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ABSTRACT
Most of the Indian scripts do not have any robust commer-
cial OCRs. Many of the laboratory prototypes report rea-
sonable results at recognition/classification stage. However,
word level accuracies are still poor. It is well known that
word accuracy decreases as the number of characters in a
word increase. For Malayalam, the average number of char-
acters in a word is almost twice that of English. Moreover,
the number of words required to cover 80% of the Malay-
alam language is more than forty times that of other Indian
languages such as Hindi. Hence a direct dictionary based
post-processing scheme is not suitable for Malayalam.

In this paper, we propose a post-processing scheme which
uses statistical language models at the sub-character level to
boost word level recognition results. We use a multi-stage
graph representation and formulate the recognition task as
an optimization problem. Edges of the graph encode the
language information and nodes represent the visual simi-
larities. An optimal path from source node to destination
node represents the recognized text. We validate our method
on more than 10,000 words from a Malayalam corpus.

1. INTRODUCTION
Robust and accurate OCRs are not yet available for In-
dian scripts [6, 15]. Recent research has successfully demon-
strated solutions to many modules related to segmentation
and character classification. There are many laboratory pro-
totypes evolving [6]. However, the recognition accuracies
on real-life document collections, still need significant im-
provement for these OCRs to be applicable in practical sit-
uations. Specifically, accuracies at the word and sentence
level are low. This can be partly attributed to the chal-
lenges in accurate segmentation of document images. An-
other reason is the difficulty in designing an appropriate
post-processing scheme for classifier outputs. For Malay-
alam, one of the prominent south Indian languages, there is
no complete OCR system reported till now [6]. Initial re-
sults on classification of individual symbols/characters are
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Figure 1: The popular architecture followed in In-
dian language OCRs. Input image is first (i) S: Seg-
mented and parsed (ii) C:Classified/recognized, and
finally (iii) U: converted into Unicode (or any pub-
licly accepted standard)A Post-Processor P closely
connected to the classifier could boost word level
accuracy.

promising [13, 14], However, further work is required to en-
hance the accuracies by exploiting larger context in recogni-
tion. This paper investigates a post-processor architecture
which suits Malayalam. Though, our results are primarily
on Malayalam, our method is also applicable for many other
Indic scripts.

Multiple studies have attempted to describe the challenges
in the design and implementation of Indian language OCRs
[6, 15]. Some of these challenges can be summarized as: (i)
The incompatibility between the recognition stage, typically
at the sub-character level, and the final representation (such
as UNICODE1). One corollary of this incompatibility is also
that different modules of an OCR system aim to achieve dif-
ferent objectives. (ii) The shape and spatial organization of
the glyphs in Indic languages create highly complex scripts,
which in turn complicate segmentation and parsing. (iii)
The presence of conjunct characters indicates the need to
solve a large multiclass classification problem. Significantly
compounding this is the high probability of confusing simi-
larities between any given pair of classes.

Lack of appropriate statistical models and vocabularies, com-
bined with an inflexional nature of the language make many
of the traditional post-processing schemes unsuitable. A lan-
guage model computed at Unicode level may not be the natu-
ral choice for enhancing the accuracies during post-processing.
Dictionary based post-processing is also not ideal for Malay-
alam. This is because to obtain around 80% coverage, one

1Throughout this paper, we use UNICODE as a repre-
sentative of publicly acceptable encoding or representation
scheme
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may require approximately forty times the number of words
that is required for Hindi [3]. In fact, this could be in even
more since the corpus used for the above study may be lim-
ited. For Malayalam, this explosion in number of words can
be attributed to (i) complex word morphology and inflex-
ional nature. (ii) large number of foreign words which the
language continuously absorbs and (iii) strong and simul-
taneous influence of Sanskrit and Dravidian linguistic tradi-
tions. We explore a statistical model (at sub-character level)
as a possible solution in this paper.

