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Abstract—In this paper, we give approximate algorithms
for privacy preserving distance based outlier detection for
both horizontal and vertical distributions, which scale well
to large datasets of high dimensionality in comparison with
the existing techniques. In order to achieve efficient private
algorithms, we introduce an approximate outlier detection
scheme for the centralized setting which is based on the idea
of Locality Sensitive Hashing. We also give theoretical and
empirical bounds on the level of approximation of the proposed
algorithms.
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I. INTRODUCTION

Data Mining, which is the process of extracting patterns
from large datasets, has become an important research area
due to the exponential growth of digital data and the storage
capabilities. However, in case of large datasets collected
from various input sources, oftentimes the data is distributed
across the network, rising concerns for privacy and security
while performing distributed data mining. To overcome this
problem, Privacy Preserving Data Mining (PPDM) methods
have been proposed, which are based on Data randomization
techniques and Cryptographic techniques. PPDM methods
based on the latter were introduced by Lindell and Pinkas
in [7]. In that paper, an algorithm for Privacy preserving
ID3 Classification was described. Subsequently, privacy
preserving algorithms have been proposed for various data
mining tasks such as association rule mining, classification,
clustering and outlier detection.

Privacy preserving outlier detection (PPOD) was intro-
duced by Vaidya et al. in [11]. They use the definition
for distance based outliers provided in [6], and give PPOD
algorithms for both horizontal and vertical partitioning of
data. Subsequently, a PPOD algorithm using the k-nearest
neighbor based definition [9] was given in [12], consider-
ing only vertical partitioning. However, all of the above
mentioned algorithms have quadratic communication and
computation complexities in the database size, making them
infeasible while dealing with large datasets. To the best of
our knowledge, no other work in the field of PPDM based
on cryptographic techniques has addressed distance based
outlier detection. Privacy preserving density based outlier
detection algorithms have been proposed in [2], [10].

In this paper, we propose approximate PPOD algorithms
for both horizontal and vertical partitioning of data. As

opposed to the current PPOD algorithms which provide
privacy for already existing outlier detection algorithms, we
develop a new outlier detection scheme for the centralized
setting in order to achieve efficient algorithms in private
settings. The centralized scheme is based on our previous
work on approximate outlier detection [8] which uses Lo-
cality Sensitive Hashing (LSH) technique [5]. We also give
theoretical bounds on the level of approximation and provide
the corresponding empirical evidence.

The computational complexity of our centralized algo-
rithm is O(ndL) for d-dimensional dataset with n objects.
The parameter L is defined as n1/1+ε, where ε > 0 is an
approximation factor. The computational complexity of our
PPOD algorithms in both horizontally and vertically dis-
tributed settings is same as that of the centralized algorithm,
which is a considerable improvement over the previous
known result of O(n2d). The communication complexity in
vertically distributed setting is O(nL) and in horizontally
distributed setting it is O(NbL logn); where Nb << n,
is the average number of bins created during each of
the L iterations of LSH. Thus in both cases, we show a
significant improvement over the existing communication
complexity, which is quadratic in dataset size. Further, the
communication cost of our privacy preserving algorithm in
horizontal distribution is independent of data dimensionality
and hence works very efficiently even for datasets of very
large dimensionality as opposed to the existing algorithms.
However, we achieve the above mentioned improvements at
the cost of an approximate solution to outlier detection.

II. OVERVIEW AND BACKGROUND

Our outlier detection scheme uses the definition for a
distance based outlier proposed by Knorr et al. [6].

Definition 1. DB(pt, dt) outlier: An object o in a dataset D
is a DB(pt, dt) outlier if at least fraction pt of the objects
in D lie at a distance greater than dt from o.

In our approach, we use the converse of this definition
and consider an object to be a non-outlier if it has enough
neighbors (p′t) within distance dt, where p′t = (1−pt)×|D|.
Since the fraction pt is very high (usually set to 0.9988), the
modified point threshold p′t will be very less compared to
the number of objects in D. This allows us to easily detect
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most of the non-outliers by finding only p′t objects within
distance dt.

