
Real-Time Ray Tracing of Implicit Surfaces
on the GPU

Jag Mohan Singh and P.J. Narayanan, Member, IEEE

Abstract—Compact representation of geometry using a suitable procedural or mathematical model and a ray-tracing mode of
rendering fit the programmable graphics processor units (GPUs) well. Several such representations including parametric and
subdivision surfaces have been explored in recent research. The important and widely applicable category of the general implicit
surface has received less attention. In this paper, we present a ray-tracing procedure to render general implicit surfaces efficiently on
the GPU. Though only the fourth or lower order surfaces can be rendered using analytical roots, our adaptive marching points
algorithm can ray trace arbitrary implicit surfaces without multiple roots, by sampling the ray at selected points till a root is found.
Adapting the sampling step size based on a proximity measure and a horizon measure delivers high speed. The sign test can handle
any surface without multiple roots. The Taylor test that uses ideas from interval analysis can ray trace many surfaces with complex
roots. Overall, a simple algorithm that fits the SIMD architecture of the GPU results in high performance. We demonstrate the ray
tracing of algebraic surfaces up to order 50 and nonalgebraic surfaces including a Blinn’s blobby with 75 spheres at better than
interactive frame rates.

Index Terms—Ray tracing, implicit surfaces, GPU rendering.

˙

1 INTRODUCTION

CURRENT Graphics Processor Units (GPUs) are optimized
to render polygons. Programmable vertex, geometry,

and pixel stages have made it widely applicable beyond
polygon rendering. Ray tracing is of particular interest as
each fragment effectively handles an imaging ray. Surfaces
defined procedurally or implicitly can be rendered directly
using ray tracing on the GPUs if the resulting functional
form can be solved on the fragment processor.

Implicit and procedural geometries are important in
computer graphics. They are compact and can be
evaluated on the fly. Implicit geometry is defined by an
equation Sðx; y; zÞ … 0. Different forms of Sð�Þ are possible.
An algebraic surface is defined as the roots of the
polynomial Sðx; y; zÞ …

P
m amximyjm zkm … 0 and its order

is maxmðim þ jm þ kmÞ. Nonalgebraic surfaces can be of
different functional forms. Implicit surfaces are popular in
fluid simulation, scientific computing, weather modeling,
etc. They are often used to visualize high-dimensional data
after fitting them with a suitable implicit function.

Polygonization is the most common method of rendering
implicit surfaces [1]. Dynamic implicit surfaces with chan-
ging topology pose great challenges to this process. The
implicit form allows compact and exact definition of
surfaces. Converting them to triangles or particles compro-
mises on both compactness and exactness. Exactness can be
retained by the use of large numbers of small triangles, but at

the loss of compactness. Direct rendering using ray tracing
performed on the GPU can retain both. The computing
power of the GPUs grows at more than double the rate
predicted by Moore’s law, while the bandwidth from the
CPU to the GPU lags behind seriously. Thus, compact
representations that are light on communications and ray-
tracing-like techniques that are heavy on computations will
suit them ideally. General, recursive ray tracing is difficult
on the GPUs. Simple algorithms that fit their restricted
architecture will have higher performance than those that
are efficient on a general-purpose processor. Computation-
ally simple methods for ray tracing are needed for today’s
GPUs due to their constrained architecture and Single
Instruction, Multiple Data (SIMD) programming model.

Ray tracing is an application ideally suited to the high
computing and low memory performance of multicore and
manycore architectures [2]. Woop et al. argue for a
programmable ray-tracing unit much like the GPUs and
show an implementation using FPGAs for real-time render-
ing [3]. Whitted and Kajiya propose using only procedural
elements in a graphics pipeline to match the high computa-
tion power and low external bandwidth of the GPUs [4].
Our work strongly endorses this line of thinking by
extending exact and high-quality ray tracing to a large
class of arbitrary implicit surfaces on the GPUs. Modeling
using procedural or implicit techniques and rendering
using ray tracing are likely to be important components of
high-performance graphics in the future.