A typical OCR architecture applicable to many of the In-
dian languages is shown in Figure 1. Almost all of the Indian
language OCRs to date (barring exceptions such as [12]) fall
into this bottom-up serial architecture. The post-processor
operates on the output from the classifier (class labels) and
passes the result (again, in the form of class labels) to the
Symbol to Unicode conversion module. Primary objective
of our work is to design, implement and validate a post-
processing module which fits with such an architecture thereby
enhancing the word level accuracies for Malayalam. This re-
quires computation of linguistic information at sub-character
(from now onwards, also referred to as symbol) level. We
use this along with classifier scores and visual similarities to
come up with an optimal solution.

We now summarize the flow of information in Figure 1, and
expose some of the specific issues. The segmentation unit
splits the page into words and further down into symbols.
This stage is often prone to failure. For some of the Indian
languages, this step also involves removal of a connecting
headline (sirorekha). Segmentation and parsing yield a se-
quence of (often isolated) symbols. Since the Indic scripts
use 2-Dimensional distribution of symbols, parsers are also
required to provide spatial information associated with the
symbols. They are then recognized using appropriate fea-
tures and classifiers. Multiple such symbols then combine
to generate a character/code. Thus, though the final output
is in Unicode, the intermediate modules “optimize” perfor-
mance at a different resolution (at symbol-level). Note that
many sequences of class labels (corresponding to symbols)
cannot be converted into valid words in the language or even
valid Unicode sequences. This is due to the fact that fea-
tures and classifiers operate at a different level compared to
what we would like the OCRs to do. This sub-character rep-
resentation makes the detection (segmentation), recognition
as well as post-processing very challenging.

The semantically meaningful representation of the output
is at the level of akshara, which is a combination of con-
sonants and vowels. A word may have only few aksharas.
However, it will have typically large number of codes (char-
acters) and even larger number of symbols. Note that the
typical number of characters in an English word is around
4 while the number of symbols in Malayalam is 10. Even if
we design a reasonably high accuracy classifier at the sym-
bol level, the code, akshara and word level accuracies will
continue to be low. Consider a situation where there are 10
symbols per word, and the symbol level classification accu-
racy is 98%. The expected word level accuracy is only 81.7%
(i.e., (0.98)10). This severely limits the utility of OCRs. For
human consumption of the OCR results, we require mean-
ingful aksharas and words. This requires the use of higher

level knowledge (primarily language model) for enhancing
the accuracy. There are also attempts to enhance the ac-
curacy without using an explicit language model [17] for
languages where traditional post-processing is challenging.
However, they are applicable only when one simultaneously
recognizes a larger collection.

Post-processors have been extensively used in the past to en-
hance OCR accuracies. Various OCR post-processing tech-
niques are available in literature [16, 20]. Popular methods
include (i) use of dictionaries or lexicons (ii) syntactic or
semantic rules of the language/word morphology (iii) sta-
tistical language models usually represented as n-gram etc.
Some of the methods find the best alternative, while other
methods find the top-n possible alternatives.

There have also been attempts to use a post-processor for
enhancing accuracies [2, 11, 15] in Indian scripts. In Bansal
et al [1], a post-processing scheme for Hindi OCR makes
use of a dictionary that is appropriately partitioned. If the
input word is found in the partition, it is assumed to be
correct otherwise aliases are generated for the word. This
technique is not applicable for some other Indian languages
(like Telugu, Malayalam) due to the sheer size of their vo-
cabulary. Sharma et al [18] have put forth shape encod-
ing based post-processing for Gurumukhi (an Indian script).
The consonants are grouped based on shape similarity and a
number is assigned to each group or subset. The input word
is suitably encoded. If the code exists in the dictionary then
match operation is performed between the input word and
the words stored under the particular code. If there is no
match, then words that are structurally closest to the input
word are offered as alternatives. The accuracy of Telugu
language OCR has been shown to improve by fusing results
of word clusters that are created using Locality Sensitive
Hashing(LSH) [17]. The OCR output of word images in a
cluster are compared with OCR output of other word im-
ages in the same cluster. Recognition results are improved
using Character Majority Voting or Dynamic Time Warping
Technique.

