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Abstract

Kernel methods yield state-of-the-art performance in certain applications such as im-
age classification and object detection. However, large scale problems require machine
learning techniques of at most linear complexity and these are usually limited to linear
kernels. This unfortunately rules out gold-standard kernels such as the generalized RBF
kernels (e.g. exponential-χ2). Recently, Maji and Berg [13] and Vedaldi and Zisser-
man [20] proposed explicit feature maps to approximate the additive kernels (intersec-
tion, χ2, etc.) by linear ones, thus enabling the use of fast machine learning technique in
a non-linear context. An analogous technique was proposed by Rahimi and Recht [14]
for the translation invariant RBF kernels. In this paper, we complete the construction and
combine the two techniques to obtain explicit feature maps for the generalized RBF ker-
nels. Furthermore, we investigate a learning method using l1 regularization to encourage
sparsity in the final vector representation, and thus reduce its dimension. We evaluate
this technique on the VOC 2007 detection challenge, showing when it can improve on
fast additive kernels, and the trade-offs in complexity and accuracy.

1 Introduction
In computer vision applications such as object category classification and detection, the gold-
standard kernels are the so called generalized radial-basis function (RBF) kernels [19, 23].
A typical example is the exponential-χ2 kernel

K(x,y) = e−
1

2σ2 χ2(x,y)
, χ

2(x,y) =
1
2

d

∑
l=1

(xl− yl)2

xl + yl
.

These kernels combine the benefits of two other important classes of kernels: the homoge-
neous additive kernels (e.g. the χ2 kernel) and the RBF kernels (e.g. the exponential kernel).
The homogeneous additive kernels are designed to compare histograms, and are particularly
useful in computer vision since most descriptors are, in fact, histograms (e.g. SIFT [12],
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GIST [17], HOG [7], bag-of-words [6], spatial pyramids [11]). The RBF kernels, on the
other hand, can represent local templates which is useful for highly variable visual aspects.

A major problem in the use of the generalized RBF kernels is their computational cost.
Training a non-linear SVM with such kernels is typically O(dN2) or O(dN3), where N is
the number of training examples and d the data dimensionality. Testing the learned SVM
is also very expensive, usually O(dN), from the need to compare each novel datum to the
support vectors determined during training (and these are usually of order N). In contrast,
there exist methods that can train a linear SVM in time O(dN) only (e.g. SVM-perf [10],
PEGASOS [16], LIBLINEAR [9]) and testing is only of order O(d) for a linear kernel (since
it only involves a scalar product between the learnt weight vector w and the feature vector of
the test image x).

The fact that kernels can be seen as inner product in an appropriate vector space suggests
that it may be possible to train and test efficiently SVMs even in the non-linear case. In
symbols, for every positive-definite (PD) kernel K(x,y) there exists a feature map Ψ(x) such
that

K(x,y) = 〈Ψ(x),Ψ(y)〉 (1)

where 〈·, ·〉 denotes the inner product in feature space. Typically Ψ(x) is infinite dimensional
and therefore not suitable for numerical computations. It may however be possible to find an
approximate feature map Ψ̂(x) that (i) is finite dimensional and that (ii) generates a kernel
〈Ψ(x),Ψ(y)〉 that is a close approximation of (1), i.e.

K̂(x,y) = 〈Ψ̂(x),Ψ̂(y)〉, K̂(x,y)≈ K(x,y). (2)

So far approximate feature maps have been proposed for the homogeneous additive ker-
nels [13, 20] and for the RBF kernels [14]. In this paper we complete the story and give effi-
cient approximated feature maps for the generalized RBF kernels. Specifically, Sect. 2.1 and
Sect. 2.2 review the homogeneous additive and RBF kernels and their feature maps. Sect. 2.3
then reviews the generalized RBF kernels and derives feature maps for them, summarizing
results on the approximation error and the computational cost, and Sect. 3 describes learning
methods using l1 regularization to encourage sparsity and improve testing speed. Finally,
Sect. 4 compares empirically the various kernels and their approximations for the case of ob-
ject detectors on the VOC 2007 dataset [8]. We show that the approximate feature map can
improve performance significantly over that of the original additive kernels. An alternative
to the method we propose is to employ Nyström-type approximations [1, 3, 22] to obtain
linear feature maps, but these require a data dependent training step that we avoid here.

2 Kernels and feature maps
This section reviews the additive homogeneous kernels (Sect. 2.1), the RBF kernels (Sect. 2.2),
and their feature maps [14, 20]. It then introduces the generalized RBF kernels and gives a
finite dimensional approximate feature map for them (Sect. 2.3).