In this paper, we explore real-time ray tracing of
arbitrary implicit surfaces on a modern GPU, beyond the
low-order algebraic and simple nonalgebraic surfaces
reported in the literature. The basic idea is to reduce the
surface Sðx; y; zÞ … 0 to the form FfðtÞ … 0 using the ray
equation for the fragment f , where t is the ray parameter.
Each fragment can then solve for t and perform per-pixel
lighting, shadowing, etc., based on the exact intersection for
simple surfaces. Solution to the equation FfðtÞ … 0 depends

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 2, MARCH/APRIL 2010 261

. The authors are with the Center for Visual Information Technology,
International Institute of Information Technology (IIIT), Room No. 80, Old
Boys Hostel, IIIT Hyderabad, Gachibowli, Hyderabad 500032, India.
E-mail: jagmohan@research.iiit.ac.in, pjn@iiit.ac.in.

Manuscript received 19 July 2008; revised 20 Oct. 2008; accepted 4 Mar.
2009; published online 27 Mar. 2009.
Recommended for acceptance by P. Slusallek.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2008-07-0099.
Digital Object Identifier no. 10.1109/TVCG.2009.41.

1077-2626/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 6, 2010 at 06:01 from IEEE Xplore. Restrictions apply.

on its form. Interactive ray tracing has been achieved only
for lower order implicit surfaces. These include algebraic
surfaces up to order 4 using analytical roots on the GPU [5]
and selected algebraic surfaces and some nonalgebraic
surfaces using interval analysis and affine arithmetic on the
GPU [6]. We introduce the adaptive marching points (AMPs)
algorithm, which samples each ray in t to find the first
solution of the equation Sðx; y; zÞ … SðpðtÞÞ … 0. The sam-
pling step size adapts to the distance to the surface and the
closeness to a silhouette. This method matches the SIMD
architecture of the GPUs and can handle arbitrary implicit
surfaces. We show that simple and seemingly nonpromis-
ing algorithms that suit the architecture well can deliver
very high performance on the GPUs. Our method finds the
exact intersections on algebraic and general implicit
surfaces when multiple roots are not present. A root test
inspired by interval analysis can find the correct intersec-
tions for multiple roots on several surfaces. We show results
on several algebraic surfaces of order up to 50 and
nonalgebraic surfaces like superquadrics, sinusoids, and
blobbies with exact lighting and shadowing at significantly
better than real-time rates. Our technique can handle
dynamic surfaces also since it evaluates the equation
directly in each frame without any preprocessing. Fig. 1
presents some of the surfaces ray traced using our method.

The AMP algorithm delivers high performance on the
GPUs, but can work on the CPU also. We ray trace many of
these surfaces on the CPU, but the rendering time varies
from 1 second for cubic surfaces to tens of seconds for
algebraic surfaces of order 20 and above. While this is the
only reported rendering of such high-order surfaces on the
CPU, the far from real-time speeds make it unattractive as
an option. The simplicity of the algorithm, on the other
hand, fits the architecture of the GPU well and extracts up
to 70 percent of its peak FLOPS.

Section 2 reviews the previous work related to the topics of
this paper. Section 3 presents the adapting marching points
method. Results of our algorithm on different algebraic and
nonalgebraic surfaces are presented in Section 4. Conclusions
and directions for future work are presented in Section 5. The
Appendix presents the equations of the implicit surfaces used
in the paper along with simple screenshots.

2 RELATED WORK

Implicit surfaces can be converted into triangulated models
prior to rendering them using traditional graphics [1]. The

marching cubes algorithm can be used to create polygonal
models from implicit functions [7]. A high-performance
marching tetrahedron package was released on the GPU
recently [8]. Triangulation increases the size and the
bandwidth needs of the representation and goes against
the strengths of the GPU.

