
Retrieval of Online Handwriting by Synthesis

and Matching

C. V. Jawahar, A. Balasubramanian, Million Meshesha and

Anoop Namboodiri

Center for Visual Information Technology,

International Institute of Information Technology,

Gachibowli, Hyderabad - 500 032, India

Abstract

Search and retrieval is gaining importance in the ink domain due to the increase
in the availability of online handwritten data. However, the problem is challeng-
ing due to variations in handwriting between various writers, digitizers and writing
conditions. In this paper, we propose a retrieval mechanism for online handwriting,
which can handle different writing styles, specifically for Indian languages. The pro-
posed approach provides a keyboard-based search interface that enables to search
handwritten data from any platform, in addition to pen-based and example-based
queries. One of the major advantages of this framework is that information re-
trieval techniques such as ranking relevance, detecting stopwords and controlling
word forms are extended to work with search and retrieval in the ink domain. The
framework also allows cross-lingual document retrieval across Indian languages.

Key words: Search and Retrieval, Handwriting Synthesis, Online Handwriting,
Indian Language Documents, Information Retrieval Measures

1 Introduction

Pen-based interfaces are gaining popularity due to the flexibility and conve-
nience of pen as an interface. The compactness of online handwritten data
also enables efficient storage and communication. Moreover, handwriting has
more expressive power as compared to typed text due to the possibility of an-
notations and sketches, that makes it an effective medium of communication.
The pen technologies have also matured over the last twenty years starting
from touch screen based sensors with limited resolution to highly accurate
and robust sensors based on electromagnetic and sonic technologies. Due to
its capabilities, applications that treat handwriting or ink as the primary data

Preprint submitted to Elsevier Science 31 July 2007

type are also on the rise. However, as the amount of data available in the form
of handwriting increases, access to specific documents becomes an issue due to
the inability of current indexing and retrieval algorithms to efficiently handle
such data.

Retrieval

Search and
Database

Documents
Handwritten
Relevant

Online Content
generation

User

by Example

Input

Fig. 1. An effective online handwritten database should accept queries based on
Keyboard, Pen or a Sample Handwritten Word.

The primary solution to handle online handwritten data is to employ a HWR

(handwriting recognizer) to convert the ink into text, and use the results to
search and retrieve the documents [1,2]. However, this approach is suited only
where the handwritten data is purely text and where a robust HWR is avail-
able for the language contained in the document. An alternate solution is to do
matching and retrieval in the ink domain itself. The problem is very challeng-
ing due to the large amount of variations present in online handwriting. The
sources of these variations include: i) differences in writing styles of various
users, and inconsistency in writings of a single user, ii) differences in writing
surfaces and capabilities of different digitizers, iii) noise introduced by the
digitizers, representations, etc. In addition to the above, online handwriting
also contain variations due to differences in writing speeds as the temporal
information is also captured in the digitization process. Figure 1 shows search
for relevant documents from a collection of handwritten documents. The input
could be a handwriting using a pen/stylus, a sample word from a document,
or even text typed from a keyboard. Users expect the most relevant docu-
ments to be retrieved from a database and presented to them in a ranked and
meaningful way.

The level of complexity of the search increases as the diversity and size of the
document collection increases. The range of applications also varies accord-
ingly.

• Single Writer Collections: These are typical in scenarios like the archived

2

notes taken by the user of a pen-based device. The matching and retrieval of
online documents are not easy even with such a collection of homogeneous
writings [3]. Such collections usually contain a single script or language.

• Multi-Writer Single Script: As the number of writers increase, the vari-
ability of handwriting also increases dramatically. Such document collections
are part of applications that communicate handwritten documents across
users, such as a mailing application.

• Multi-Writer Multi-Script: As digital communications span across con-
tinents, the documents transmitted are likely to contain a large variety of
languages and scripts. Dealing with such documents would be essential for
email processing applications such as spam filters or searches in the archives
of an organization. The search in such large collections have to be efficient
in addition to being able to handle the different languages used in the doc-
uments. The problem is commonplace in a country like India, where there
are 18 official languages, most of them having their own scripts.

• Digital Libraries: Applications such as digital libraries add one more level
of complexity to the problem due to an increase in the order of magnitude of
the database as well as the varieties in devices that are used for digitization
of handwriting.

2 Retrieval of Handwritten Documents

Approaches used for searching handwritten documents can be classified into
recognition-based and recognition-free techniques. Depending on the applica-
tion and digitization process, the data could be either word images (offline) or
traces of pen motion (online). Recognition of online data has the advantage
of using the additional temporal information present in the data.