To efficiently find the near neighbors, we use the Locality
Sensitive hashing technique. Given a set of objects, the
LSH scheme hashes all the objects in such a way that all
those objects within a specified distance are hashed to the
same value with a very high probability. This way, all those
non-outliers in the data which have many near neighbors
can be identified easily, without calculating the distances
to every other object in the dataset. Moreover, using LSH
properties, whenever we identify a non-outlier we will be
able to say most of its neighbors as non-outliers without
even considering them separately. Thus, we obtain a very
efficient pruning technique where, most of the non-outliers
in the dataset can be easily pruned. The remaining points
after pruning are the set of probable outliers which will
contain very few non-outliers. To further remove these non-
outliers, we use the probabilistic nature of LSH. The idea
is to take the intersection of the sets of probable outliers
over multiple runs, to output the final set of approximate
outliers. The approach works because each set of probable
outliers will contain the actual outliers with extremely high
probability.

In our privacy preserving protocol for horizontally dis-
tributed data, each player locally computes its own set of
probable outliers using the centralized algorithm with global
distance and point threshold parameters. In the next phase,
all the players communicate to obtain their subset of the
actual outliers in the total database. In case of vertically
distributed data, all players first communicate to obtain the
LSH binning of all the objects considering all the attributes.
Next, the players locally compute the probable outliers
using the global LSH binning information. We consider
Honest-But-Curious (HBC) adversary model in our privacy
preserving algorithms [4].

A. Locality Sensitive Hashing

The idea of Locality Sensitive Hashing was first intro-
duced in [5]. The basic concept of LSH is to hash all the
objects such that similar objects are hashed to the same bin
with high probability. Mathematically, this idea is formalized
as follows:

Definition 2. A family H ≡ h : S → U is called
(r1, r2, p1, p2)-sensitive if for any two objects p, q in S:

if d(p, q) ≤ r1 : Pr[h(p) = h(q)] ≥ p1 (1)

if d(p, q) ≥ r2 : Pr[h(p) = h(q)] ≤ p2 (2)

where d(p, q) is the distance between objects p and q.
For the hashing scheme to be locality sensitive, two

conditions to be satisfied are r2 > r1 and p2 < p1;
(1 + ε) = r2/r1, is the approximation factor. In order
to amplify the gap between the probabilities p1 and p2,
standard practice is to concatenate several hash functions

to obtain a hash family G = {g : S → Uk} such that
g(p) = (h1(p), h2(p), ..., hk(p)); where k is the width of
each hash function and hi ∈ H . For a hash function family
G, the probabilities in Equation 1 and 2 are modified as:

if d(p, q) ≤ r1 : Pr[g(p) = g(q)] ≥ pk1 (3)

if d(p, q) ≥ r2 : Pr[g(p) = g(q)] ≤ pk2 (4)

During LSH, each object o ∈ D is stored in the bins
gj(o) for j = 1, 2...L; where each g is drawn independently
and uniformly at random from G i.e., each object is hashed
using L hash functions drawn from G and stored in the
corresponding bins. The optimal values for the parameters
k and L are computed as [5]: k = log1/p2

n and L = nρ

where ρ = ln (1/p1)
ln (1/p2)

. In our algorithms, we use the LSH
scheme based on p-stable distributions introduced in [3].

III. ALGORITHMS

A. Centralized Setting

The algorithm for centralized setting is executed in two
phases. In the first phase, the LSH scheme is used to hash all
the objects to generate the binning structure. In the second
phase, this LSH binning is used to compute the set of
approximate outliers.

The algorithm CentralizedOD takes as input the dataset
D, distance threshold dt and point threshold pt and outputs
the set of approximate outliers M . In the First phase, ini-
tially the modified point threshold p′t and the LSH distance
parameter R are computed as: p′t = (1 − pt) × |D| and
R = r1 = dt/c, where c = (1 + ε). The LSH scheme is
then run on the dataset D with the parameter R. In the LSH
scheme each object is hashed using L hash functions each
of width k, as explained in Section II-A. The output is a
binning structure T with each bin having the objects hashed
to that bin.