Ray tracing of implicit surfaces is about finding the
smallest positive root of an appropriate equation in the ray-
parameter t. Hanrahan demonstrated ray tracing of algebraic
surfaces up to the fourth order [9]. Wald and Seidel achieved
interactive ray tracing of RBF implicits using a specialized
intersection algorithm [10]. Kajiya reduces ray tracing of
spline surfaces to a globally convergent method [11]. Interval
analysis has also been used for robust root isolation by many
[12], [13], [14], [15], [16]. Mitchell isolates the root using
repeated bisections till the interval in t contains a single root
[12]. Reliable interval extensions, however, are difficult to
compute for large intervals in the domain of complex
functions. Our implementation of Mitchell’s method ray
traced surfaces up to order 5 at interactive frame rates on the
GPU using the exact interval extension [17]. Surfaces beyond
order 5 could not be ray traced robustly due to the difficulty in
the interval extension. Subintervals, branch and bound
schemes, octree grids, etc., have been used to increase the
reliability of interval-based methods. Knoll et al. achieve
30 fps on a superquadric and 6 fps on a few sextic surfaces
using the CPU and the SSE hardware [16], 121 fps on a quartic
surface, 88 fps on a sextic surface, and 16 fps on a decic surface
using affine-arithmetic-based extension on GPU [6].

Iterative root finding methods are used widely to solve
general implicit equations in one variable. Analytical
solutions exist for polynomials of order 4 or lower; only
iterative solutions exist for higher order polynomials [18]
and other implicit forms. Iterative methods critically
depend on good initialization of the roots, which is difficult
for complex equations. An alternative is to bracket the roots
to an interval in t and then solve it using an iterative
technique [19], [20]. Interval arithmetic has also been used
[21], [22], which is more robust at critical regions. Most of
these methods cannot be implemented easily on the SIMD
architecture of the GPUs, however. Ray tracing has been
adapted to the GPU for general polygonal models. Purcell
et al. performed multipass ray tracing [23] and Carr et al.
combined CPU and GPU computations for recursive ray
tracing [24]. These methods work for general objects but are
slow. Spheres and other quadric primitives were ray traced
on the GPU using per-fragment ray-quadric intersection

262 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 2, MARCH/APRIL 2010

Fig. 1. Ray-traced Blinn’s blobby with 75 spheres with environment mapping and shading (35 fps), Chmutov dodecic with four light sources (215 fps),
and Barth decic with one light source (573 fps).

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 6, 2010 at 06:01 from IEEE Xplore. Restrictions apply.

and optimized bounding boxes [25], [26], [27]. Adamson
and Alexa performed ray intersections with local poly-
nomial approximation inside a sphere for large polygonal
models [28]. Hadwiger et al. ray cast implicit surfaces
defined on a regular volume grid using adaptive sampling
and iterative refinement [29]. Loop and Blinn showed
resolution-independent rendering of quadratic and cubic-
spline curves on the GPU [30] and extended it to render
piecewise algebraic surfaces up to fourth order [5]. Seland
and Dokken rendered algebraic surfaces up to order 5 on
the GPU [31] by computing the blossom of the function with
respect to each ray as a univariate Bernstein polynomial.
This will not extend easily to higher order surfaces as the
complexity of computing coefficients of the univariate
polynomial increases rapidly with its degree. Our method
keeps the process simple to match the GPU by not
evaluating the complex univariate polynomials.

Sampling points along the ray and looking for intersec-
tions are simple and intuitive ways to isolate the smallest
positive root. This approach has been used for procedural
hypertextures [32] and other implicit surfaces [33], [34]. Kalra
and Barr ray traced LG-implicit surfaces using Lipschitz
constants [33]. Hart used variable step sizes in sphere tracing
based on a geometric distance function evaluated at the
current point [34]. The Lipschitz theory or geometric
distances do not extend easily to complex surfaces, however.
We follow the point sampling approach, but change the step
size using simpler measures that suit the GPU.