2.1 Overview of the Previous Work

Recognition of handwritten data has received a lot of research attention in
the past. Initial attempts in this direction were to recognize scanned images
of handwritten characters (offline handwriting recognition) and is useful in
applications such as postal address recognition [8], handwritten form recogni-
tion [9], handwritten bank check recognition [10], etc. However, in the case of
HCI for pen-based devices, one can utilize the additional writing order, direc-
tion and velocity information to aid the recognition process. This is referred
to as online handwriting recognition. The strokes in the word could be mod-
eled using statistical models such as HMMs [11]. Such models are often tuned
for a particular writer’s handwriting. On the other hand, writer independent
handwriting recognition is an extremely difficult problem due to the extent

3

Work Data Approach Pros Cons Applications

Rath and
Man-
matha [4]

Offline,
His-
toric

Word Im-
age Match-
ing

Accuracy Single
Writer

Single writer
document col-
lections

Srihari
and
Shi [5]

Offline Writer
Matching

Multi-User Lower ac-
curacy

Forensic docu-
ment retrieval

Russell et

al [1]
Online Recognition

results
Multi-User,
Fast

Needs
Recog-
nizer

Indexing and re-
trieval for multi-
user and single
script collections

Kamel [6] Online KLT-
based,
RTree

Multi-User,
Fast

Limited
Data size,
Lower
accuracy

Online docu-
ment retrieval

Jain and
Anoop[3]

Online Ink Match-
ing

Accurate Single
User

Search in single-
writer document
collections

Balasubra-
manian
et al [7]

Offline,
printed

Word
Matching

Accurate,
Robust

Slow to In-
dex

Search in large
printed docu-
ment collections

Current
Work

Online Synthesis
and
Match-
ing

Multi-user,
Accurate

Slow to In-
dex

Search, Index
multi-user docu-
ment collections

Table 1
Overview of existing and current work in the area of document retrieval.

of variation among writing styles of different writers. Such variations require
the recognition engines to be trained to a particular user’s handwriting style.
Adaptation of a recognizer to a specific writers’ handwriting [12] has been the
most promising solution in this regard.

A second approach is to represent the handwritten words using a set of features
and match two words by comparing the corresponding feature vectors. This
approach is referred to as word spotting, and is quite effective when compared
to recognition-based search for poor quality documents. Rows 1 and 5 of Table
1 show examples of the word spotting technique applied to offline and online
handwritten documents.

4

2.2 Challenges in Recognition-free Handwritten Document Retrieval

Searching and retrieval of relevant documents from handwritten data collec-
tions is a challenging task, especially when there is no textual representation.
To come up with a successful search engine in the ink domain, we need to
address the following issues:

Variations in Handwritten Data: Search in handwritten documents re-
quires appropriate representational schemes and similarity measures. This is
because of the large amount of variations in handwriting style, speed and
direction among various writers, besides variations and noises introduced by
digitizers. We need to come up with robust feature extraction and match-
ing schemes, which can represent the content well, while invariant to writing
variations.

Scalability: Retrieval of relevant documents requires matching users query
word with handwritten words in the collection. Doing this online is inefficient
and time taking, which can possibly be solved by indexing documents offline.
However, indexing multiple writers documents is a difficult task unless textual
representation of index terms are available.

Segmentation: The existence of irregularities in handwriting, inconsistency
of inter-word and inter-character spacing in handwritten data and the exis-
tence of non-textual objects in a page makes detection of words in handwritten
document a challenging task. Robust segmentation tool needs to be designed
to detect words from handwritten data.

Document Relevance Ranking: Existing information retrieval measures
like TF/IDF are designed for ranking relevance of textual documents. To make
sure that the retrieval system achieves users expectations there is a need to
design suitable ranking methods in the ink domain.

Indian languages: Indian languages pose many additional challenges. Some
of these are: (i) lack of standard representation for the fonts and encoding, (ii)
lack of support from operating system, browsers and keyboard, (iii) lack of
language processing routines, (iv) lack of robust HWRs, and (v) presence of
multiple scripts. These issues add to the complexity of developing handwriting
retrieval scheme.

2.3 The Proposed Approach

The approach proposed here consists of three major steps: i) Synthesis of
handwritten data from the query, ii) Matching of the query to words in the

5

database, and iii) Computation of relevance scores of documents to order the
results of matching. The synthesis is primarily aimed at Indian scripts, which
are non-cursive in nature. The synthesized handwritten word is then matched
with all the words in the database and those with scores below a threshold
qualifies as matches. The matching documents are then ranked according to
the frequency of the search term in the document (TF) and the inverse of the
number of documents containing the word (IDF), and the result is presented
to the user.

