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ABSTRACT

The shape deformation within the optic disk (OD) is an im-
portant indicator for the detection of glaucoma. In this paper,
relevant disk parameters are estimated using the OD and cup
boundaries. A deformable model guided by regional statistics
is used to detect the OD boundary. A cup boundary detec-
tion scheme is presented based on the appearance of pallor in
Lab colour space and the expected cup symmetry. The pro-
posed scheme is tested on 170 images comprising 40 normal
and 130 glaucomatous images. The proposed method gives
a mean error 0.030 for normal and 0.121 for glaucomatous
images in the estimation of cup-to-disk ratio which compares
well with reported figures in literature.

Index Terms— Retinal image, Optic Disk, Cup, CDR ra-
tio, Glaucoma

1. INTRODUCTION

Early detection and treatment of retinal diseases are crucial
to avoid preventable vision loss. Digital colour fundus (reti-
nal) image (CFI) has emerged as a preferred imaging modality
for large scale eye screening programs due to its noninvasive
nature. The optic disk (OD) one of the main component of
retina (shown in fig 1(a)), is an important indicator for glau-
coma which is one of the most common causes of blindness.
In CFI, OD is a bright region where the optic nerve and blood
vessels enter the retina while the cup is a depressed area in-
side the OD. A quantitative understanding of the shape defor-
mation with-in OD is used for evaluating the progression of
glaucoma and hence of interest. Specifically, the Cup-to-disk
vertical ratio (CDR) and their area ratio are two important
disk parameters of interest, derived using OD and cup bound-
aries. An automatic measurement of these parameters from
CFI could reduce the workload of clinicians and aid objective
detection of glaucoma.

The intensity variations within the OD and its vicin-
ity make OD boundary localisation challenging. The cup
is primarily defined using 3D depth. Clinicians use high
end imaging such as Heidelberg Retina Tomograph (HRT),
Optical Coherence Tomography (OCT) to get 3D depth infor-
mation. Detecting cup boundary from a CFI alone (without
3D depth information) is much more challenging task [1][2].
In many CFIs, estimation of cup boundary is not possible

without some experience. Much of prior work on quantifica-
tion of OD appearance has mainly focused on OD boundary
detection whereas handful attempts are made to detect cup
boundary. However, detection of both boundaries is a funda-
mental requirement to estimate disk parameters and therefore
to aid detection of glaucoma.

In [3], OD boundary is first manually initialised, and fur-
ther refined through the free-form GVF-snake. The method
presented in [4] uses a point distribution shape model of OD
boundary which is derived from training images. The learned
shape model is integrated with deformable contour model
to obtained OD boundary. Lowell et al.[5] uses a elliptical
shape based deformable model to extract OD boundary. In
[6], an intensity-based template matching is applied to first
get a coarse OD boundary and then smoothened by an ellipse
fitting step. The above mentioned methods restrict their scope
to the OD boundary detection task.

A unified deformable contour approach for OD and cup
boundary detection is presented in [1]. This method uses
a clustering-based classification of contour points and cus-
tomised contour evolution step integrated in original snake
formulation. Additional 3D depth information is extracted
from the CFI stereo pair to get the cup boundary. C/D vertical
ratio measurement is reported on only 25 images from a total
of 100 images and later compared with the measurements ob-
tained from HRT imaging equipment and from a ophthalmol-
ogist. A variational level-set based approach for OD and cup
boundary detection is presented in [2]. To best of our knowl-
edge, this is first attempt where assessment of computed C/D
vertical ratio is carried out on normal and glaucoma images.
A total of 104 images comprising 94 normal and 10 glaucoma
patients is used for evaluation. This method uses an elliptical
fitting post-processing to handle deformation caused due to
blood vessel. In general, the strategy of imposing elliptical
shape model [2][6] to handle vessel occlusion fails in accu-
rately localising OD/cup boundary and is also ineffective in
capturing local OD boundary variations.

In this paper, we report initial results of a pilot study
aimed at robust detection of glaucoma. Towards the aim
of computing the CDR, the OD boundary is detected first
by using region-based statistics to evolve an active contour
[7] instead of using gradient information typically used in
existing methods. The use of regional information gives ro-
bustness against intensity variations that arise due to vessels.



Fig. 1. a) A sample cropped CFI region, b) A max image
obtained by morphological closing, c) A vessel-free smooth
image.

Moreover, we do not impose any shape constraint on the de-
tected OD and cup boundary. The cup boundary is extracted
next using change in colour information near pallor region
(brightest region inside OD) and the expected structural sym-
metry in a cup region. Next, the proposed method is explained
in detail followed by details of conducted experiments and
obtained results.