2.1 Additive homogeneous kernels

Common additive homogeneous kernels [20], such as the χ2, intersection, Jensen-Shannon
(JS), Hellinger’s, are designed to compare probability distributions. An additive kernel is
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defined as

K(x,y) =
d

∑
l=1

k(xl ,yl) (3)

where d is the dimension of the input histograms x,y, l is the component (bin) index, and
k(x,y) is an homogeneous PD kernel on the non-negative reals R+

0 (the kernel k is homoge-
neous if k(cx,cy) = ck(x,y) for any c > 0). For instance, setting k(x,y) = min(x,y) in (3)
yields the intersection kernel, and setting k(x,y) = 2xy/(x+ y) yields the χ2 kernel.

[20] proposes closed-form approximated feature maps for all common homogeneous
kernels. The construction starts by factorizing k(x,y) as

k(x,y) =
√

xyK (λ ), λ = log
y
x
. (4)

where K (λ ) is called the kernel signature, and is a scalar function that fully describes the
kernel k. It is then noted that K (λ ) is the Fourier transform of a symmetric non-negative
measure κ(ω)dω

K (λ ) =
∫

∞

−∞

e−iωλ
κ(ω)dω. (5)

This in turn can be used to define a feature map k(x,y) = 〈Ψ(x),Ψ(y)〉 by

k(x,y) =
√

xyK
(

log
y
x

)
=
∫

∞

−∞

(√
xκ(ω)e−iω logx

)∗(√
yκ(ω)e−iω logy

)
dω

=
∫

∞

−∞

[Ψ(x)]∗ω [Ψ(y)]ω dω, [Ψ(x)]ω =
√

xκ(ω)e−iω logx
(6)

An approximate finite feature map Ψ̂(x) can be constructed by sampling and truncating (6):

[Ψ̂(x)] j =
√

L[Ψ(x)] jL, j =−n, . . . ,n. (7)

Due to symmetries of the feature map Ψ(x), (7) reduces to a real vector of dimension 2n +
1 [20]. The explicit form of the feature map in the case of χ2 is given in Figure 1.

Since for the intersection, χ2, Jensen-Shannon, and Hellinger’s kernels the density κ(ω)
can be computed in closed form, the approximated feature map Ψ̂(x) can also be computed
from (7) in closed form. A corresponding approximate feature map for an additive homo-
geneous kernel K(x,y) ≈ 〈Ψ̂(x),Ψ̂(y)〉, is obtained by stacking Ψ̂(xl) for each of the d
components of x, i.e. Ψ̂(x) = stackl=1,...,d Ψ̂(xl).

2.2 RBF kernels
The radial-basis function (RBF) kernels such as the exponential (Gaussian) kernel are func-
tion of the Euclidean distance between vectors x,y:

KRB(x,y) = k(‖x−y‖2
2)

where k : R+
0 → R is the kernel profile [5]. An important example is the exponential kernel

KRB(x,y) = exp
(
− 1

2σ2 ‖x−y‖2
2

)
.
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Such kernels are a particular cases of the translation invariant kernels that can be written as

KRB(x,y) = KRB(λλλ ), λλλ = y−x.

We may call KRB the kernel signature in analogy with the homogeneous case, but here the
signature has d-dimensional input λλλ . Moreover λλλ = y−x has a linear rather than logarithmic
dependency on x and y. As noticed in [14] and analogously to (6), the signature is the Fourier
transform of a non-negative symmetric density κRB(ωωω) (Bochner theorem) and κRB(ωωω) can
be used to define a feature map ΨRB(x) for the RBF kernel:

KRB(λλλ ) =
∫

Rd
e−iωωω>λλλ

κRB(ωωω)dωωω, [ΨRB(x)]ωωω =
√

κRB(ωωω)e−iωωω>x. (8)

Differently from (7), it is not practical to regularly sample [ΨRB(x)]ωωω to obtain an approxi-
mate feature map due to the high dimensionality of ωωω ∈ Rd . Instead, [14] proposes to use
random sampling. Without loss of generality, assume that the kernel is properly normalized,
i.e. that KRB(x,x) = 1. Then 1 = KRB(x,x) = KRB(0) =

∫
κRB(ωωω)dωωω implies that κRB(ωωω)

is non-negative and sums to one. Hence κRB(ωωω) can be thought of as a probability density
and (8) approximated by an empirical average:

KRB(λλλ ) = E[e−iωωω>λλλ ]≈ 1
m

m

∑
j=1

e−iωωω>j λλλ , ωωω1, . . . ,ωωωm ∼ κRB(ωωω).