Our method samples or searches along each ray till a step
covers a root. Step size is adapted using the algebraic distance
to the surface and proximity to a local silhouette. We use a
simple interval-based test for root containment for robust-
ness. Our method works on arbitrary implicit surfaces with
simple roots since only samples of it are needed. While AMP
can work on the CPU as well as the GPU, its simplicity
achieves high performance on the restricted parallel archi-
tecture of the GPU. Methods involving interval analysis do
not adopt to higher order surfaces easily due to the
unavailability of robust interval extensions. Such methods
are also slower due to the conditionalities in the program that
do not suit the GPU. We can ray trace algebraic surfaces of
very high order—we show an order of 50 surface—and
several nonalgebraic surfaces at frame rates upward of 100.
We also handle dynamic implicit surfaces with no loss in
performance as the surface is evaluated directly in each frame
with no precomputations.

3 ADAPTIVE MARCHING POINTS ALGORITHM

The points on the ray for a pixel or fragment f are given in
the parametric form by pðtÞ … O þ tDf , where t is the ray
parameter, O the camera center, and Df the direction of the
ray. Substituting for x; y; z from the ray equation into the
surface equation Sðx; y; zÞ … 0, we get

FfðtÞ … 0: ð1Þ

The smallest, real, positive solution for t gives the point of
intersection of the ray with the object. Each fragment shader
can independently find the root using a suitable method.
The normal of the surface at the point of intersection can
also be computed as the gradient ~rSðx; y; zÞ for exact
lighting and shadows of simple implicit surfaces.

3.1 Computing Sðx; y; zÞSðx; y; zÞ versus FfðtÞFfðtÞ
Root finding may need the values of the function FfðtÞ and
its derivatives F 0

fðtÞ; F 00
f ðtÞ, etc. The function can be

evaluated for a given t using the univariate polynomial
FfðtÞ directly or using the multivariate polynomial
Sðx; y; zÞ … SðpðtÞÞ after computing ðx; y; zÞ using the ray
equation. The computational implications of each could be
very different. The expression FfðtÞ typically has many
terms for higher order polynomials with coefficients
depending on the viewpoint and the ray. For example, a
single sixth-order expression x3y3 of Sð�Þ maps to ða þ
btÞ3ðc þ dtÞ3 in FfðtÞ and expands to 16 terms for the seven
coefficients of the sixth-order polynomial in t, requiring
44 multiplications and 9 additions to evaluate. On the other
hand, x and y can be computed using two multiplications
and two additions and x3y3 using five more multiplications.
The Barth decic (Section 4) can be evaluated using about
30 terms as SðpðtÞÞ but needs to evaluate 1,373 terms to
compute all 11 coefficients of the 10th-order polynomial
FfðtÞ. The derivative F 0

fðtÞ can be calculated using the
gradient as the dot-product ~rSðx; y; zÞ � Df . The situation is
the same for the univariate expressions of the derivatives.
Loop and Blinn use GPU’s interpolation hardware to
evaluate the coefficients of the polynomial by sending a
symmetric tensor of rank d � 1 with dþ2

d�1

� �
unique elements

from the vertex shader for each vertex of the tetrahedron
[5]. While this method is very clever, it will be computa-
tionally expensive for higher order polynomials as Oðd3Þ
elements need to be sent for each vertex for an algebraic
surface of order d.

3.2 Adaptive Sampling of the Ray
A balanced computation load and short and simple computa-
tions are critical to good performance on the GPUs, given
their SIMD model. Methods that use Sðx; y; zÞ values are
likely to be faster than those that use FfðtÞ values. An
exceedingly simple root isolation scheme is to sample
regularly along the ray till the function FfðtÞ crosses zero
between successive samples. The computation is low as only
FfðtÞ … SðpðtÞÞ needs to be evaluated at the sample points.
This marching points scheme can be used for arbitrary implicit
surfaces, even those with difficult derivatives or for general
piecewise algebraic surfaces without derivatives at bound-
aries [17]. The performance of the algorithm depends on the
marching or sampling step size. The optimal step size may
differ from one surface to another.