2. OPTIC DISK BOUNDARY DETECTION

A coarse localisation of OD region is performed using inten-
sity information from red channel of the CFI as it gives bet-
ter OD contrast. We linearly transform the image intensity
to the range of 0 − 1 and extract pixels of value above 0.95.
The largest group of connected pixels is selected from the ex-
tracted pixels which coincide with brightest region inside OD
called pallor. Then, we crop a region around the detected lo-
cation and use it for further processing. A sample cropped
region obtained around the detected OD location is shown in
fig. 1(a).

Pre-Processing: From the fig. 1 (a) it can be seen that
major blood vessels on the nasal side and small vessel is tem-
poral side present a good amount of OD occlusion. We re-
store the disk region by significantly reducing the distraction
caused by vessels as follows.

We perform bottom-hat transform on red channel I 0 using
linear structural elements at different orientations. Bottom-
hat transform is the residue between a closing and I0 defined
as: ρθ

s(Io) = ϕθ
s(Io) − Io, where ϕθ

s denotes morphologi-
cal closing operation with a linear structuring element s of
orientation θ. The size of structural element is chosen to be
larger than the width of major vessels. A max image defined
as Imax = m

θ
ax ρθ

s is then obtained, shown in fig. 1(b). A

smoothed, vessel-free image is then obtained as Ip= I0+Imax

(see fig. 1(c)). In this image, small artifacts can be seen only
near the edge of major vessels, however a significant suppres-
sion of vessels is achieved.

Region-based Active Contour: Let I0 be a given image
such that I0 : Ω → IR where Ω be a bounded open subset
of IR2, with ∂Ω the boundary. Let C(s) : [0, 1] → IR2 be a
piecewise parameterized C1 curve. The active contour model
presented in [7] having following form is briefly explained in
this section.

F (c+, c−, C) = μ . Length(C) (1)

+λ+

∫
inside(C)

|I0(x, y) − c+|2dxdy

+λ−
∫

outside(C)

|I0(x, y) − c−|2dxdy

where c+ and c− are unknown constants representing the
average value of I0 inside and outside the curve, respectively.
The parameters μ ≥ 0 and λ+, λ− ≥ 0; are weights for the
regularizing and the fitting terms, respectively. Minimizing
the fitting error in equ.1, the model looks for the best partition
of I0 taking only two values, namely c+ and c−, and with
one edge C, the boundary between these two regions, given
by {I0 ≈ c+} and {I0 ≈ c−}. The object to be detected
will be given by one of the regions, and the curve C will be
the boundary of the object. The additional length term is a
regularizing term and has a scaling role.

For curve evolution, we use level set formulation where
the motion is governed by mean curvature. The motion by
mean curvature [8] is given by{

∂φ
∂t = |∇φ|div

(
∇φ
|∇φ|

)
φ(0, x, y) = φ0(x, y), t ∈ [0,∞], (x, y) ∈ IR2

where φ is the level set function. By this evolution equation,
the level curves of φ move by a distance mean curvature, in
the normal direction.

The original model given in equ.1 can be written in level
set formulation. Let the evolving curve be C = {(x, y) ∈
Ω : φ(x, y) = 0} assuming that φ has opposite signs on each
side of C. Using the heaviside function H(z) which takes the
value of 1 if z ≥ 0 or the value of 0 otherwise and δ(z) =
d
dzH(z), energy functional can be re-written as follows:

F (c+, c−, φ) = μ

∫
Ω

δ(φ(x, y)) |∇φ(x, y)| (2)

+ λ+

∫
Ω

|u0(x, y) − c+|2 H(φ(x, y))dxdy

+ λ−
∫

Ω

|u0(x, y) − c−|2 (1 − H(φ(x, y)))dxdy

Minimizing the energy F (c+, c−, φ) with respect to φ, for
fixed c+ and c−, using a gradient descent method, yields the
associated Euler−Lagrange equation for φ, governed by the
mean curvature and the error terms (see [7] for more details).

On the pre-processed image Ip, we initialise a curve cen-
tered at the detected OD location. The curve is evolved based
on the average intensity value inside and outside the curve.
This model does not use the gradient based stopping criteria
thus is robust to gradient variations due to the vessel removal.
The curve evolution always converges to the OD boundary ir-
respective to the shape or size of the initial contour. Fig. 2(a)
through (b) shows a sample evolution results where the initial
curve was a rectangle.



Fig. 2. Active contour at different iterations. a) 20 th, b) 200th

and c) 380th iterations.

Fig. 3. Cup Segmentation. a) ’a’ colour channel in Lab colour
space, b) Obtained cup pixels after thresholding and c) Recov-
ered cup region.

3. CUP SEGMENTATION

The main visual clues used by clinicians to estimate the
cup boundary from CFI are: a) change in colour near pallor
boundary and b) bend in small blood vessels. Hence, we
make use of color information and structural properties of
cup region to get the cup boundary.