The summation can be expressed as 〈Ψ̂RB(x),Ψ̂RB(y)〉, where the approximated feature map
Ψ̂RB(x) is given by

[Ψ̂RB(x)] j =
1√
m

e−iωωω>j x, j = 1, . . . ,m.

Note that the vectors ωωω j ∈ Rd are randomly sampled from κRB(ωωω) and act on the data x as
random projections. Note also that the complex vector Ψ̂RB(x) can be equivalently written
as a 2m dimensional real vector in terms of sine and cosine functions [14]. Its form for the
exponential kernel is given in Figure 1.

2.3 Generalized RBF kernels
The generalized RBF kernels extend the RBF kernels to use a metric not necessarily Eu-
clidean. For our purposes, this is best seen in terms of kernels. Recall that, for any PD kernel
K(x,y), the equation

D2(x,y) = K(x,x)+K(y,y)−2K(x,y) (11)

defines a corresponding squared metric [15]. For instance, from the intersection, χ2, JS,
and Hellinger’s kernel one obtains the l1 distance, and the squared χ2, JS, and Hellinger’s
distances respectively. Given an RBF kernel KRB(x,y) = k(‖x−y‖2

2), one can then obtain a
corresponding generalized variant

KRBD2(x,y) = k(D2(x,y)). (12)

Constructing an approximate feature map for (12) involves two steps. First, the feature
map (7) can be used to approximate D2(x,y) as Euclidean distance in feature space:

D2(x,y)≈ K̂(x,x)+ K̂(y,y)−2K̂(x,y)

= 〈Ψ̂(x),Ψ̂(x)〉+ 〈Ψ̂(y),Ψ̂(y)〉−2〈Ψ̂(x),Ψ̂(y)〉
= ‖Ψ̂(x)− Ψ̂(y)‖2

2.

(13)
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Compute a 2m dimensional approximate finite feature map for the exponential-χ2 kernel
K(x,y) = exp(− 1

2σ2 χ2(x,y)).

Preprocessing: Draw m random vectors ωωω , sampled from a (2n+1)d isotropic Gaussian
of variance 1/σ2.

Given: A vector x ∈ Rd .
Compute: The approximate feature map Ψ̂RBχ2(x)

1: Construct the 2n+1 dimensional vector Ψ̂(x) by setting for j = 0, . . . ,2n

[Ψ̂(x)] j =


√

xLsech(0), j = 0,√
2xLsech(π j+1

2 L)cos
(

j+1
2 L logx

)
j > 0 odd,√

2xLsech(π j
2 L)sin

(
j
2 L logx

)
j > 0 even,

(9)

2: Construct the 2m dimensional vector Ψ̂RBχ2(x) by setting for j = 1, . . . ,2m

[Ψ̂RBχ2(x)] j =


1√
m cos

(
ωωω>j+1

2
Ψ̂(x)

)
, j odd,

1√
m sin

(
ωωω>j

2
Ψ̂(x)

)
, j even.

(10)

Figure 1: Feature map for the exponential-χ2 kernel. The resulting vector is 2m dimensional. Here
n controls the χ2 approximation, and is typically chosen as a small number, e.g. n = 1 (and in this
case L ≈ 0.8, see [20] for details on how to choose this parameter). The algorithm requires only two
modifications for any other RBF-D2 kernel. First, (9) should be adjusted according to (6) to match the
metric D2 (closed forms are given in [20]). Second, the projections ωωω j should be sampled from the
density κRB(ωωω) corresponding to the desired RBF profile as given by (8).

Hence the generalized RBF kernel KRBD2 can be approximated by the RBF kernel

KRBD2(x,y)≈ KRB(Ψ̂(x),Ψ̂(y)) = k(‖Ψ̂(x)− Ψ̂(y)‖2
2).

Second, the random Fourier features (Sect. 2.2) can be used to approximate KRB. Composing
the two approximations yields an approximated feature map for the generalized RBF kernel:

[Ψ̂RBD2(x)] j = e−iωωω>j Ψ̂(x), j =−n, . . . ,n. (14)

The complete procedure (from measured feature vector x to approximating feature vector
Ψ̂RBχ2(x) for the RBF-χ2 kernel is given in Figure 1.