The following are the characteristic differences of the current work, when com-
pared to other approaches to retrieval of online handwriting data.

(1) Use of Synthesis: Our approach employs a handwriting synthesis mod-
ule to map the query text into the ink domain. Matching is done at the
ink level rather than on the recognition output. This enables the use of
a keyboard, pen or example word for query input.

(2) Use of IR Measures: The proposed approach extends the concepts of
TF/IDF and word-form variations into the ink domain and integrates
it with the search and retrieval module. This enables us to have better
page rank computations. This part is an extension of our work that uses
a similar approach for printed documents [7].

(3) Indexing: Indexing and clustering schemes are introduced to organize
multi-user document collections so as to enhance efficiency of searching
and retrieval from handwritten data.

(4) Cross-Lingual Retrieval: The synthesis module, when combined with
the transliteration properties of Indian languages enables us to do cross-
lingual retrievals for a single query word.

(5) Indian Language Search: The state of both OCR and handwriting
recognition for Indian languages are still in its infancy and there are
no commercial OCR or HWR programs available even on platforms like
the Tablet PCs. A recognition-free approach is extremely useful in this
context. To the best of our knowledge, this is the first attempt at the
problem of document retrieval from Indian language online handwritten
data.

The bottleneck of most recognition-free approaches is the fact that one is
trying to match the content of the query word with that of the words in
a document. The matching algorithm proposed by Jain and Namboodiri [3]
achieves excellent results for word matching. However, the performance of
the algorithm drops drastically when one tries to compare the words written
by two different writers. In general, ink-matching based algorithms work well
only for single user document collections. Moreover, the user interface for the
method described in [3] is restricted to pen-based input and hence is not
convenient in all settings. The user needs to provide an example query word,
in place of the textual query that we employ in this work. We solve both of

6

the problems by generating a handwritten sample of the query word in the
writing style used in the document. In other words, matching is done using a
synthesized sample of the query in the style of the writer under consideration,
which is generated from typed text.

(ITRANS/Unicode)

Database

Synthesis

Matching and

Feature
Extraction

Indexing

Relevant
Documents

Query Word Rendering
Input

Fig. 2. The entire process of synthesis and retrieval of relevant documents.

The block diagram in Figure 2 describes the entire process of synthesis of the
query text and retrieval from handwritten document collections. The input
query is entered either in ITRANS or in Unicode. The query word is then
synthesized and the corresponding handwritten word is rendered by the word
rendering module. Features are then extracted from the rendered word and is
matched against all the feature values of the handwritten words that are stored
in the database. Then relevant handwritten documents are fetched based on
their relevance scores for users view. Note that in the present work we assumed
handwritten word segmentation is available and hence it is not part of this
work.

3 Handwriting Synthesis and Modeling

Handwriting synthesis transforms the query text into the ink domain. To get
better results during synthesis, models of handwritten data are learned from
training samples. In doing so synthesis enables to perform matching at the ink
level.

3.1 Online Handwriting Synthesis

Given an input text, the problem of handwriting synthesis is to generate data
that is close to how a human would write the text. The characteristics of the
generated data could be that of a specific writer or that from a generic model.

7

Even with a given model, the synthesis method should not be determinis-
tic since the variations that are found in human handwriting are inherently
stochastic. However, if we need to generate data that is similar to a particular
writer’s handwriting, we need to identify, model, and preserve the basic char-
acteristics of his/her handwriting. The problem of maintaining the writing
style while introducing variability [13] makes the problem of synthesis very
difficult. A handwriting synthesis solution has a variety of applications in-
cluding automatic creation of personalized documents [14], generation of large
quantities of annotated handwritten data for training recognizers [15][16], and
writer-independent matching and retrieval of handwritten documents.

Traditionally, handwriting synthesis has been dealt within the realm of offline
handwriting [17], where the handwritten data is a scanned image of a paper
document. Online handwriting is stored as a sequence of strokes, where each
stroke is defined as the trace of the pen tip from a pen-down to the next pen-
up. Devices with pen-based interfaces facilitate storing of the handwritten
ink in the digital format and thus enabling a variety of applications such as
search and retrieval of large sets of handwritten notes [18] as well as efficient
communication via the Internet. In the context of digital ink, the technique
of handwriting synthesis is extremely useful as it leads to applications that
preserve the compactness of online data, while being natural.Additional details
of the synthesis process could be found in [19].

(a) (b)

Fig. 3. Telugu word EdainA written by (a) Writer 1, and (b) Writer 2.