Algorithm 1 CentralizedOD
Input: Dataset D, Distance Threshold dt, Point Threshold

pt
Output: Outliers M

1: p′t = (1− pt)× |D|
2: R = dt/c
3: T = LSH(D,R)
4: Compute bt // Compute the optimal bin threshold using

Equation 8
5: M = Pruning(D,T, p′t, bt)
6: Return M

In the second phase Pruning, most of the objects which
cannot be outliers are pruned. Initially all the objects in the
dataset are marked as not pruned. For pruning, each object o
is considered and is processed only if it has not been marked
as pruned, in which case we find the number of neighbors
o has within distance dt. To find the neighbors, the L bins
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to which o is hashed during LSH are considered and the
set of all objects stored in those L bins is formed (without
removing duplicates). We denote this set by Neighbors. The
objects in this set are the probable neighbors of o. More
precisely, from Equation 4, we know that each object in the
set Neighbors is within the distance r2 = (1+ ε)× r1 = dt
from o, with a probability at least (1 − pk2). To boost
this probability, we consider only those objects which are
repeated more than bt (bt ≤ L) times in the L bins and
store only those objects in a new set RepeatedNeighbors.
In other words, we are reducing the error probability of
considering a non-neighbor as a neighbor of the object o.
Here, bt is a bin threshold which can be computed based on
the desired false negative probability. We propose a method
to compute the optimal value of bt later in this section.

Algorithm 2 Pruning

Input: Dataset D, Hash Table T , Point Threshold p′t, Bin
Threshold bt,

Output: M
1: M = {}
2: ∀o ∈ D, pruned[o] = false
3: for each object o in D do
4: if pruned[o] = false then
5: Neighbors =

⋃L
i=1 T [gi(o)] // g is the hash func-

tion
6: RepeatedNeighbors = {o′ | o′ ∈ Neighbors and

occurrence(o′) ≥ bt}
7: if |RepeatedNeighbors| > p′t then
8: ∀o′ ∈ RepeatedNeighbors, pruned[o′] = true
9: else

10: M = M ∪ {o}
11: end if
12: end if
13: end for

If the cardinality of the set RepeatedNeighbors is greater
than the modified point threshold p′t, with a very high
probability o cannot be an outlier since it has sufficient
neighbors within distance dt. Moreover, this holds true
for all the objects in RepeatedNeighbors because from
Equation 4, any two objects in this set are within distance
dt, i.e., every object other than o also has more than p′t
neighbors with in the distance dt, so it can not be an
outlier (with very high probability). Hence, all objects in
RepeatedNeighbors are marked as pruned (non-outlier).
If, on the other hand the cardinality of RepeatedNeighbors
is less than or equal to p′t, we consider the object o as a
probable outlier and add it to the set of probable outliers
M . This procedure is repeated till all the objects are either
marked as pruned or as outliers. Finally, the set M of
the probable outliers is returned. We denote the number of
objects actually processed during Pruning as Npr and later
in sub-section III-A3, we give a bound for Npr.

The set M contains the actual outliers as well as a few
false positives and extremely low false negatives. In the
following sub-section we give a theoretical bound on the
number of false positives and false negatives and in sub-
section III-A2 we give a method to reduce the false positives.

1) False Positives and False Negatives: In the context
of outlier detection, a false positive (fp) is to label a non-
outlier as an outlier and false negative (fn) is to label an
outlier to be a non-outlier. From [8], we know that the false
positive and false negative probabilities are:

Pr[fp] < bt ×
(

L

L− bt

)
(1− p

k(L−bt)
1 )pkbt1 (5)

Pr[fn] < (L− bt)×
(
L

bt

)
pkbt2 (1− pkbt2 )L−bt (6)

2) Reducing False Positives: The technique to reduce the
false positives is based on the probabilistic nature of the
LSH scheme. The LSH scheme based on p-stable distri-
bution projects all objects onto random lines. Due to this
randomization, each execution of the LSH scheme projects
the objects onto different lines which in turn ensures that the
output of the centralized algorithm is probabilistic. However,
choosing an optimal bin threshold ensures that the actual
outliers in the dataset are returned in the output of the
centralized algorithm even over multiple runs. Hence, to
further reduce the false positives, we run the centralized
algorithm over a fixed number of iterations iter, and take the
intersection of the resulting sets and return this intersection
set S as the final output. i.e., S =