The worst-case running time of this scheme is linear in
the number of steps in the total range in t. The step size
needs to be chosen so as to not miss any root. We can
observe that large step sizes suffice in empty space, but
small steps are necessary near the surface and near the
silhouettes. The AMPs algorithm varies the step size based
on the closeness of the point to the surface and to a
silhouette. The step size should be small near the surface
and smaller near the silhouettes (Fig. 3).

Geometric distances are reliable measures of proximity
to a surface but are surface-dependent and are not available
for arbitrary implicit surfaces. Lipschitz bounds have been
used to estimate the optimum step size for efficient ray
tracing [33], [34]. Taubin used the ratio F ðtÞ

jF 0ðtÞj as a measure

SINGH AND NARAYANAN: REAL-TIME RAY TRACING OF IMPLICIT SURFACES ON THE GPU 263

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 6, 2010 at 06:01 from IEEE Xplore. Restrictions apply.

for signed geometric distance to the function F ðtÞ [35].
However, it is useful only for low-order algebraic surfaces
and for points close to the surface. Defining geometric
distance and Lipschitz bounds for arbitrary algebraic and
nonalgebraic surfaces is hard and will be a fruitful research
direction for the future.

Distance adaptation. The magnitude of Sðx; y; zÞ gives
the algebraic distance from a point to the surface. We
normalize Sðx; y; zÞ such that the highest coefficient of the
top-order term is unity and use jSðx; y; zÞj as a proximity
measure that is zero close to the surface. The step size can
varies as a monotonic function of it. In practice, we use a
piecewise constant approximation and vary the step size in
octaves, starting with a base step size of b. The base step size
is doubled if the current point is far away from the surface
and halved if close to it, using two thresholds �1 and �2.
Different step sizes are used in regions of different color/
shade shown in Fig. 3. The thresholds are set based on the
coefficients of SðÞ.

Silhouette adaptation. The view-dependent silhouettes
represent regions of close and multiple roots. It is important
to sample the ray finely near them. We do that by
decreasing the step size near the silhouettes. The derivative
magnitude jF 0

fðtÞj serves as a horizon measure, which is close
to zero near the internal and external silhouettes of even
complex implicit surfaces. As described earlier, F 0

fðtÞ …
~rSðx; y; zÞ � Df and can be computed efficiently. The step

size can be a monotonic function of jF 0
fðtÞj. In practice, we

halve the step size when the horizon condition jF 0
fðtÞj � � is

satisfied (Algorithm 1). Thus, region V of Fig. 3 will have
reduced step sizes in order to render silhouettes well.
Policarpo et al. used the angle between the viewing
direction and the surface normal to control the step size
while ray tracing height-fields on the GPU [36]. Hadwiger
et al. used a multiple of base sampling rate for better quality
near the silhouettes [29].

Algorithm 1. Adaptive Marching Points (f; b)
1: Find the intersections ts and te of the ray for fragment f

with the near and far planes.
2: Initialize s to the basic step size b; t to starting point ts
3: while t < te do
4: Set the stepsize s using Equation 2.
5: if rootExistsIn (t; t þ s) then
6: Goto step 11 with ‰t; t þ s� as the isolated interval

7: end if
8: t … t þ s
9: end while
10: No isolated interval. Discard pixel
11: Perform 10 bisections of the isolated interval, keeping

the half with the root in each.

Combining distance and silhouette adaptation, we fix the
step size in each iteration using the following formula:

s …

b=4; if jSðpðtÞÞj � �1 and j ~rSðpðtÞÞ � Df j � �3;
b=2; if jSðpðtÞÞj � �1;
2b; if jSðpðtÞÞj > �2;
b; otherwise;

8
>><

>>:
ð2Þ

where b is the base step size and �1, �2, and �3 are thresholds.
The root-containment test (Step 5, Algorithm 1) is also
critical to isolating roots and can be implemented in
different ways. Two promising ones are the sign test and
the Taylor test described below.

Sign test: Root exists if the function changes sign between
the end points of the step, i.e., if ðSðpðtiÞÞ � Sðpðtiþ1ÞÞ < 0Þ.
This test is simple to implement as only the function values
at the sample points are needed. It is a strict test that does
not produce false roots. It misses roots if an even number of
roots are in the step, however.