Having compared several color spaces, we found the cup
region appears most continuous (except major vessel occlu-
sion in nasal side) and well contrasted against the background
in the ’a’ plane of the Lab color space. For further processing,
we take ’a’ colour plane in which cup region appears dark. A
morphological opening with a small circular element is car-
ried out to smoothen small blood vessels present in the cup
region. Then, we linearly transformed intensity values to the
range of [0-1] and extract pixels using a dynamic threshold t
to select only pixels which fall inside the OD region. Figure
3(a) shows ’a’ colour plane and (b) shows thresholded result
overlaid on the original image. The intensity normalisation
step and the spatial constraint imposed on the extracted pixels
(relevant pixels are always inside OD) make threshold selec-
tion trivial. We empirically select a value of t = 0.07 which
perform consistently well on our dataset.

We use the knowledge about the cup structure to divide
the cup into a nasal cn and temporal ct regions. The former
is generally occluded by the main blood vessels. To recover
the same, we impose the expected symmetry of cup region in
nasal and temporal side. A vertical axis of symmetry pass-
ing through OD center is considered and cn is obtained via
reflection of ct. The cup boundary is interpolated at high cur-
vature points to get a smoother cup boundary. Consequently,
as seen in fig 3(c), the obtained cup region boundary coincides
with the bends in small blood vessel. Thus, the detected cup

Fig. 4. Obtained optic disk boundary on few challenging
cases. Blue: Expert marking; Cyan: Our method

Fig. 5. Obtained cup boundary on few sample images having
different OD sizes. Blue: Expert marking; Cyan: Our method

boundary is accurate and corresponds with the visual clues
used by the experts.

4. EXPERIMENT RESULTS

We evaluate the proposed method’s performance on a dataset
collected from a local eye hospital as part of an ongoing pilot
study. It contains 40 normal and 130 glaucomatous (total of
170) images of size 2896 ∗ 1944. Images are taken under a
fixed protocol with 30-degree field of view centered on the
OD. Ground truth (GT) markings for OD and cup boundary
are provided by a glaucoma expert.

Evaluation: Figure 4 shows OD boundary detection re-
sults on few challenging images overlaid with the boundary
marked by an expert. This indicates that the obtained OD
boundaries are smooth since region-based active contour is
good at handling gradient distortion due to the vessels. Ad-
ditionally, the method is robust enough to handle paripallary
atrophy (concentric bright region around OD; fig 4(a)) and
ill-defined OD boundary (fig 4(c)).

Sample results of cup boundary detection are shown in fig.
5 along with GT. The results match well with GT for cases
where the expert has used both the pallor and bend in the ves-



Fig. 6. Error Distribution in CDR estimation against CDRgt.
Green: Normal; Red: Glaucomatous Image

sel to mark the cup as in fig 5(a) and not as well when the
expert relies only on the latter as in fig 5(c). Under segmen-
tation occurs more in advanced stages of glaucoma marked
by a gradual transition between the cup and disc. Here, the
pallor is insufficient to define the cup boundary. The density
of vessels is maximum in the inferior and superior regions
and hence identifying the correct vessel’s bend to correct the
cup boundary is challenging. A solution is to use 3D depth
information.

Since CDR is an important indicator used for glaucoma
detection, this metric was chosen to evaluate our results. The
CDR is computed with reference to the centroid of the OD re-
gion in GT. Let CDRo and CDRg be the measures obtained
from our method and from GT. Then the error is computed as
E = CDRo −CDRg. From the error distribution plot in fig.
6 it can be seen that the estimation error is lower for normal
than for glaucomatous images. The source of this error was
found to be consistently in the cup (rather than OD) boundary
detection as explained earlier. The average error μ and stan-
dard deviation σ of the error for 40 normal and 130 glauco-
matous images are shown in Table. 4. The obtained μ/σ are
0.030/0.277 for normal and 0.121/0.366 for glaucomatous
images. The same figures reported in [2] are 0.082/0.054 for
normal and 0.146/0.077 for glaucomatous image. Overall, it
appears that our method is able to achieve low μ but at higher
σ. However, it should be noted that the two datasets differ in
a few aspects. The ratio of normal to glaucomatous images
in ours and that in [2] are: 1 : 3.2, total=170 and 1 : 9.4,
total=104, respectively.

Given the above figures, we can conclude that our method
will give rise to fewer false positives and hence better speci-
ficity.

Category No. of Mean Standard
Samples Error deviation

Normal 40 0.030 0.277
Glaucoma 130 0.121 0.366
Total 170 0.100 0.348

Table 1. Obtained result’s statistics for our method

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present a method to detect OD and cup
boundary to get relevant disk parameter for glaucoma detec-
tion. In general, the cup deformation is not uniform and the
sector where the deformation occurs is also used by experts
for glaucoma detection. The ellipse fitting strategy followed
by the current methods to obtain the CDR is inadequate for
this task. Our method in contrast, can be used to derive this
sectorwise information. It needs to be improved to correct for
the cup segmentation by including a role for vessel bend.
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