

tion/interpolation algorithms could be obtained either manu-

ally or using an off-the-shelf object detector. In our experi-

ments, we use the detector provided by [1] to obtain seed

detections. The detector was applied on the first and last

frames of every shot in the given video. Only those shots

which have cars detected in them are fed to the next phase

of interpolation across the shot. On average only 20% of the

shots are found to contain cars in them, thus the detection at

every frame can focus only on these shots.

Features We extract two different sets of features for

each window, namely PHOG [10], [11] and PHOW [7]. The

comparison of the two feature sets is shown in Table I. It

can be seen that the PHOW feature is a better descriptor than

PHOG, but the advantage of PHOG is that it is quicker to

compute. It was observed that a large percentage of the actual

time for detection is spent in feature extraction, in both PHOG

and PHOW. For example, in the greedy method with PHOG,

the feature computation alone was 6 seconds per frame. Thus,

further speedup could be achieved using more simpler features

which are quicker to compute; with a certain compromise on

localization performance.

Building the Car Dataset From our experiments, we

identify the best setting for large-scale car detection as us-

ing PHOW features with chi-square distance with a hybrid

algorithm of K = 5. These settings were used to detect cars

in all the six episodes of Season 15, amounting to 6 hours of

HD quality video, i.e 1280x720 resolution, 25 fps (9 GB of

compressed data). The resultant car dataset consists of more

than 100K cars, in a variety of orientations, scale and make

of the car.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we outlined a procedure to build large datasets

for specific object categories. In doing so, we were able

to improve detector performance as well as speed it up by

replacing explicit recognition with simpler feature matching.

In future work, we would address limitations such as tracking

cars that could go out-of-frame within a shot. Also, we

shall look to apply the techniques on larger datasets, as well

as to other object categories. The datasets built from these

videos would be used to re-train object detectors. It would

be interesting to apply similar techniques to track non-rigid

objects such as people.
REFERENCES

[1] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object
detection with discriminatively trained part based models,” IEEE PAMI,
vol. 32, no. 9, pp. 1627–1645, 2010.

[2] M. Everingham, L. V. Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” IJCV, pp. 303–338,
2010.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[4] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: an incremental Bayesian approach tested on
101 object categories.” in Workshop on Generative-Model Based Vision,
2004.

[5] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in Proc.
CVPR, 2006, pp. 2169–2178.

[6] A. Vedaldi and S. Soatto, “Relaxed matching kernels for object recog-
nition,” in Proc. CVPR, 2008.

[7] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple kernels
for object detection,” in Proc. ICCV, 2009.

[8] P. A. Viola and M. J. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proc. CVPR, 2001, pp. 511–518.

[9] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. CVPR, 2005, pp. 886–893.

[10] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using
random forests and ferns,” in Proc. ICCV, 2007.

[11] O. Chum and A. Zisserman, “An exemplar model for learning object
classes,” in IEEE Conference on Computer Vision and Pattern Recog-
nition, 2007.

[12] Y. Amit and D. Geman, “Shape quantization and recognition with
randomized trees,” Neural Computation, vol. 9, no. 7, pp. 1545–1588,
1997.

[13] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection
using a cascade of histograms of oriented gradients,” in Proc. CVPR,
2006, pp. 1491–1498.

[14] V. Lepetit and P. Fua, “Keypoint recognition using randomized trees,”
IEEE PAMI, vol. 28, no. 9, pp. 1465–1479, 2006.

[15] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Comput. Surv., vol. 38, December 2006.

[16] J. Sivic, M. Everingham, and A. Zisserman, “Person spotting: Video
shot retrieval for face sets,” in ACM International Conference on Image
and Video Retrieval, 2005.

[17] D. Ramanan and S. B. S. Kakade, “Leveraging archival video for
building face datasets,” in Proc. ICCV, 2007.

[18] D. Ramanan, D. A. Forsyth, and A. Zisserman, “Tracking people by
learning their appearance,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 1, pp. 65–81, 2007.

[19] M. Andriluka, S. Roth, and B. Schiele, “People-tracking-by-detection
and people-detection-by-tracking,” in Proc. CVPR, 2008, pp. 1–8.

[20] L. von Ahn, R. Liu, and M. Blum, “Peekaboom: A game for locating
objects in images,” in Proc. ACM CHI, 2006, pp. 55–64.

[21] A. Sorokin and D. Forsyth, “Utility data annotation with amazon
mechanical turk,” in First IEEE Workshop on Internet Vision at CVPR,
2008.

[22] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in Proc. VISAPP, 2009.

[23] BBC TopGear at: http://www.bbc.co.uk/topgear.

105