Taylor test: This test checks if the function values and
linear extensions of them enclose a zero. Interval arithmetic
has been used for robust root finding and this test is
inspired by it. We use an interval extension employing the
function values at the endpoints as well as the first-order
Taylor series approximation of the function at the middle of
the interval computed from both endpoints (Fig. 2). This
works adequately for moderate lengths of intervals. The
extension of F in the interval ‰ti; tiþ1� is defined as
~F ð‰ti; tiþ1�Þ… ‰min fp; q; r; sg; max fp; q; r; sg�, where

q … F ðtiÞ þ F 0ðtiÞ
ðtiþ1 � tiÞ

2
; p … F ðtiÞ;

r … F ðtiþ1Þ � F 0ðtiþ1Þ
ðtiþ1 � tiÞ

2
; s … F ðtiþ1Þ:

ð3Þ

This test is slower than the sign test because of the
derivatives but larger step sizes can be used. This test can
produce false roots, but works robustly in practice and can
handle multiple roots well.

264 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 2, MARCH/APRIL 2010

Fig. 2. Marching points algorithm samples uniformly in the ray parameter
t. The sign test identifies the first interval, where the function changes
sign at the endpoints (darker shaded region on the left). Sign test will fail
as the step size increases (right). Roots will be isolated in intervals [A, B]
and [B, C] but not [A, C].

Fig. 3. The step size is adapted to the distance to the surface and the
proximity to a silhouette. Region III will have the largest step size and
region I will have the smallest, based on the proximity measure
jSðx; y; zÞj. The step size is further reduced when the horizon condition is
true (the darkened region V) as the surface normal is nearly
perpendicular to the viewing direction.

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 6, 2010 at 06:01 from IEEE Xplore. Restrictions apply.

The AMP scheme can, however, miss multiple roots or
produce false roots based on the specific test used and the step
size. A comparison of different tests for multiple roots is
shown in Fig. 6. The sign test can miss the root when the
interval contains multiple roots. We can offset the surface by a
small value to render Sðx; y; zÞ … � to alleviate problem
(Fig. 6). Though we are rendering a different surface, the
results are close. Offsetting is similar to the Sðx; y; zÞ � � test
for roots used by sphere tracing [34]. The Taylor test imitates
interval extension and produces robust results similar to the
interval-based method (Fig. 6). Fig. 4 shows the effect of the
silhouette adaptation. The aliasing at the silhouettes reduces
sharply with silhouette adaptation. The superquadrics have
the most challenging silhouettes as the surface is not C1

continuous. The aliasing effects can be seen occasionally on
these surfaces on the video. Fig. 5 shows the number of
iterationsusedforeachpixel asameasureof theworkdone for
the Barth decic surface. The extra effort near the silhouettes
can be observed when silhouette adaptation is used. The most
work is done for nonintersecting rays as the entire range of t
values needs to be sampled.

4 RESULTS

We could render algebraic surfaces up to order 50 robustly
including all surfaces shown in the MathWorld site and

several nonalgebraic and transcendental objects. Screen-
shots of these surfaces appear in Figs. 10 and 11. The
equations of the corresponding surfaces are given in the
Appendix. First, we display the overall ray-tracing algo-
rithm and some of its implementation issues.

4.1 Overall Algorithm and Implementation Issues
The overall pseudocode is given in Algorithm 2. The
implementation is in OpenGL/GLSL for the SM4.0 archi-
tecture of the Nvidia 280 GTX GPU. The following steps
were used for efficiency: 1) The shaders for the function to
evaluate the expression SðpðtÞÞ and its gradient (if neces-
sary) are synthesized on the fly by the CPU. The shaders are
compiled on the fly in any case. We also compute SðpðtÞÞ

SINGH AND NARAYANAN: REAL-TIME RAY TRACING OF IMPLICIT SURFACES ON THE GPU 265

Fig. 4. Top row: Barth 10th-order surface without silhouette adaptation (a) and with it (b). The zoomed views in the middle show great reduction in
aliasing for the internal silhouettes. Bottom row: Superquadric surface without (a) and with (b) silhouette adaptation with zoomed views in the middle.