Errors and computational cost. The cost of computing the feature map (14) is O(mnd),
where m is the number of random Fourier features, n the dimensionality of the feature
map (7) of the additive kernel, and d is the dimensionality of the data x. As shown in [20],
usually small values of n (e.g. n = 1,2) are sufficient to yield good accuracy. In particular,
it can be shown (the proof is omitted for brevity) that the error decreases exponentially fast
with n for the smooth kernels such as χ2. Based on (11) and (12), the error in approximating
the additive kernel propagates to the RBF-D2 kernel multiplied by the Lipschiz constant of
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the RBF kernel profile k, which is usually small. Overall, it can be shown that the error is
dominated by approximating the RBF kernel by the m random Fourier features. In particular,
based on the error analysis of [14], m = Ω(1/ε2) random projections are needed to achieve
a uniform approximation error ε with any fixed (large) probability.

3 Learning and reducing the weight (w) dimension
A limitation of the random Fourier features is the relatively large number of projections
required to obtain good accuracy (Sect. 4). As seen in Sect. 2.3, the accuracy improves
only as O(1/

√
m) with the number of projections, and the cost of evaluating the feature map

Ψ̂RBD2(x) is O(mdn). The parameter n can usually be small (e.g. n = 1), but m is often in
the order of several thousands. Note, however, that the random Fourier features ωωω j can be
“optimized” in several ways. For instance, it is possible to select (e.g. learn) from a large set
of such features only the ones that are useful for a specific problem.

The simplest way to select useful random Fourier features is to use an appropriate regu-
larizer for SVM training. Recall that in training a linear SVM one solves the problem

min
w

1
2
‖w‖2 +

C
N

N

∑
i=1

l(xi,yi;w), l(xi,yi;w) = max{0,1− yi〈w,Ψ̂RBD2(xi)〉} (15)

where x1, . . . ,xN are training vectors, y1, . . . ,yN ∈ {−1,+1} their labels, and l(xi,yi;w) the
hinge loss. We consider two other formulations where l1 regularization is used in order to
encourage sparsity in the w vector, and for which efficient implementations exist in LIBLIN-
EAR [9]:

minw
1
2‖w‖1 + C

N ∑
N
i=1 l(xi,yi;w)2, (16)

minw
1
2‖w‖1 + C

N ∑
N
i=1 log(1+ exp(−yi〈Ψ(xi),w〉)). (17)

these are known respectively as l1l2-SVM and l1-logistic regression. We will refer to these
implementations as SVMsparse and LRsparse respectively, and to the standard SVM of (15) as
SVMdense.

From (10) we see that successive components of Ψ̂2 j−1(x), Ψ̂2 j(x) of the feature map
share the same projection ωωω j. Thus if w2 j−1 = w2 j = 0 the projection ωωω j can be discarded in
the evaluation of the SVM 〈w,Ψ̂RBD2(x)〉. Setting such projections to zero can be encouraged
by considering the problem

min
w

1
2

m

∑
j=1

√
w2

2 j−1 +w2
2 j +

C
N

N

∑
i=1

l(xi,yi;w), (18)

This problem is known as Multiple Kernel Learning SVM (MKL-SVM) [2, 18] where we
defined a base kernel for each projection ωωω j.

Notice that, compared to the MKL formulation (18), the SVMsparse and LRsparse formu-
lations encourage any coefficient, but not specifically pairs of related coefficients, to be zero.
In practice, thus, we can remove a projection ωωω j only if both w2 j−1 and w2 j are set to zero.
This is usually sufficient to discard a very large number of projections, but we would expect
an implementation of the MKL formulation to results in an even larger number of discarded
projections. We donot investigate MKL any further here though.
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Figure 2: Effect of RBF kernels on different feature types. AP of the sliding window object de-
tector [20] for PHOW and PHOG features and χ2 and exp-χ2. The PHOG features benefit substantially
from the use of the exponential kernel, while the PHOW features are much less sensitive.
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Figure 3: Additive, exponential, and approximated kernels. Performance of a car detector. The
baselines are the exact exp-χ2 kernel (corresponding to the third stage of the cascade [21]) and the exact
additive χ2 kernel (second stage). The exponential variant is better by 20% AP. The approximated exp-
χ2 kernel is shown for an increasing number of random Fourier features m (results are averaged over
five sets of random projections). The approximation trades-off speed and accuracy. For instance, at
30% AP the approximation is twice as fast as the exact exp-χ2 kernel and twice as accurate as the exact
additive χ2 kernel. The sparse solutions found by SVMsparse and LRsparse are faster still with only a
small impact on performance (and in some case with improved performance).