3.1.1 Characteristics of Indian Scripts

The problems associated with handwriting synthesis are different depending
upon the nature of the script that one is trying to synthesize. Languages that
use the Roman script contain a small set of symbols that are arranged in a
linear fashion to create a word. The complexity of these scripts arises due to
the cursive nature of the script, where the individual characters are connected
together. In fact, real-world handwriting is a mixture of cursive and non-
cursive parts, which makes the problems of recognition and synthesis, more
difficult.

Indian language scripts are fundamentally non-cursive in nature, where the
aksharas (equivalent to characters) are written independently, separated by
space or pen-lifts. An akshara can be combination of one or more (up to 3)
consonants with a vowel. However, these scripts often contain a large num-

8

ber of characters that have complex spatial layout of strokes. Indian scripts
have compound characters, which are combinations of multiple consonants
and vowels. The handwriting synthesis process should hence model all the
possible variations of characters and their combinations to be able to generate
any given text. This makes the problem of synthesis, extremely complex in
the case of Indian language scripts.

There are many other properties of the Indian scripts that are not seen in
Roman. This arises due to a variety of factors:

• Alphabets of Indian scripts have far more complex shapes and varied writing
styles.

• The size of the alphabets is typically high. In addition, the presence of
samyuktaksharas (compound characters) make modeling Indian scripts more
difficult.

• The basic stroke shapes in Roman scripts are often unambiguous in their
meaning. However, this is not the case with the Indian scripts, where a
single stroke shape can acquire different meanings depending on its position
and size.

• Indian scripts are non-cursive in nature and thus the available models for
cursive scripts need not be the most suitable.

• The spatial location of an akshara is dependent on the previous akshara

in some Indian language scripts.

Along with the spatial complexity, the variance in writing styles also increases
for Indian scripts. For example, Figure 3 shows the handwritten Telugu word
EdainA (means anything) written by two different writers. As it is evident
from Figure 3, the second writer’s handwriting (Figure 3 (b)) is readable and
clean as compared to that of the first writer (Figure 3 (a)), whose handwriting
sample is composed of several pen lifting movements, stroke discontinuities,
slant and other deformities. Also note the fact that the stroke order is not
unique for every writer for a given word and sometimes even the same writer
has different stroke order when writing the same word.

As pointed out before, the scripts of Indian languages are more complex than
Roman script. Following is a list of interesting characteristics of Indian scripts
that are relevant to the synthesis problem. Words in many of the Indian lan-
guage scripts (like Hindi, Bangla, Marathi, and Gurumukhi (Punjabi)) have
Shirorekha (horizontal bar on the top). Figure 4(a) shows how characters of
Bangla script are joined on the top with the Shirorekha to form a word. The
other feature of Indian scripts is shown in Figure 4(b), where vowels often get
converted as augmented shape modifiers to consonants in most Indian scripts.
In Hindi when the consonant ka is combined with the vowel e it gives a com-
pound akshara ki. Figure 4(c) depicts the third case. This is an example of
Samyuktakshara which could contain multiple consonants and vowels. In De-

9

Fig. 4. Some of the special cases in Indian language scripts.

vanagari script the word raashtra is formed from the basic consonants and
vowels listed. The fourth case (Figure 4(d)) shows an example from the Tamil

script where the vowel sound uu is a concatenation of the symbols of u and
lla. Finally, in Figure 4 (e) we have the consonant ka in Hindi, which when
combined with the vowel uu results in kuu and when combined with the vowel
e results in ke.

One may observe that for Indian scripts, spatial positioning of the strokes is
equally important as their shapes.

3.1.2 Synthesis of Non-Roman Scripts

Roman script was the primary focus in the motor model based synthesis tech-
niques [20][21]. In addition there have been attempts like modulation of os-
cillatory motions of the pen [22], the vector-matrix of successive strokes [23]
and use allograph codes as input [24]. On the other hand there has been no
concrete model available for the oriental languages. Some oriental characters
need many pen-tip lifting steps due to the presence of large number of short
segments. Scripts such as the Korean has been studied before for the purpose
of synthesis [25,26]. The Beta-Velocity model was proposed for Kanji scripts
[25] to simulate cursiveness with a letter or a word. This model was an im-
provised version of the Delta LogNormal model, the main difference being
that the Beta-Velocity model uses asymmetric curves, whose skewness can be

10

controlled by variables.

In this work, we use a stroke shape and layout model for Indian language
scripts that can be learned from labeled samples. Hence we can use the model
for generation of a specific writer’s handwriting or develop a generic writer
model. This model captures both the shape and temporal aspects of the strokes
as well as their order information. Hence we can generate either online or offline
data using the learned parameters.