⋂iter
i=1 Mi. Since for a

false positive to occur in the set S it should occur in each
of the sets Mi, we have the modified false positive and false
negative probabilities as:

Pr′[fp] = (Pr[fp])iter (7)

Pr′[fn] = 1− (1− Pr[fn])iter (8)

As can be seen from the above formulas, the modified
probability of a false positive decreases exponentially with
the number of iterations and thus we need to run only few
iterations to achieve very few false positives. We discuss
more about the effect of iter on the false positives and
false negatives in the experiments section. Furthermore, the
false positives which remain in the final output can be
termed as weak non-outliers, in the sense that most of these
objects have marginally greater number of neighbors than
the required threshold of objects to make an object a non-
outlier. We support this claim by giving empirical results in
the experiments section.

An optimal value for bt would be one which would
remove the false negatives at the cost of introducing minimal
false positives. In our scheme, the user has the flexibility to
fix bt, based on the false negative probability desired, using
Equation 8.
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3) Bound on Number of Processed Objects Npr: We
give an upper bound on the number of objects which are
processed during Pruning. Let the actual number of outliers
in the dataset be m. Consider the worst case scenario where
all the actual non-outliers in the dataset have exactly p′t
number of objects as neighbors. The number of objects
processed, Npr, would be maximum in the above mentioned
case for which the bound is given as:

Npr = (
n−m− fp

p′t
+m+ fp)

where n = |D| and fp is the number of false pos-
itives. Usually, in a DB(pt, dt) outlier detection scheme
the fraction pt is set to 0.9988, in which case p′t will be:
p′t = (1− pt)n = .0012n. Since n >> m and n >> fp we
can approximate (n −m − fp) to n and hence, the bound
for number of objects processed is: Npr < ((n/.0012n) +
m + fp) < m + fp + 834. This is the worst case bound
and usually the actual number of objects processed will be
much less than the above mentioned inequality. Later in the
results section, we show that for large datasets, Npr is in
fact less than 1% of the size of the total dataset.

B. Horizontal Distribution

In case of Horizontal partitioning, each player has the
same attributes for a subset of the total objects. The al-
gorithm for privacy preserving outlier detection over hori-
zontally distributed data is executed in two phases. In the
First phase, each player locally computes its set of local
probable outliers, by running CentralizedOD on its local
dataset. These local outliers contain the global outliers as
well as a few non-outliers for which enough neighbors do
not exist in the respective local datasets but exist in the
entire dataset considering all the players. To prune these
non-outliers, all the players engage in communication in
the Second phase in order to generate the global neighbor
information and compute their subsets of the global probable
outliers. We define the local and global outliers as follows.

Definition 3. local outlier: given a distance threshold dt
and a point threshold pt, an object o with player Pi is a
local outlier if the number of objects in the local dataset Di

lying at a distance greater than dt is at least a fraction pt
of the total dataset D.

Definition 4. global outlier: given a distance threshold dt
and a point threshold pt, an object o in a dataset D is a
global outlier if at least fraction pt of the objects in D lie
at a distance greater than D from o.

We consider t players, each with dataset Di for i = 1 to
t and ni = |Di| such that the size of the entire dataset D
is n =

∑t
i=1 ni. We assume that n is known beforehand

to all the players, otherwise it could be computed using a
SecureSum protocol. Apart from this, the algorithm takes
as input distance and point thresholds. At the end of the

algorithm each player has its subset of the outliers in the
dataset D.

Algorithm 3 Horizontal Distribution
Input: t Players, Datasets Di for i = 1 to t, Total Dataset

size n, Distance Threshold dt, Point Threshold pt
Output: Outliers Mi; i = 1 to t

1: At P1:
2: Compute LSH parameters k, L and w
3: Generate A and B // A and B are k × L matrices
4: Publish k, L, w, A and B
5: for each player i = 1 to t do
6: p′t = (1− pt)× n
7: R = dt/c
8: Ti = LSH(Di, R,A,B)
9: Compute bt

10: M ′
i = Pruning(Di, Ti, p

′
t, bt)