Most of the previous methods in OCR post-processors em-
ploy post-processing at the Unicode (or character) level. We
would like to explore the possibility of using a language
model based post-processor that is closer to the classifica-
tion stage. Some of the past work in this area tightly inte-
grate the language model into the recognition/classification
stage [10, 12]. Use of statistical noisy channel and language
model in post-processing has been discussed in [4]. The
post-processing framework comprises of error detection and
error correction stages. The detection stage uses image sta-
tistical model and the correction stage uses noisy channels
and language model. A contextual post processing scheme
for Korean OCR has been proposed in [9]. Morphological
analyzer is the key component that is used to select the
most feasible word from a set of candidate words. Syllable
di-grams and viable prefix are used to contain the combina-
torial explosion and speed up the system. Confusion matrix
corrects the feasible words. However, such methods are not
very popular for Indic scripts. Our multistage graph-based
solution integrates (i) classifier outputs (ii) language models
at symbol-level (iii) visual similarity (iv) validity based on
a script grammar, to produce a robust post-processor.
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Figure 2: An Example Multistage Graph Representation with Bounded List of Nodes

2. MULTI STAGE GRAPH REPRESENTA-
TION

A post-processor module which fits into a bottom up archi-
tecture (as shown in Figure 1) should be able to: (i) Gen-
erate alternate words based on the outputs of the previous
module. If the classifier had given a ranked list of classes,
it would have been trivial to generate alternate possibili-
ties. However, many modern classifiers (like SVMs) do not
directly provide probabilities or alternate options. (ii) Use
linguistic information to complement the classifier outputs
and generate meaningful words. (iii) Provide a mechanism
to rank and validate these alternatives and pick the most
valid (suited) word. For example, many of the possibilities
in the above list need not obey the script grammar. (Note
that only certain combination of symbols can correspond to
a Unicode or akshara) (iv) Confirm the validity of the new
word through a validation/verification step and facilitate the
replacement of the current output, if required. Since the lin-
guistic resources are still not very rich, this is a very critical
decision. However the available linguistic information from
dictionary or n-grams can aid this decision making process.

We model this problem as a reasoning (shortest path) prob-
lem in a multistage graph. A multistage graph consists of
two or more stages such that directed edges exist only from
a stage to the next/adjacent stage. An example of the mul-
tistage graph, we use, is shown Figure 2. Given the classifier
outputs (i.e., sequence of class labels), we would like to gen-
erate a ranked list of probable valid words (in Unicode).
Using the probabilistic outputs of the classifier, the problem
could also have been formulated in a PFSA framework as
in [19]. For any given string, the probability of it being gen-
erated, by PFAs can be computed by employing a dynamic
programming algorithm. However, the process of computing
most probable string (i.e. string with the highest probability
of generation) is NP-Hard [19]. In our case, we are not only
interested in the string with highest probability but also are
interested in getting a ranked list of alternate words. Multi
Stage Graph (MSG) fits this requirement well. MSG truly
represents the problem at hand because the probabilistic
relationships from classifier as well as statistical language
model can directly map into this structure. The most prob-
able string may be computed using dynamic programming.
Efficiency can be improved by using bounding conditions so
that solutions that are unlikely to form a part of the de-

sired solution set are rejected instantly. We demonstrate
this later.

Construction of Graph. To start with, let us assume that
there is no cut or merge in the word image. Therefore each
symbol can be detected and ordered correctly. Given a word
with k symbols, the MSG given by, G =< V, E > can be
constructed as shown in Figure 2. We can partition the
nodes in the graph into k + 2 disjoint sets Vi 0 ≤ i ≤
k + 1 where each Vi defines a stage in the graph. The first
and last stages are special stages – source and destination
respectively. The node V j

i is the jth node in ith stage. The
k stages of the graph correspond to the k symbols of the
word under consideration. The jth node in a stage indicates
that symbol is in node j and characterizes the probability
that is encoded as the weight P j

i of the node.

If (u, v) ∈ E, then (u, v) is a directed edge from u ∈ Vi to
v ∈ Vi+1 such that 1 ≤ i ≤ k. The weight of edge (u, v),

wjk
i is the probability of occurrence of two symbols u and

v consecutively in the word image corpus. Note that these
probabilities are similar to the bigrams traditionally used in
language modelling. However, here u and v are symbols,
and their spatial adjacency in the printed word image is
also captured in the probability distribution. We refer to
this distribution as statistical sub-character language model
(SSLM). All nodes in the first stage are connected to the
source node and all nodes in the kth stage are connected to
the destination node. The corresponding edges are assigned
a cost of one.

