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Abstract—As the complexity of 3D models used in computer
graphics applications grows, there arises a need to visualize the
overall distribution of detail on them. Detail is a function of
the amount of information present on a surface. In this paper,
we present a method to quantify detail using a combination of
local measures of curvature and density. We show that detail
can be used for applications like ordering for mesh decimation,
visualizing abnormalities in a mesh and so on.
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I. INTRODUCTION

As the complexity of 3D models used in computer graphics

applications grows, there arises a need to visualize the overall

distribution of detail on them. A measure of detail helps us to

separate the high frequency information present in a polygon

meshes from the large scale structure of the mesh or the

low frequency variations. In our paper, we present a method

to quantify detail using a combination of local measures of

curvature and density.

Detail for a polygon mesh refers to the amount and variation

of surface structures. To quantify the variation, measures

of curvature exist. Curvature is usually thought of in local

terms, i.e., most discrete curvature measures are indicative of

variation in a small region around a vertex. To include scale

into such a measure so as to have a quantifiable measure of

detail, it is necessary to bring in the local density as well.

Thus, a measure of detail comes about by combining these

two measures in a suitable manner.

After having identified high and low detail regions of a

mesh, we can operate selectively on these regions to modify,

enhance or remove them. Some direct applications of the above

can be ordering of polygons for decimation, creation of mesh

aware displacement maps and so on. Such a model can also

be used for visualizing the detail in realtime which could be

of great use for artists wishing to control the amount of detail

present on different regions of a mesh.

II. RELATED WORK

Existing methods for quantifying mesh detail are scarce.

However, there have been many papers addressing the issue

of local curvature estimation for polygonal meshes utilizing

either Gaussian or mean curvature measures.

An early attempt at curvature estimation for discrete sur-

faces was carried out by Hamann [1] in 1993. A simple

scheme for approximating the principal curvatures at each

vertex of a triangular mesh is developed using quadratic

polynomials. This is based on the fact that a surface can locally

be represented as a bivariate function.

A particularly interesting method utilizing differential ge-

ometry is presented in the paper by Gelas et al. [2] Here,

discrete curvature operators are defined using a combination

of two basic operators as expressed by Meyer et al. [3]. These

two operators are applied only in what they call the ’region

of influence’, which is the 1-ring neighborhood of a vertex,

making it similar to our approach.

Rusinkiewicz [4] generalizes the discrete curvature measure

using a finite-differences approach to better estimate curva-

tures on irregular triangle meshes. This method is inspired by

the simple algorithm to estimate the normal at vertex by taking

the weighted average of the normals of faces touching it.

III. DETAIL MEASURE

Detail is a function of the amount of information present on

a surface. High detail regions have high mesh density as well

as high curvature. Regions with high density and low curvature

are flat regions which are unnecessarily densely tessellated.

Regions with low density and high curvature are large and

possibly sharp regions, which may not be represented well.

While local curvature measures can be used to convey a

major portion of the mesh detail, they are incomplete in repre-

senting it. A detail measure should incorporate a combination

of different measures in order to accurately portray the detail

on a mesh. In our paper, this is done using a combination of

local measures of: a) Density b) Curvature.

A. Density

For density of a mesh, a simple and intuitive measure is

the inverse of the average edge length coming out from each

vertex. We calculate a density as:

Density(V ) =
numNbrs(V )⎛

⎝numNbrs(V )∑
i=1

edgeLength(V, Vi)

⎞
⎠

(1)

Here edgeLength(V, Vi) is the Euclidean distance between

two vertices. V is the vertex for which the density is being

calculated and Vi is a first level neighbor of V . numNbrs(X)
is the number of neighbors of the vertex X . In accordance

with this measure, when the scale of the model increases, the

density decreases because of increase in edge length. Thus,

2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics

978-0-7695-4599-8/11 $26.00 © 2011 IEEE

DOI 10.1109/NCVPRIPG.2011.45

179



(a) (b) (c)

Fig. 1. Results of visualizing our detail measure on some models; Red areas are regions with high detail while blue regions are those with relatively low
detail.

the density is scale dependent. This was chosen because, in an

absolute world scale, a model with small edges is considered

to have more density (or more triangles per unit area), than a

model with larger edge lengths.
It is also possible to make the density measure scale

invariant by normalizing the above density using the average

edge length of the entire mesh. To do this we can divide the

local average edge length by the global average edge length

before taking its reciprocal to calculate the density.