11: end for
12: for each player i = 1 to t do
13: BinLabelsi = {label of each bin in Ti}
14: end for
15: BinLabels = SecureUnion(BinLabelsi); i = 1 to t
16: for each player i = 1 to t do
17: for l = 1 to |BinLabels| do
18: if BinLabels(l) ∈ BinLabelsi then
19: Ci(l) = |Ti(l)|
20: else
21: Ci(l) = 0
22: end if
23: end for
24: end for
25: C = SecureSum(C1, C2, ..., Ct)
26: for each player i = 1 to t do
27: Ĉi = C − Ci

28: for each object o in M ′
i do

29: Neighborsi =
⋃L

j=1 Ti[gj(o)]
30: RepeatedNeighborsi = {q ∈ Neighborsi |

occurrence(q) ≥ bt}
31: req nni = p′t − |RepeatedNeighborsi|
32: V alidBinsi = {bj | bj = gj(o) and Ĉi[gj(o)] >

req nni, j = 1, 2, ...L }
33: if |V alidBinsi| < bt then
34: Mi = Mi ∪ {o}
35: end if
36: end for
37: Return Mi

38: end for

Our algorithms are based on LSH scheme using p-
stable distributions [3], where each hash function for a d-
dimensional object v is computed as:

ha,b(v) = 	a.v + b

w

 (9)
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While performing LSH on the local datasets, in each
iteration of LSH, all the players need to use the same
randomness so that, in any one iteration, all the objects
are projected onto the same line. Hence, any one player,
let us say P1 computes the LSH parameters k and L and
generates the random vectors A and B. Here, each element a
of the k × L matrix A is a d-dimensional vector whose each
entry is independently drawn from a p-stable distribution
and each element b of the k × L matrix B is a random
number in [0, w]. P1 then publishes these values to all the
other players. Each player then computes the modified point
threshold p′t = (1− pt)×n and LSH distance parameter R.
Note that the parameter p′t is computed based on the size of
the entire dataset instead of the size of the local dataset. The
LSH scheme is then run on the local dataset using the above
computed parameters which outputs the binning structure Ti.
(Here, the LSH scheme is a bit different from that of the
centralized setting in that the random vectors A and B are
given as input to the LSH scheme whereas in the actual LSH
scheme these values are generated with in the LSH protocol.)
The protocol Pruning is then invoked, which returns the set
of local probable outliers M ′

i .
In the Second phase, to form the set of global outliers,

each player requires the total number of objects with all the
other players that are hashed to each bin. Since the binning
at each player is performed with the same global LSH
parameters, we can find the correspondence between LSH
bin structure across the players. However, the bin labels with
each player might be different (considering only the non-
empty bins). Hence the players communicate to form the
union of all the bin labels (BinLabels) using the SecureUnion
protocol [1] (steps 12-15). While forming BinLabels, each
bin label needs to be indexed with the iteration number
during LSH (1 to L) in order to differentiate between bins
of same labels created during different iterations of LSH.
Each player then counts the number of objects it has in
each of the bins in BinLabels to form the local bin count
structure Ci (steps 17-23). Next, the SecureSum protocol [1]
is used to compute the global bin count structure C from
the corresponding local bin count structures Ci of all the
players (step 25). Each player i then locally computes the
sum of the other t − 1 player’s counts for all the bins i.e.,
Ĉi = C − Ci (step 27).

At every player, each object o in the set of local probable
outliers M ′

i is then considered to determine whether it is a
global outlier. To get the number of neighbors of o in the
local dataset, the cardinality of the set RepeatedNeighborsi
for o is computed. This step is actually redundant if the
value is stored in the First phase (during Pruning). This
value would be less than p′t since the object was considered
a local probable outlier in the First phase. The number of
neighbors required to make it a non-outlier is computed as:
req nni = p′t − |RepeatedNeighborsi|. To get the count
of neighbors of o which are available with other players, the

corresponding bins in Ĉi (i.e. those L entries in Ĉi indicated
by gj(o) where j = 1 to L) are considered. If any of these L
bins have count greater than req nni, we can consider the
object o to be a non-outlier. However, as explained in the
centralized scheme, to reduce the false negative probability,
we require bt such bins to make the object a non-outlier. To
achieve this, only those bins which have object count greater
than req nni are said to be V alidBinsi. If the cardinality
of V alidBinsi is less than bt, the object o is considered
as a global outlier and added to the set of global probable
outliers Mi.