Any path from source to destination has a cost defined as
the product of node and edge weights on the path, given by
Πk

i=0P
j
i wjk

i . This is the probability of generation of the word
image. If every stage has 300 nodes (eg: number of classes)
and 10 stages, the number of possible paths will be enor-
mous. There exists a dynamic programming based solution
which can generate the most optimal path efficiently. How-
ever, generation of best-N paths is more involved. First, we
restrict our search space by restricting the number of nodes
per stage to be a small number (typically less than 10). This
reduces the space complexity. We further improve the com-
putation by bounding the paths as discussed later.
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Figure 3: Overview of the Post-Processing Scheme

Some of the classifiers can directly provide the node weight
P j

i , probability of the ith symbol to be in the class corre-
sponding to jth node. If it is not available (as in our case),
we use the confusion matrix information to assign the node
weights. We augmented this information with a visual veri-
fication score (VVS) as we discuss in the next section. Thus
the post-processing problem can be formulated as the gen-
eration of a valid (according to script and language rules)
path with highest probability. Our solution generates top-N
highest probability paths, and identifies the best one which
meets the script and language constraints.

To compute the SSLM, one could use a corpus of annotated
word images (at the symbol level). However, obtaining large
such corpus is impractical. We use a reverse script grammar
to generate the symbol distribution from the text and com-
pute the model. Even then the estimates could be noisy, due
to the sparseness of data. We employ smoothing techniques
to ensure that the lack of training data does nor result in
assigning zero to valid class label pairs. Various techniques
that could be used for smoothing is discussed in detail [5].
There are invalid pairs of symbols which can not co-occur.
These probabilities are explicitly made zero.

Generation of Alternate Words. Optimal path in MSG
may be computed using dynamic programming [8]. This
can be done using forward costs (traversing from the source
to the destination) or the backward costs (traversing from
destination to source). However, this yields only the opti-
mal word. We are interested in not just the optimal word
but a list of top scored words. Our procedure is defined in
Algorithm 1. We traverse the graph stage by stage from
the source node to the destination node. This results in the
creation of partial sequences or patterns. We add them to
the solution set. Scores of partial sequences are computed
and at the end of the process we normalize the scores of
all sequences. Whenever the number of partial sequence in
the solution set exceeds a predefined value M, the solution
set is pruned. Thus we get top M words that are sorted in
descending order, based on their scores.

2.1 Efficiency through Branch and Bound
Even if we prune the number nodes in a stage, the number
of possible paths could be still very high. For example, if
k = 10 and the number of nodes in every stage is eight, then

Algorithm 1 Generation of M Alternate Words

Require: MSG, SSLM, M
1: for each stage s = 1, . . . , k + 2 in MSG do
2: for each partial word pw in solution do
3: sym1 = last symbol inserted in pw
4: for each symbol sym2 in stage s do
5: if SSLM(sym1,sym2) 6= 0
6: update solution set
7: end for
8: if size of solution set exceeds M
9: prune solution set

10: end for
11: end for

the number of possible paths is 810 = 1, 073, 741, 824. This
is certainly unacceptable. This has a significant impact on
time complexity. We capitalize on the branch and bound
technique to improve the overall efficiency of the solution.
The graph is traversed in such a way that only promising
paths are explored. In other words, a partial sequence in
the solution set is compared with all nodes in the succeeding
stage before the next partial word is operated upon. When
the size of the solution set exceeds a predefined limit (here,
M), we prune the solution set and eliminate all partial words
that are least likely to yield the desired word. The nodes in
every stage are also sorted according to their weights. The
ratio of weights of adjacent nodes is noted. Whenever there
is a significant change in the ratio calculated, we remove the
last considered node and the nodes following that, from the
particular stage. This way we limit the number of nodes in
every stage. During the experiments, we have noticed that
the average time taken by the module to generate 30 top
ranked words is approximately 4ms. Total memory require-
ment for the process falls below 5 MB. It has been observed
that even on restricting the maximum number of nodes per
stage to 5 and assigning a value of twenty to M, we are able
to obtain the desired performance from MSG module for the
Malayalam corpus, we considered.