3.2 Modeling Handwritten Data

Figure 5 gives the outline of the learning and synthesis steps of our method.
The handwriting model consists of two parts, a stroke model, which captures
the shapes and variations in the basic strokes that form the characters, and
a layout model, which controls the spatial layout of the individual strokes.
The individual models can be learned from online handwritten data that is
collected from a writer or multiple writers. The training data needs to be
annotated manually. Examples of strokes corresponding to each stroke class is
used to learn the stroke model. The spatial distribution of strokes are learned
by the layout model.

Stroke
Model

Alignment
Model

Stroke Selection

Stroke Alignment

Word Rendering

Annotation Input as
Unicode/ITRANS

Text

Text

Online Handwriting Data

of strokes
Spatial distribution

Clustered Strokes

Fig. 5. Block diagram for handwriting synthesis. The modules to the left of the dot-
ted line forms the training phase, while those to the right form the online synthesis.

3.2.1 Stroke Model

Each script contains a set of basic strokes that are used to form all the char-
acters in the script. For example, Hindi consists of around 200 basic strokes,
while Telugu consists of more than 300 basic strokes. The stroke model consists

11

of a representation for each of these basic strokes. We have used two differ-
ent models for representation of the strokes: Normalized Template Model and
Mean Trace Model.

Normalized template model represents each basic stroke class using a set of
training strokes, that are normalized in size. The stroke selector will randomly
select one of the samples for the required class and scale it to the appropriate
size which is determined by the position of the stroke in the character. The
model M , could be represented by a set of k stroke models, each containing a
set of stroke samples:

M = {S1, S2, .., Sk}

Si = {s1, s2, .., sni
}

si = [(x1, y1)(x2, y2)..(xm, ym)],

where Si represents the model of the ith stroke class containing ni stroke
samples, and each si is a sample that consists of a sequence of (x, y) coordinate
pairs.

Mean trace model computes the mean of all the traces (or strokes) of each
of the given stroke classes by normalizing the strokes and aligning the points
using an elastic matching technique. The distribution of the samples of the
strokes are estimated using the means and covariance matrices of the aligned
sample points and are stored in their trace order. The stroke selector module
will generate random samples from each of the distributions to create a new
stroke of a given class, assuming a Gaussian distribution.

The mean model estimate is the maximum likelihood estimate of the sample
sequence, assuming each sample comes from a multivariate Gaussian distribu-
tion.

M = [X̄1, X̄2, .., X̄k]
T

X̄ip =
1

ni

ni∑

j=1

(xpj, ypj),

where X̄i represents the mean of the pth point of the ith stroke class containing
ni stroke samples, and each sample point of the strokes model is the mean of
the corresponding points ((x, y) coordinate pairs) after alignment and outliers
removal.

Note that the stroke models that we employ are relatively simple compared
to the motor model based approaches for Roman scripts. However, since the
strokes themselves are only parts of characters in the Indian language scripts,
their spatial distribution, captured by the layout model, can generate realistic
renderings of handwriting.

12

3.2.2 Layout Model

The most important part of our synthesis model is the layout model that is
capable of capturing the spatial relationship between stroke classes. Let ωi

and ωj be two stroke classes that are modeled using the stroke model defined
in Section 3.2.1. We describe the layout model as the spatial relationship
between the two strokes ωi and ωj in terms of distance, r, and direction, θ.
In this experiment the relative distance and direction are computed based on
the bounding boxes.

Let p(r, θ|ωiωj) represent the spatial distribution of the class ωj with respect
to the class ωi, where r is the radial distance and the θ is the angle between
the two classes. We represent the spatial layout DL of a script/language L, as
a set of such pairwise spatial distributions of the strokes:

DL = {p(r, θ|ωiωj)|ωi and ωj are neighbors in L}

Here we assume that the parameters r, θ form a distribution for each stroke
class pair, which can be modeled as a multivariate Gaussian distribution. The
mean and covariance matrices are estimated using MLE, similar to that in the
stroke model. Once the model parameters are estimated from the annotated
samples, we can synthesize any given text based on the synthesis procedure
(shown to the right of the dotted line in Figure 5).

Each character in the Indian script could compose of multiple strokes and its
number can differ based on the writing style. Hence, in addition to the spatial
layout, we also need to learn the set of stroke classes that are used to write
a particular character by specific writer. This information is identified and
stored for each character class during the training phase. Detailed discussion
of stroke and layout models could be found in [19].