Algorithm 4 Vertical Distribution
Input: t Players, Dataset D vertically distributed among the

players, Distance Threshold dt, Point Threshold pt
Output: Outliers M

1: for each player i = 1 to t do
2: p′t = (1− pt)× |Di|
3: R = dt/c
4: Compute LSH parameters k and L
5: Generate Ai where dim(Ai) = di
6: for each object o in Di do
7: So

i = (Ai . o) // S and A are k × L matrices
8: end for
9: end for

10: for each object o in D do
11: So = SecureSum(So

1 , S
o
2 , .., S

o
t )

12: end for
13: At P1 :
14: Generate B and w // B is k × L matrix
15: for each object o in D1 do
16: Ho = 	So+B

w 
 // H is k × L matrix
17: end for
18: Compute T using H
19: M = Pruning(D1, T, p

′
t, bt)

20: Publish M

As in the centralized setting, the whole algorithm is
run over multiple iterations and the intersection of all the
global probable outlier sets is returned as the final set of
outliers at each player. Since the procedure to find the
global outliers is a bit different from that of finding outliers
in the centralized scheme, the false positive rate increases
slightly in comparison to that of the centralized algorithm.
We discuss more about the performance of Algorithm 3 in
the experiments section.

C. Vertical Distribution

In the case of vertically distributed data, each player
collects information about different attributes for the same
set of objects such that the union of all the attribute subsets
equals the global attributes and all the attribute subsets are
disjoint. The algorithm for PPOD over vertically partitioned
data is executed in two phases. In the First phase, all
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Table I
ALGORITHM COMPLEXITY

Setting Round Communication Computation
Centralized - - O(ndL)
Vertical 2 O(nL) O(ndL)
Horizontal 3 O(NbL logn) O(ndL)

players engage in communication to get the LSH binning
of all the objects in the dataset considering all the attributes
(distributed across players). In the Second phase, using this
global binning information, each player locally computes the
probable outliers.

The algorithm takes as input dataset D of dimension-
ality d, vertically distributed across t players such that
dim(Di) = di, |Di| = |D| = n, for i = 1 to t and∑t

i=1 dim(Di) = d. The algorithm also takes as input
the parameters dt and pt and outputs the set of outliers
M . As explained earlier, in the LSH scheme based on p-
stable distributions, each hash function for a d-dimensional
object v is computed as shown in Equation 9. In the vertical
distribution, where each player has some di dimensions of
the total d dimensions, each player can locally generate the
respective di entries of the vector a (this is possible since
each entry of the d-dimensional vector a is independently
chosen from a p-stable distribution) and compute its local
share (ai.vi) of the dot product (a.v). The players then
compute the SecureSum of their shares to get (a.v). Since
the values of b and w can be public (can be generated by
one player and then be published), all the players can build
the LSH binning structure using the dot products previously
computed. Using this binning structure, each player can
locally invoke the Pruning protocol to compute the set of
probable outliers. To reduce the overall computation, all
these operations can be carried out by any one player who
then publishes the final outlier set. The procedure is outlined
in Algorithm 4. Now we will explain the important steps of
the given algorithm.

Initially, each player i locally generates Ai, where each
element ai is drawn from a p-stable distribution as explained
before. In Steps 6-8 each player will compute their respective
shares of the dot products for all the objects. In step 11,
the SecureSum protocol is used to compute the dot product
from all the shares. Steps 14-20 are carried out at any single
player, let us say P1. In step 14 the values of B and w
are generated, where each element b of the k × L matrix
B is a random number in [0, w]. In step 16, the previously
computed dot products are used to evaluate the hash function
values for all the objects. The LSH binning is generated
using these hash values and then the Pruning protocol is
invoked to compute the set of probable outliers M . Finally,
this set M is published.

We can reduce the false positives by applying the same
technique of centralized setting discussed in Section III-A2.
That is, we run the entire Algorithm 4, iter times and take
the intersection of the resulting sets of probable outliers Mi

for i = 1 to iter. Since all these runs are independent, we
can execute them in parallel to lower the number of rounds.