3. POST-PROCESSING
Overview of post-processing scheme is presented in Figure 3.
Post-processor uses the available and apriori information to
make an optimal decision. The post-processor architecture
comprises of modules like multistage graph (MSG), Visual
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Verification, Dictionary / n-gram. The visual verification
module computes a score in the range [0 − 1] which indi-
cates the validity of the symbol in the specific class of inter-
est. This is different from the posterior probability estimate
obtained from the multiclass classifier employed. The MSG
module relies mainly on the SSLM to correct errors in poten-
tially incorrect words. Aided by confusion matrix, it takes
symbol level output from the classifier and produces a set
of ranked words. These words are then processed in suc-
cession by a second module. This module determines the
consistency of the given alternate words with the script and
language structure.

Classifier outputs (class labels) as well as confusion matrices
are used to generate alternate words, as discussed in the
previous section. We consider the node weights P j

i as the
weighted sum of classifier scores and visual scores.

P j
i = α ∗ Scoreclassifier + (1− α) ∗ Scorevv

where α ∈ [0, 1]. Therefore all the scores range from 0 to 1.
The words are sorted (in descending order) based on their
score. The top two or more words may have identical scores
or negligible difference between scores. We are faced with
the task of making the right choice and picking the correct
word from a list of highly probable candidates. This could
be done interactively with the help of a human. In order
to fully automate the system and eliminate the need of a
human intervention in the correction process, we introduce
the constraint satisfaction module. This module holds the
necessary language and script information. Given a word,
this module can verify whether this is valid or not. Use of
dictionary for verification may not be feasible due to reasons
mentioned in Section 1. It is acknowledged that memory
requirements for a n-gram based module is high. Hence a
lower value of n is always preferred over a higher value. The
architecture employs multiple modules to process data in
a linear manner. The advantage of such an architecture is
that at any point new modules can be plugged in easily.
As it stands, our implementation of constraint satisfaction
module is primitive.

3.1 Discussions
OCR performs a classification operation wherein it places
the input into a particular group based on certain charac-
teristics that are specific to the input. The post-processor is
generally a verification system that determines if an input
belongs to the specified class or not. Clearly, verification is
simpler to perform.

Classifiers may not employ all the features available. For
example, structural features are not used by our classifier.
However a verification module can make use of structural
features. So we design the visual verification module in such
a way that it employs the features that were not used by the
classifier during recognition process. Hong et al [7] gives
some insight into post-processing based on visual relation-
ships. We also explain the need for an additional module like
visual verification, from the implementation point of view.

Use of pure language models alone for the correction of words
may not always bring a significant change in word or char-
acter accuracy levels. This is because the diagonal elements
of the confusion matrix, usually have a higher value when

compared to non-diagonal elements. Therefore they need
not favor the replacement of a symbol with a new symbol
even if the initial symbol is erroneous. To overcome this
influence of confusion matrix and to increase the correction
rates, we make use of the visual characteristics of the word
image. To facilitate this we introduce α as mentioned ear-
lier. When alpha takes a value of one, we do not make use
of the visual matching score. This is useful especially in
cases where the images are degraded or of low quality. Our
visual verification score is computed as the similarity of sym-
bol image with a rendered version, computed using heuristic
features.

Degraded documents essentially have plenty of cuts and merges
in them. If there are cuts, then the number of symbols pro-
duced by OCR would be greater than the number of symbols
in the actual word. As part of corrective measures we have
to merge the disconnected symbols into one. On the other
hand, if there are merges, then the number of symbols pro-
duced by OCR will be lesser than the number of symbols in
the actual word. To correct merges we have to cut it into
respective symbols. We handle cuts and merges in degraded
word images by following the principles mentioned in [10].
We proceed in two stages. In the first stage merges are han-
dled. As part of the first step we divide the word image into
symbols or separate pieces of ink. Then we create as many
cuts as possible in each symbol i.e. we generate a set of
candidate cuts. These cuts are suitably combined and sent
to the classifier. If the class label returned by the classifier
and initial class label of the symbol match, then we con-
clude that there is no merge. Otherwise we know that there
is a merge. We suitably group various cuts in an optimal
manner, send them to the classifier and identify the merged
symbols. Once every symbol is checked for merges, we pro-
ceed to check for cuts. In this step we consider each symbol
as a cut and repeat the same process to detect cuts, if any.