Fig. 5. Number of steps taken along each ray for a Barth 10th-order
surface for the AMP algorithm (a) without silhouette adaptation, (b) with
it, and (c) difference image scaled by 2 for legibility. Darker color
indicates fewer steps.

Fig. 6. Top row: Steiner, Cross Cap, Miter, Kiss, and High Silhouette
surfaces ray traced using the AMP method with sign test. Multiple roots
are missed by it. Middle row: Surfaces shifted by 0.01 using AMP and
sign test. Region of multiple roots tends to be fattened. Bottom row:
Same surfaces rendered using AMP and Taylor test. The performance is
more robust for multiple roots.

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 6, 2010 at 06:01 from IEEE Xplore. Restrictions apply.

and its gradient together in one function for faster
evaluation as this will help minimize redundant computa-
tions, where they exist. 2) Products of vectors are used to
compute x2; y2; z2; x3; y3; z3, etc., simultaneously within the
shaders. Dot products are used wherever possible. 3) Tight
screen space and depth bounds improve the timing greatly.
We could not take much advantage of this as the complex
surfaces we used cannot be bounded easily.

Algorithm 2. ImplicitSurface Render (f)
CPU:
1: Setup equations in the shader program.
2: Send a dummy quad to the OpenGL pipeline.
Vertex Shader:
1: Pass through vertices and the camera center to the

geometry shader.
Geometry Shader:
1: Transform the quad to a screen-facing one and pass ray

direction to the vertices, the camera center, near, and far
plane distances to the pixel shader.

Fragment Shader:
1: Intersect each ray with the near and far planes to get the

range ‰ts; te�.
2: Isolate and find the root using the AMP algorithm.
3: Shoot rays to light source and perform root-isolation for

it. If root is found, the point is under shadow.
4: Compute color and depth using the position, normal,

and shadowing at the intersection point.

4.2 Rendering Times
Table 1 presents the frame rates of our algorithm on several
algebraic and nonalgebraic surfaces with and without
shadow rays on an Nvidia 280 GTX for a resolution of
512 � 512. (See our technical report for timings on Nvidia
8800 GTX [17]). Results are given for ray tracing with and
without shadow rays. Shadow rays start from each point
and perform the root isolation using exactly the same
algorithm. The bisection to get the exact root is not
necessary as we only need to know if there is an
intersection. Our rendering times are better than work
reported in the literature for higher order surfaces and very
competitive for lower order ones. We also obtain real-time
results on surfaces much more complicated than that have
been reported before. The best-reported effort by Knoll et al.
achieves a frame rate of 121 on a quartic surface, 88 on a
sextic surface, and up to 108 on superquadric-like surfaces
on the GPU [6]. They use interval or affine arithmetic,
which may not easily extend to complex algebraic surfaces.
Table 2 shows comparison with the surfaces they use. Our
method is faster than their scheme and allows for simple
extension to even higher order surfaces than used by them.
Table 3 shows the rendering of different surfaces on the
CPU. The rendering times on CPU are slower by an order of
magnitude of that on GPU due to lack of parallelism. This

266 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 2, MARCH/APRIL 2010

TABLE 1
Frame Rates for Algebraic and Nonalgebraic Surfaces for Our

Algorithm for a 512 � 512 Window on an Nvidia 280 GTX,
without Shadow (NS Columns) and with Shadow (S Columns)

The order of algebraic surfaces appears within square brackets. The
step size is also shown.

TABLE 2
Comparison of Frame Rates for Different Surfaces Using Knoll’s

Method and the AMP Method on Common Surfaces for a
1; 024 � 1; 024 Window on the Same GPU Nvidia 8800 GTX

and on Nvidia 280 GTX

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on February 6, 2010 at 06:01 from IEEE Xplore. Restrictions apply.