4 Retrieval by Synthesis

We retrieve online handwriting by synthesizing the query word as online hand-
written data. Thereafter we find the results by matching and ranking relevance
of documents identified during searching.

4.1 Query Expansion

During searching if a relevant document does not contain the terms that are
in the query, then that document will not be retrieved. Query expansion is

13

the process of reformulating a given query to reduce query-document mis-
match [27]. The aim of query expansion is to improve retrieval performance
(precision and/or recall) in information retrieval operations. This procedure
have greater importance for cross-lingual retrieval of handwritten documents
in Indian language, since relevant documents may exist in some other language.
In text search engines the additional terms may be taken from a thesaurus.
For example a search for ’car’ may be expanded to ’car’, ’cars’, ’automobile’,
’automobiles’, etc. In this work, multi-script query expansion is done to allow
cross-lingual search and document retrieval across Indian languages. Thus,
given an input query we use transliteration to generate the corresponding
terms in any of the Indian scripts.

4.2 Query Generation

Let ω1, ω2, ..., ωk be the k primitive classes that compose the entire script.
These primitive classes consist of strokes extracted from the stroke model. Let
xi be a particular stroke in the training samples of ωj. Conventional algorithms
model p(xi|ωj) (denoted as pωj

(xi)) based on a set of parameters that control
the shape of xi [28], and the primitives used are characters. In our model,
pωj

(xi) is controlled by the stroke model.

The word is synthesized using the individual primitive classes, and the distri-
bution of samples within the classes. The synthesis proceeds as follows:

• Given a text word, create a sequence of stroke classes that constitute the
handwriting equivalent of the input word. This information is learned during
the training of the layout model.

• For each stroke class, we select/generate a sample stroke using the stroke
model for the writer under consideration.

• The layout model is used to arrange the sample strokes to generate the final
word.

• The word could be rendered in appropriate form, depending on the appli-
cation or could be passed to the next phase in applications such as retrieval
and training of recognizers and also can be used for other applications.

4.2.0.1 Stroke Selection: The stroke selection module selects a sample
stroke from the set of training samples in the case of normalized template
model. For the mean trace model, we generate a sample stroke based on the
learned distribution of the sample points within the stroke. One can introduce
variations in the synthesis by generating random samples from each sample
distribution. Alternately, the mean of the sample points would give the most
likely stroke sample for each stroke class.

14

4.2.0.2 Stroke Alignment: The sequence of primitives generated by the
stroke selection algorithm should be aligned to generate the handwritten query
word. We use the layout model, computed during the training phase, to
determine the orientation between every pair of consecutive strokes. Given
two consecutive strokes, belonging to classes ωi−1 and ωi, we compute the
most likely position of the second stroke with respect to the first stroke:
argmaxr,θp(r, θ|ωi−1ωi), where r, θ is the distance and direction of the sec-
ond stroke with respect to the first. To introduce writing variations, one
could generate random samples of r and θ according to the density function,
p(ri, θi|ωi−1ωi). Note that position of the first stroke of the word is immaterial,
and hence the total probability of the synthesized word with m stroke classes
can be written as:

P (word) = p(x1|ω1)
m∏

i=2

p(ri, θi|ωi−1ωi)p(xi|ωi),

where p(xi|ωi) gives the probability generation of each stroke from the cor-
responding class, and p(ri, θi|ωi−1ωi) gives the probability of observing the
two stroke classes, ωi−1 and ωi, in that particular relative spatial positions.
Figure 6(a) illustrates the concept, where the lines indicate the direction and
distance (r, θ) generated by the synthesis module.

(a) (b)

Fig. 6. (a) Generation of spatial layout from strokes and (b) an erroneous layout
along with the ideal output.

The approach works well to align the generated sequence, except when an
error or outliers is generated in some position, which gets propagated to the
remaining strokes. Figure 6(b) shows such an example of error in alignment
along with the ideal layout that should have been created from the strokes. We
note that the second stroke was placed incorrectly above the first one, which
led to incorrect placement of the subsequent strokes. The errors in synthesis
could affect the retrieval performance. However, by using appropriate stroke
distance measures (such as distance between bounding boxes) that suits a
particular script, such errors can be minimized.