Algorithm 2 Symbol level smoothing

Require: N, set of words W
1: for each word w in W do
2: Convert w to S, set of symbols s1, s2, s3...sn

3: Reorder elements in S
4: for each symbol si in S do
5: Record occurrences of si

6: if i 6= n , record occurrences of si, si+1

7: end for
8: end for
9: for each bi in SSLM do

10: smooth bi

11: end for

4. RESULTS AND DISCUSSIONS
We now present the experimental procedure and results,
highlighting the utility and limitation of the proposed method.
We start by computing the SSLM as briefly sketched in Al-
gorithm 2. We compute this statistical language model at
the symbol-level (sub-character). We smooth the probabili-
ties during the computations [5]. This helps in overcoming
problems caused due to data sparseness in the corpus. We
use a similar smoothing strategy while computing the con-
fusion matrix too. This ensures that we consider rare con-
fusions between two class labels as well. For languages like
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Malayalam, there are no standard and reliable corpus avail-
able for the computation of language model. For computing
the language model, we use our own corpus. Since there is
no standard corpus available, we do compute the language
model with the entire available corpus (we call this as SSLM-
1), and in a leave-one-out (we call this as SSLM-2) manner.
In leave one out framework, the word to be post-processed is
discarded from the corpus, if present. Leave one out strategy
is used to ensure that the accidental occurrence of the word
in the corpus does not explicitly bias the post-processing.

Throughout this section, we show how classification accu-
racy improves with the post-processing scheme. We consider
the classification accuracy ρ as

ρ =

nX
j=1

Cjj/

nX
j=1

nX
i=1

Cij

where Cij is the confusion of ith and jth class. First we show
that when confusions are minimal, the overall accuracy at
symbol level can be boosted by the SSLM. This is possible
due to the fact that the high visual confusions (present in
the confusion matrix) need not be correlated to the high
probabilities in SSLM.

We first demonstrate the utility and limitation of SSLM for
enhancing classification accuracy. The confusion matrix ’C’
used in the following experiment was created by compar-
ing the symbols generated by the classifier with the ground
truth. Consider a sequence of symbols ...sisj ... where si is
followed by sj . Let si be classified as z confidently. Assume
that sj is classified as x. However, x frequently gets confused
with y. In other words, the entry in the confusion matrix,
Cxy, is relatively high. This confusion can be disambiguated
with the aid of SSLM if Pzx and Pzy are significantly differ-
ent. We assign sj as x if Cxx ·Pzx > Cxy ·Pzy . Else we assign
x as y. This holds true for all z. Now, we have a new er-
ror estimate of Cxy denoted as Ĉxy. It is dependent on the
existing confusion matrix Cxy and the absolute difference

between Pzx and Pzy. Ĉxy is computed for every pair (x, y).
Thus the estimate of the accuracy after this post-processing
can be estimated as, ρ′ =

Pn
j=1 Ĉjj/

Pn
j=1

Pn
i=1 Ĉji.

Thus the post-processor enhances overall accuracy and we
present the relationship between original classification error:
1 − ρ and performance enhancement: ((ρ′ − ρ)/ρ) ∗ 100 for
Malayalam script in Figure 4(a). Note that this is an ana-
lytically computed graph (and not the results on the corpus)
with the help of SSLMs. When the classification accuracy
is around 90%, the gain obtained by the post-processing is
approximately 8% of initial classification accuracy. As ρ in-
creases, this reduces. This is naturally expected.