We evaluate the proposed feature maps as part of the construction of an object detector
on the PASCAL VOC 2007 [8] data. The VOC detection challenge involves predicting the
bounding box and label of each instance of the target class in several thousand test images.
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Figure 4: Sparsity vs performance. In order to make the approximated random Fourier features more
competitive, we perform a random selection of the useful projections. Based on the formulations of
Sect. 3, the only parameter that controls sparsity is C, which also controls overfitting. As C is increased
from 10 to 200 the AP matches the one of the dense SVM, but also the testing time. For low value of C
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sparse approximations perform nearly as well as the exact kernel. Bottom: the testing time of the
approximated sparse SVM is from two to three times better than the dense SVM.

We work on top of the state-of-the-art multiple-stage detector proposed in [21]. The multiple
stages are a cascade of a linear, χ2 and exponential-χ2 (exp-χ2) detector. Thus the feature
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map (14) can be used to speed-up the third stage of the cascade (exp-χ2), which is also noted
to be the bottleneck in [21].

Features. While [21] uses up to six image descriptors, here we focus only on PHOG and
PHOW , since these illustrate the main features of the proposed approach. PHOW are visual
words obtained from rotationally invariant SIFT descriptors extracted on a regular grid with
five pixels spacing, at four multiple scales (10, 15, 20, 25 pixel radii), zeroing the low contrast
ones. Descriptors are then quantized in 300 visual words. PHOG [4] is a sparse multi-
scale version of HOG [7]. The Canny edge detector is used to compute an edge map and
the underlying image gradient is used to assign an orientation and a weight to each edge
pixel. The orientation angle is then quantized in sixteen bins with soft linear assignment
and an histogram is computed. Both PHOW and PHOG features are then converted into
spatial histograms [11] with 1×1, 2×2, and 4×4 subdivisions in order to characterize each
candidate object bounding box B. Overall each region is described by a 6,300 dimensional
vector x for the PHOW features and 336 dimensional for the PHOG features.

Figure 2 compares the performance of the exact kernels with PHOW and PHOG features.
A first important observation is that, while the PHOG features benefit substantially from the
exponential kernel, the improvements with the PHOW features is much more limited. Our
interpretation is as follows: The PHOG features (edglets) are not very discriminative in iso-
lation, but their combination, capturing the shape of the object, is. This makes the local
exponential kernel particularly important (for its template matching ability). The PHOW fea-
tures, on the other hand, are quite discriminative in isolation since they match the semi-local
SIFT ‘footprint’, and can be used with an additive kernel that, by operating independently
on each component, is more similar to a voting process than to template matching. In this
case, just the presence of certain visual words is important, not so much their specific com-
bination. Thus less is gained by the exp-χ2 kernel over the χ2 kernel. Therefore, in the rest
of the experiments we focus only on the PHOG features.

Approximated kernels. Figure 3 compares the exact and approximated exp-χ2 general-
ized RBF kernels and the χ2 additive homogeneous kernel on the object class car. The exact
exp-χ2 kernel performs much better than χ2 for the PHOG features. The dense approximated
version, SVMdense, converges to the exact exp-χ2 performance as more random projections
are added. With around 104 projections the approximated exp-χ2 kernel is already much
better than the χ2 kernel, and it is about seven times faster in testing than the exact exp-χ2.
The sparse SVM, and especially the sparse logistic regression, can further discard up to half
of the projections as redundant, without impacting accuracy significantly. In this example,
the approximation does not improve training time compared to the exact kernel due to the
limited amount of training data; however, the training complexity is just linear, compared
to quadratic of the exact kernel, so that the approximate representation would be better for
large enough data sets. The exact RBF kernel, which could be approximated by using di-
rectly the technique from [14], was also tested but resulted in extremely poor performance
(below 11% AP). This is due to the fact that the l2 metric is a particularly poor match for
the PHOG features. Figures 4 and 5 illustrate in more detail the effect of C on the sparsity
and speed and their trade-off. It can be seen that an AP performance far superior to that of
an exact χ2 kernel can be achieved at a lower test cost. For example for C = 10 and 2×104

projections the AP is about twice that of exact χ2 and it is about three times faster. Figure 6
shows that similar effects hold for all the 20 VOC classes.
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5 Conclusions
We have introduced a method to construct a finite dimensional approximate feature map for
the generalized RBF kernels. In general, the approximation is independent of the number
of support vectors, yields linear training complexity, and may easily be included into an on-
line training framework. We have shown that the finite feature map can be used to speedup
testing significantly in a detection task while still yielding an accuracy far superior to that of
the additive kernels for certain visual features.
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