15

4.3 Matching Handwritten Words

Once a handwritten word is synthesized from the query word, we use it to
search the database of handwritten documents using elastic matching. Since
every online handwritten word is a collection of strokes, we need to define a
matching technique to compare two strokes as well as two words. Distance or
dissimilarity between two strokes is computed using a set of features extracted
from the group of strokes. Each stroke consists of a sequence of sample points,
(x, y) that describes the trace of the pen during writing. The strokes are first
converted into a sequence of feature vectors, extracted from each of the sample
points. The feature vector consists of:

(1) The direction, θ, of the tangent to the stroke curve
(2) The curvature, c, of the stroke at the sample point, and
(3) The height, h, of the sample point from the word baseline

Figure 7 (a) illustrates the computation of the three features. The angle, cur-
vature and height of a point on the stroke completely characterizes the local
neighborhood. Moreover, these features have been demonstrated to be effective
for online word spotting for single user datasets [3].

Fig. 7. The Matching process. (a) Features computed for stroke matching: direction,
height and curvature, and (b) Matching using dynamic time warping.

The distance between two feature vectors F1 = 〈θ1, c1, h1〉 and F2 = 〈θ2, c2, h2〉
is defined as the weighted Euclidean distance between the two vectors:

D2 = kθ ∗ (θ1 − θ2)
2 + kc ∗ (c1 − c2)

2 + kh ∗ (h1 − h2)
2,

where ks are the weighting factors. A sequence alignment score D(i, j) be-
tween two sequences F = F1, F2, . . . , FM and G = G1, G2, . . . , GN is then
computed using a Dynamic Time Warping (DTW) procedure. The use of
the total cost of Dynamic Time Warping as a similarity measure is helpful
to group together strokes that are related to their root character by partial

16

match. Dynamic Time Warping is a dynamic programming based procedure
to align two sequences of signals. This can also provide a similarity measure.
Further details of DTW computation is available in [7].

The distance between two words are computed similar to the inter-stroke dis-
tance. However, in this case, the primitives becomes strokes (unlike feature
vectors in stroke matching) and D(i, j) is used as the distance measure be-
tween strokes. The DTW algorithm used at the word level allows us to handle
spurious or missing strokes in a word. It also allows us to do partial matching
of words as will be seen in the next section.

4.4 Information Retrieval Measures for Handwritten Document Retrieval

Most of the document retrieval algorithms mentioned in Section 2, focus on
spotting of similar looking words and retrieving documents containing such
instances. However, with widespread use of textual search engines along with
powerful information retrieval techniques, one naturally look for mimicking
these ideas, even in the absence of an explicit recognition engine. We had
already presented a computationally efficient procedure for the indexing and
retrieval of offline printed documents [7]. Here, we extend the same idea to
the online handwritten data. Table 2 shows a comparative review of how IR
principles in text-domain are effectively used for searching handwritten data.

Algorithm(s) Used

Modules Text search engine Current work

Query expansion Thesaurus Language modeling and
transliteration

Matching String matching Elastic matching

Stemming Language modeling
(e.g. Porter algorithm)

Dynamic time warping

Stopword detection Negative dictionary Inverse document fre-
quency and negative
dictionary

Relevance ranking Term frequency (TF) Modified TF/IDF

Clustering — Minimum Spanning Tree

Indexing structure Inverted index and sig-
nature file

Inverted index

Table 2
A comparative review of information retrieval measures used in text search engines
vs. the present work.

17

In the case of ASCII encoded text documents, the retrieved documents are
ranked according to a relevance score. The relevance scores are computed
as follows: i) stop words in the query and documents are removed to avoid
spurious documents from being retrieved, ii) morphological variations of the
word are identified, and iii) relevance of the document to a query is ranked
based on factors such as term frequency (TF) and inverse document frequency

(IDF). An important process in speeding up the retrieval of documents is that
of indexing. Indexing documents require identification of their representative
index terms. To this end, we apply basic information retrieval measures in
the ink domain for stemming word form variations, detecting stopwords and
relevance measurement. During indexing, the unique words in a document are
identified and a table is created with them, where each index term points to
all the instances of that term in the document. We use inverted data structure
to organize clustered documents around the words they contain. Thereafter
one can search only in the index table to locate any document containing the
query.

In our problem of recognition-free retrieval, the identification of instances of a
particular word becomes the problem of unsupervised clustering of the words
in a document collection. Once we identify clusters that correspond to unique
words, we can compute measures such as TF and IDF without explicit recog-
nition of the words, as they need only the number of instances of a particular
word in the document. We use a Minimum Spanning Tree (MST) based clus-
tering algorithm for this purpose.