Alt Initial Accuracy Final Accuracy
Char Word Char Word FN

1 96.42 80.65 98.20 90.19 2.94
2 96.42 80.65 99.28 95.98 0.00

Table 1: Pure language model based correction. Alt:
number of alternate words considered, FN: False
Negative

The efficacy of SSLM has been confirmed by performing an

(a) (b)

Figure 4: (a) Performance enhancement Vs original
classification error(b) Word level Error vs α

experiment on 5000 words. Only language model based cor-
rection is employed while processing the words. The initial
word level accuracy was 80.65% and character level accuracy
was 96.42%. We observed that post-processing significantly
increased word and character level accuracy. Results of this
experiment is shown in Table 1. The first column ’Alt’ in-
dicates the number of alternate words that were considered
while computing the word level and character level accura-
cies.When ’Alt’= n, we consider an erroneous word to be
corrected if the correct word is one among the top-n scored
words. For example, when ’Alt’=1, we replace all words with
the top ranked word resulting in a word accuracy of 90.19%
and corresponding character accuracy of 98.2%. This shows
the utility of the pure language model, This does not use
the visual verification score.

As mentioned in previous sections, probability or score is
associated with every word in the list of alternate words
generated. In cases where the difference between scores of
first alternate word and subsequent words are not significant,
we can use a dictionary or n-gram based technique to parse
through the remaining alternate words in the result set and
choose the correct word. It has been often observed that
an initial error rate of 7 percent reduces to 2 percent, 1
percent, 0.8 percent and 0.6 percent when the top 5,10,15
and 20 words are parsed.

The number of character level errors in a word is usually zero
or one and sometimes more than one. We say that perfor-
mance has been deteriorated when errors are introduced into
the correctly recognized words. This happens when class la-
bels get replaced by alternate class labels in cases where the
corresponding SSLM values are high. The column FN (False
Negative) in Table 1 gives an indication of the percentage of
correct words that were made incorrect by the system. We
curb this tendency by using visual verification module. This
module attempts to eliminate incorrect results by offsetting
them with visual match scores, which are higher for a cor-
rect match between a class and a template. Hence given a
word with p errors, either the system will reduce the number
of errors at character level or give the same p-error word as
output.

Parameter α facilitates the use of visual verification module
to calculate the score of a node. Figure 4(b) shows the vari-
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ation of error rates with alpha. We observe that error rate
is minimum when alpha value is between 0 and 0.1. It may
be noted that as part of pruning, nodes in all stages were
initially sorted based on weight/probability of occurrence.
For most of our experiments we were able to get an opti-
mal performance using α= 0.01. However this may require
further verification on a larger corpus.

4.1 Performance on real data
We had seen an improvement in accuracy at word level and
character level when the SSLM was used. To facilitate cor-
rection of erroneous words, we make use of the visual verifi-
cation unit. Figure 5 depicts the results on images when only
language model(LM)was used, only visual verification(VV)
is used and when both were used. We found that though in
some cases language model worked and in some VV module
worked, the performance was better when both the modules
were employed.

Figure 5: Performance of post-processor on real
data. LM: Only Language model, VV: Only Visual
Verification

Looking at the Figure 5, one can understand the intrica-
cies of Malayalam script. There are symbols that are very
similar to each other in appearance. This can be the cause
for a great deal of confusion. Often, images have cuts and
merges that complicate the recognition process. While post-
processing, in some cases, language model corrects the word
and in some cases the visual verification unit comes handy.
We observe that post-processor performance is optimal when
both language model and visual characteristics are used.
Weightage of these modules are based on various factors like
accuracy of language model at hand, quality of image etc.

Language models are generated from large data sets. In the
following experiment we analyze the change in performance
or accuracy when SSLM was created from the same corpus
and when it was created from a different corpus.We analyze
the effect of the data source used to create the language
model on the accuracy of the system. This experiment is
performed on a data set of 1000 words with initial word
error rate of 6.6% and character level error rate of 0.918 %.
The results are shown in Table 2.