IV. ANALYSIS

A. Centralized Setting

Computational Complexity: In Algorithm 1, steps 1 and 2
are of constant complexity. The complexity for computing
the LSH (step 3) is O(ndkL). The complexity of Pruning
sub-protocol is O(nLNpr). As explained in Section III-A3,
Npr << n. Considering only dominating terms and since
k << n, the total complexity of the algorithm over a
constant number of iterations is O(ndL).

B. Horizontal Distribution

Computational Complexity: We give the computational
complexity from the perspective of player P1. The compu-
tational complexity of step 3 is O(kL). Steps 8 and 10 have
complexity of O(n1dkL) and O(n1Npr1L) respectively,
where Npr1 is the number of processed objects of player 1.
The complexity of step 13 and steps 17-23 depends on the
average number of non-empty bins Nb created during each
iteration of LSH. In the worst case where each object in
the dataset is hashed to a different bin, the number of bins
would be equal to the dataset size. However, the number
of bins would be much less than the total data size in the
average case. Thus the average case complexity for step 13
and steps 17-23 is O(NbL); where Nb << n. Similarly,
the complexity of step 27 is O(NbL). The complexity for
steps 28-36 is O(m′1L); where m′ = |M ′

1|. Considering the
dominating terms, the computational complexity for player
P1 is O(n1dL). The overall computational complexity of
Algorithm 3 is O(ndL).

Communication Complexity: In Algorithm 3, communi-
cation among the players happens in steps 4, 15 and 25.
Step 4 has a communication complexity of O(kL). The
average case communication complexity for step 15 is
O(NbL); where Nb << n. The corresponding average case
communication complexity for step 25 is O(NbL logn).
Thus the overall communication complexity for Algorithm 3
is O(NbL logn).

Security Analysis: In Algorithm 3, the values commu-
nicated in step 4 are public values and do not reveal any
private information. After executing steps 15 and 25, each
player has the count of objects in the entire database that
are hashed to each bin. From this, each player can infer
about the distribution of the objects of all the other players
but cannot infer about the distribution of any single player
when more than two players are involved (since SecureUnion
and SecureSum are used). However, in most cases where the
objects with each player come from a same distribution, this
information is usually known before hand and thus there is
no extra information revealed.
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Table II
DATASET DESCRIPTION

Dataset Objects Attributes Source
Corel 68040 32 kdd repository
MiniBooNE 130064 50 UCI repository
Landsat 275465 60 vision lab, ucsb
Darpa 458301 23 Lincoln Laboratory, MIT
Household 1000000 3 US Census Bureau

C. Vertical Distribution

Computational Complexity: We give the computational
complexity from the perspective of player P1. In Al-
gorithm 4, steps 2-4 have constant complexity. Step 5
has a complexity of O(kL). Step 7 has a complexity of
O(nd1kL). Step 14 has a complexity of O(kL). Steps 16
and 18 have a complexity of O(nkL) and finally step 19
has a complexity of O(nLNpr). Thus the complexity for
player P1 would be O(nd1L); where d1 is the number of
dimensions P1 has. The overall computational complexity
of Algorithm 4 is O(ndL).

Communication Complexity: In Algorithm 4, communi-
cation among the players is necessary only in steps 11
and 20. Among these, step 11 is the dominating factor in
terms of the communication complexity, where for each
object in the dataset, we need to perform k× L SecureSum
operations. Thus, the overall communication complexity of
the algorithm would be O(nL), since k << n.

Security Analysis: In Algorithm 4, the set of outliers is
published by one player in step 20 and this would not reveal
any private information since this is the desired output to be
made public. In step 11, the SecureSum protocol is used to
evaluate the dot product of all the shares with the players
and hence no information about the local shares is revealed.
Since each player knows the LSH binning considering all
dimensions, some information about the global distribution
of the dataset could be inferred. However, as explained in
the case of horizontal distribution, this information is known
beforehand in most of the cases.

V. EXPERIMENTS

Experiments are performed on datasets listed in Table II.
For all our experiments the approximation factor ε is set to
2 (empirically determined). All experiments are executed on
Intel(R) Core i7 CPU 3.33GHz machine.