B. Curvature
Many definitions exist for curvature. We require one that

is fast and numerically bound. We work with the angles

between normals in our method. Thus, for every vertex, we

find the cosine difference between each of its neighboring

points normals. This is done as

cdiff(�x, �y) =
1

2

[
−1×

(
�x · �y
|�x||�y|

)
+ 1

]
(2)

The curvature for a vertex V with normal N(X) is

Curvature(V ) =

numNbrs(V )∑
i=1

cdiff(N(V ), N(Vi))

numNbrs(V )
(3)

Notice that the cdiff (cosine difference) of any two vectors

will always be between zero and one. When the vectors have

the same direction, its value is 0 and when they point in

opposite directions, it is 1.

C. Detail
Density and Curvature need to be combined to get an overall

detail measure. Since curvature is bound between 0 and 1
and density can be any positive number, using addition or

multiplication does not produce the best results.
We chose exponent operator since one of our measures

was already bound in its range. Thus, using curvature as an

exponent to density gave us a desirable combination of the

two. We define Detail(V ) = Density(V )Curvature(V ).
Density and curvature are not completely independent. As

the density increases, the curvature will decrease since curva-

ture for a vertex is calculated using its 1-ring neighborhood.

Extremely dense regions will have points with normals point-

ing in the same direction if they are fit to a limiting surface.

Thus, as density tends to ∞, curvature will tend towards 0.

Fig. 2. Variation in Detail as Density increases upon an icosphere of radius
2. We see that the detail initially rises, reaches a peak and then tends to 1 as
the density → ∞, thereby causing curvature → 0.

We rewrite the equations in terms of the angle θi, between

the normals N(V ) and N(Vi). We can also assume that in

the limiting case, every neighboring edge Ei becomes a chord

subtending angle θi at the center of a circle with radius Ri.

The curvature becomes

N∑
i=1

1
2 [−1× cos(θi) + 1]

N
and density

becomes Density(V ) = N(
N∑
i=1

2Ri sin(θi/2)

) .

When θi tends to 0 for all i, we can make the simplifying

assumption that every θi = θ and every Ri = R (all the

neighbors and the vertex V are placed on the surface of a

sphere with finite radius R such that each edge subtends an

angle of θ at the center).

Then the limit of detail

lim(θ→0)
1

2R sin(θ/2)

1
2 [−1×cos(θ)+1]

= 1.

We see that, as density tends to∞ and curvature approaches

0, detail tends to 1. We study the variation of density using an

icosphere of radius 2 at different subdivision and hence density

levels. Figure 2 shows that the detail values corroborate the

above results. In Figure 3, we see how, upon changing the

scale of an icosphere mesh, the detail varies. We see that as

the mesh increases in size, the detail decreases.

IV. RESULTS AND APPLICATIONS

Figure 1 shows some of the visualizations of this measure of

detail on various meshes. As we can see in Figure 1(a), most

of the mesh has uniform curvature yet density is maximum
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Fig. 3. Variation in Detail as the radius of an icosphere is increased, thereby
changing the density but not the curvature.

around the eyelids and this is visualized as red regions.

Similarly in Figure 1(c) the mesh is mostly uniform in density

yet the curvature changes sharply at the edges and thus those

are represented with a high detail value as opposed to the

smoother cyan regions. Figures 1(b) and 4 show some more

results.

(a) (b)

Fig. 4. More results; Red areas are regions with high detail while blue
regions are those with relatively low detail.

Having built up this measure of detail, we now have a way

of visualizing detail and having a measure of detail for relative

comparison within a polygon mesh. There can be various

applications. Some of the possible applications are described

below.

A. Mesh Decimation
Mesh decimation can be achieved through many existing

algorithms such as edge collapse [5], triangle collapse [6].

Current methods to decide which vertices, edges or triangles

to remove are based on error measures such as quadric error

measures [7] to ensure that the mesh retains most of its shape.

Such error measures are usually quite expensive to compute.
An alternate ordering could be found using this measure of

detail to sort the vertices/edges/polygons as we typically want

high detail regions to be decimated to lower detail regions.

We can contain the removal of the detailed regions with a

threshold so as to not modify the shape significantly.
Another goal of decimation of a mesh, when used to create

a low resolution mesh along with a displacement map, is to

transfer detail from the mesh to the displacement map. For

such an application too, this measure can help choose which

polygons to decimate so as to have maximum information

shifted to the displacement map.