We observed that word error rate comes down by 3.6% in
both cases and the character error rate is slightly lesser when
the language model was created from the data source on
which it was tested. The deterioration in performance or
false negatives is 1.1% in both cases. One can conclude

LM Initial Accuracy Final Accuracy
Char Word Char Word FN

SSLM-1 99.08 93.40 99.56 97.00 1.10
SSLM-2 99.08 93.40 99.55 97.00 1.10

Table 2: Effect of language model training set.LM:
Language Model,FN: False Negative

that accuracy of language models based correction technique
is independent of the training data used to generate the
language model. We have a standard language model and
use this for all our experiments.

The main focus of our work is to correct errors in the OCR
output. Since correct words abide by the language rules,
they are unlikely to be affected or deteriorated by the post-
processor. Hence in this experiment the data set consists
of only erroneous words. We have picked 1000 words that
contain one or more errors. The aim of this experiment is
to estimate the ability of the language model based post-
processor to correct errors in these words. The word level
accuracy of input is 0% and the character level accuracy is
86.65%. Results are presented in Table 3.

Alt Initial Accuracy Final Accuracy
Char Word Char Word FN

1 86.65 0 98.40 87.15 0.00
5 86.65 0 99.15 93.20 0.00

Table 3: Results on Error Words. Alt: Number of
alternate words considered, FN: False Negative

The first column is the number of alternate words consid-
ered while computing the accuracy. On comparing the out-
put with the ground truth we see that word level accuracy
has risen by 87.15% and character level accuracy has risen
by 11.75% when the first alternate word is used. The im-
provement in accuracy is significant when more number of
alternate words are considered. An increase of 87.15% in
word level accuracy is not trivial and we may conclude that
the post-processor can be used widely for word error correc-
tion.

Degraded documents are a major concern and have always
been a challenge. Words with cuts like those in the Figure 6
were processed and we were able to combine the cuts and
form meaningful words. The techniques discussed in the pre-
vious sections were employed to handle cuts. The Figure 6,
shows how post-processor handles cuts and generate correct
outputs.

Figure 6: Post-processing of Images with Cuts
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The first two inputs have a single cut. In the first case
glyphs formed by cuts are close by where as in the second
case they are quite apart. The third word image had cuts in
two symbols and the fourth has a horizontal cut. The fifth
image is a degraded image with several cuts. The results
are shown on the right side. We are able to handle degraded
documents effectively.

The next experiment is on real corpus of 10,000 words.We
take a dataset comprising of correct words and words with
errors. The dataset contains 7,000 words with no errors,
2000 words with one error and remaining 1000 words with
two or more errors and degradations. The dataset was cho-
sen from different books. The initial word level accuracy
is 70%. When fed to the post-processor, the accuracy rate
increased significantly. The results are shown in Table 4

Alt Initial Accuracy Final Accuracy
Char Word Char Word FN

1 95.31 70.00 98.72 93.42 0.12
5 95.31 70.00 99.19 96.52 0.00

Table 4: Results on Real Data by varying no. of
alternate words. Alt: Number of alternate words
considered, PP:Post- Processor, FN: False Negative

We observe that a high accuracy of 96% can be attained
when words are correctly picked from the first and second
highest scored words. The task of choosing the correct word
from the list of alternate words was given to the constraint
satisfaction module that is aided by n-gram models. When
we employed a trigram model we were able to reach an accu-
racy of 95% at word level. The failure cases included proper
nouns and words from foreign languages that contain rare
combination of symbols that are assigned a lower score.

5. CONCLUSIONS AND FUTURE WORK
Our approach of using multi stage graph based reasoning,
aided by sub-character level language model has proved to be
successful in correcting errors in words generated by OCR.
We believe that proximity of post-processor to the classifi-
cation module can significantly improve the robustness of
the OCR system. In Indic scripts, classification and post-
processing stages are to be tightly coupled. These stages
should use the script and language information in the opti-
mization process. We would be conducting large scale exper-
iments on varied malayalam corpora of substantial size. We
expect that these experiments would help us in reaching a
conclusion regarding the utility, variation and optimal value
of threshold parameters such as alpha. Our future work
would encompass testing this technique on complex scripts
such as Telugu. We intend to enhance the performance
and efficiency of the OCR by adopting discrete optimiza-
tion techniques to optimize recognition and post-processing
stages.
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