A. Centralized Setting

Execution Time: The execution time (in seconds) averaged
over multiple runs of our centralized algorithm is tabulated
in Column 2 of Table III. Since all the iterations of our
algorithm are independent they can be run in parallel to
achieve the speed up.

Bin Threshold: We computed the optimal bin threshold
bt as described in Section III-A2 for mentioned datasets
and ran our algorithm using the same bin threshold. The
results are summarized in Table III. Column 3 specifies the
optimal value of bt for each dataset and column 4 specifies
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Figure 1. Bin Threshold Vs False Positive and Detection rate

Table III
PERFORMANCE OF CENTRALIZED ALGORITHM

Dataset Time (s) bt FP (%) Npr (%) pt NN
Corel 30.77 45 0.011 0.62 82 147
MiniBooNE 26.55 40 0.006 0.04 157 366
Landsat 44.11 30 0.014 0.36 331 929
Darpa 50.00 30 0.031 0.68 550 1103
Household 61.63 25 0.009 0.14 1200 1326

the number of false positives (in %) at the optimal bt. As
can be seen from the results, the false positive rate is quite
less (the average false positive rate across the datasets is
0.0142%) proving that the approximation of our algorithm is
very good. The detection rate for each dataset at the optimal
bt is 100% (i.e., no false negatives). Furthermore, for each
of these false positives, we calculated the actual number
of neighbors with in distance threshold dt and listed the
average number of neighbors (denoted as NN ) for each false
positive in column 7. For each dataset, this number NN
is only marginally greater than the actual point threshold
pt (mentioned in column 6) when compared to the total
dataset size. Hence, these false positives could be considered
as weak non-outliers as claimed in Section III-A2 or even
as outliers for many practical purposes.

Number of processed objects: For each dataset, the num-
ber of objects processed (Npr) during Pruning protocol in
Algorithm 1 are listed in column 5 (in %). The values in
this columns shows the efficiency of our pruning technique
and the number of objects processed is indeed less than 1%
of the dataset size as is claimed in Section III-A3.

The effect of varying bin threshold on false positives and
false negatives is shown in Figure 1. It is evident from the
figure, as we increase the value of bt, the number of false
negatives decrease (i.e., detection rate increases) at the cost
of increase in the number of false positives.

Iterations: The effect of varying the number of iterations
iter on the false positives at the optimal bin threshold
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Figure 2. Communication in Horizontal Distribution

is shown in Figure 3. As can be seen from the figure,
the number of false positives decreases exponentially with
increase in iter. Thus, the number of iterations to be run to
achieve a very good approximation would be very less.

B. Distributed Settings

We discuss about the performance of the proposed privacy
preserving algorithms for horizontal and vertical distribu-
tions. We have run the Algorithm 3 considering two players
with uniform distribution of dataset among the players. At
the optimal value of bt, the rate of false positive increases by
an average of 0.02% across the datasets, while the false neg-
atives remain zero. We have computed the communication
cost of the horizontal algorithm over 100 iterations for the 2-
player case and compared it with that of Algorithm 1 given
in [11], which has a cost of O(n2d) and gave the results for
different datasets and by varying the dataset size in Figure 2.
From the figure, it is clear that the rate of increase in the
cost is very less compared to the O(n2d) method.

In case of vertical distribution, the performance of Al-
gorithm 4 in terms of false positive and false negative rates
remain same as that of the centralized algorithm. We ran Al-
gorithm 4 considering two players with uniform distribution
of dimensions and compared the communication cost with
that of Algorithm 2 given in [11], which has a cost of O(n2).
Up to datasets having size of order 106, the difference in
the cost is up to order 103, but the difference would become
more considerable as the dataset size increases.

VI. CONCLUSION

In this paper, we have proposed an approximate distance
based outlier detection algorithm for the centralized setting,
which is based on the LSH technique. Theoretical bounds on
the approximation of our algorithm are given and supported
by providing experimental results on various datasets. Next,
we gave privacy preserving algorithms in both horizontal
and vertical distributions of data with improved computation
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Figure 3. Effect of Iterations

as well as communication costs. Also, a comparison of the
communication cost of both algorithms with the previous
known result was given. One direction for future work is to
use the LSH technique in other data mining tasks in order
to achieve efficient privacy preserving algorithms.
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