B. Identification of Abnormalities in Mesh Structures
Uniform mesh structures the easiest to work with and

provide numerical stability for a multitude of operations such

(a)

(b)

Fig. 5. The first figure shows a model which has abnormalities which are not
visible under regular lighting. Upon visualizing the detail, these abnormalities
become obvious as shown in the second.

as differential operations or parameterizations. When modelers

create polygon mesh models, they are not always able to

create uniform or even piece-wise uniform meshes due to the

nature of the modeling wherein they emulate the overall shape

of the target object without too much consideration for the

underlying mesh topology. This is particularly true for organic

modeling as opposed to mechanical modeling.

An abnormality in a mesh would usually have at least one

of the following properties; A region of triangles significantly

different in size from the surrounding triangles; A region

which does not ”flow” well with the surroundings. Such a

region typically would entail protrusions and depressions. It

can be characterized by high curvature values.

Our measure of detail will capture both these anomalies in

many meshes. The first category will refer to outliers in terms

of density and thus have either a much larger or lower density

value compared to its surroundings. The second category refers

to regions having a high curvature value. Thus these regions

will be easy to identify visually. In Figure 5, we see a model

under regular lighting and see that it appears to be more or

less uniform. Upon visualizing the detail in the model, we

notice many abnormalities as shown in Figure 5(b). Region

1 appears blue since the density is very high, which in turn

causes the curvature to become very small for a smooth curve.

Region 2 shows highly skewed triangles which appear as a

visual discontinuity. Region 3 shows a protrusion; an abrupt

increase in curvature while the density is not changed much
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(a) Original Horse Mesh (b) Deformed Horse Mesh

(c) Original Cylinder Mesh (d) Deformed Cylinder Mesh

Fig. 6. Visualizing detail on deformed models. Figures 6(b) and 6(d) show
the detail measure after deformation has been applied on Figures 6(a) and
6(c) respectively.

and hence appears as red. Region 4 shows bumps in the mesh

which show up as red regions as the curvature increases.

This approach can be further extended to incorporate a

supervised learning algorithm to identify statistical abnormal-

ities. For example, a support vector machine can be trained

on a data set and be used to recognize these abnormalities.

C. Visualization of Magnitude of Mesh Deformation

Upon deformation, the affected area of a polygon mesh

undergoes twisting and stretching. These manifest as a change

in the detail of that region. Thus, we can use our measure to

visualize the extent of the effect of the deformation. As seen

in Figure 6, upon deformation the detail changes noticeably.

In Figure 6(b), the effects of deforming the leg of original

mesh in Figure 6(a) can be seen mainly in the front left

shoulder region, as well as the elbow. This occurs because the

change in the shape of the leg by rigging causes stretching

and twisting in these regions, which manifests as a change in

detail. In Figures 6(c) and 6(d), the deformation of a relatively

high polygon cylinder by twisting and squeezing is visualized.

The regions where the cylinder begins to increase in radius

show the most deformation, because the middle section of the

cylinder is affected more by the twisting than the rest of the

cylinder.

D. Detail aware texture mapping

The knowledge of the distribution of detail on a surface

can be used by an artist to create texture maps appropriate to

the local detail level. That is, low detail regions can be given

higher resolution textures to make up for the low information

content of these regions and vice versa. This can be done

manually, or it can be automated. UV coordinates can be

generated automatically, by following the simple rule that the

texture resolution is inversely related to the detail. These UV

coordinates can then be used for normal texture maps, bump

maps, displacement maps and so on.

E. Uniformization of mesh detail

For any given mesh, there will be variations in detail,

unless the mesh is regular (for example a regular polyhedron).

Uniformity of a mesh is a desirable quality for many pur-

poses, both algorithmic and artistic. Therefore, once the detail

information for a mesh is known, selective subdivision can be

performed on regions with relatively lower detail, in proportion

to the amount of detail, such that the mesh gains uniformity

of structure. Once again there exists an inverse relationship

between the level of subdivision and the detail. An example

can be seen in Figure 7. As we see in Figure 7(a), the left half

of the mesh is of high detail compared to the right half. Upon

subdivision of the left side, in accordance with the high detail,

the mesh becomes uniform and hence the detail is evenly

distributed as shown in Figure 7(b).

(a) Non Uniform Detail (b) Mesh after uniformization

Fig. 7. Detail Uniformization

V. CONCLUSION

We have defined a scale dependent detail as a function of

density and curvature. This detail measure helps identify high

and low frequency regions on the surface of a mesh. We also

show how detail can be used for a variety of applications such

as detail aware texture maps, visualizing abnormalities in a

mesh, ordering for mesh decimation.
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