To carry out the clustering, we construct a complete graph for each document,
where the word instances are the nodes and the distance between any two
nodes is their matching distance computed in Section 4.3. The edges between
instances of the same word (or variants of it) are expected to be shorter than
those between instances of different words. We then compute the minimum
spanning tree of the graph. The clustering algorithm proceeds by removing the
longer edges from the tree, thus separating clusters of same words from others.
The process is done in a recursive fashion, where each edge, eij is inspected
for its relative length with respect to the neighboring edges, incident of nodes
i and j. An edge with a large ratio of length to its neighbors is considered
an inter-cluster edge and is removed. The process is repeated until the largest
ratio, remaining in the graph, is within a threshold. The threshold is often
set experimentally, and is dependent on the stability of the distance score
computed above. For multi-page documents, the words in a page are clustered
and the clusters across pages are merged to form the index, for efficiency
purposes.

The above indexing and clustering approach can be directly applied to single-
writer handwritten document collections. However, in the multi-writer case
there is a great variations in the writing style among writers. Hence applica-

18

bility of the indexing approach depends on the availability of a dictionary of
words, which can be synthesized and compared to the words in the documents
to form clusters.

The statistical distribution of the words across documents is used for detecting
stop words and also for computing a pseudo-TF/IDF. Once similar words are
clustered, we analyze the clusters for their relevance. A measure of the uni-
formity of the presence of similar words across the documents is computed.
We define the uniformity measure (η), as µ/σ, where µ is the mean, and σ
is the standard deviation of the number of instances of the word per page.
Note that the value of η will be high for those words which appear frequently
on most pages. The inverse of the uniformity measure (1/η) is used as in-
verse document frequency. If a word is common in all the documents, this
word is less meaningful to characterize any of the documents. Given a query,
the corresponding handwriting is synthesized and the cluster corresponding
to the words are identified. In each cluster, documents with highest occur-
rence of similar words are ranked and listed. The process of computation of
relevance of the word as well as the counting of word frequencies does help
to index document images similar to TF/IDF (Term Frequency/Inverse Doc-
ument Frequency) for text indexing.

One of the main problems in document search using keywords is that of word-
form variations. The exact word that is present in the document being searched
is a variant of the keyword. There are two types of variations that are possible
for a word: i) variation of the form of the word and ii) alternate word with
the same meaning. For example, let the keyword being searched is compute.
Word-form variants include words such as computer, computing, computation,
etc., where as, alternate words could include calculate and determine in spe-
cific contexts. Addressing the second type of variation needs knowledge of the
meaning of the word and its context and is beyond the scope of this work. We
address the problem of dealing with the first class of variations, namely word-
form variations. To match variants of a word, we note that word form varies
mostly as changes in the prefix and/or suffix of a word, both in English and
in Indian languages. Figure 8 shows an example of partial matching for the
Hindi words having root word “gyan” (meaning knowledge). As can be seen,
the word “Agyanta” (on the top of Figure 8) is matched with the word ”gyan”
(to the left of Figure 8). We thus modify our matching algorithm to minimize
the penalty added on the total matching score as a result of the initial and
final parts of a variant word (that is not matching with its base word). The
net cost is finally used as a distance measure to group together similar words
during clustering. This makes it easier to determine the relevance of words for
representing documents during indexing.

19

A gy a n t a

gy

a

n

Fig. 8. Partial matching of the word ’gyan’ with its variant ’Agyanta’.

5 Experimental Results

The proposed search and retrieval scheme is tested on online handwriting
datasets in Indian scripts, primarily in Telugu. The data for the experiments
were collected using an IBM Crosspad and a Tablet PC. For convenience of
description, we divide our dataset into two: Dataset 1, consists of 100 pages of
data from 20 different writers in Telugu script. The writers were chosen from
varied backgrounds based on attributes such as script familiarity, educational
qualification, age, and gender. The data contains over 12, 000 words. Dataset

2, consists of 15 pages each in Bangla, Hindi, Malayalam, Tamil, and Telugu
scripts, collected from a total of 5 writers. The Telugu pages are common in
both sets. The scripts mentioned above were selected for the following reasons:
i) Telugu, which has one of the most complex layouts among all of the Indian
languages, ii) Hindi, which has shirorekha, iii) Malayalam which has long and
complex strokes, and iv) Bangla, which is similar to Hindi and v) Tamil, which
has the smallest set of alphabets in Indian languages. A larger Telugu dataset
(Dataset 1) was collected due to its complexity in spatial layout of characters.

5.1 Modeling and Synthesis of Handwriting:

The first set of experiments were to evaluate the performance of the synthe-
sis algorithm. The experimental framework consists of i) an annotation tool
that can annotate the handwritten data at the stroke level, ii) a handwriting
model and synthesis module and iii) an ITRANS-based encoding module for
processing the text input. The data was annotated manually using the anno-
tation toolkit [29] in ITRANS [30]. In this toolkit, handwritten data can be
displayed simultaneously with the annotation, which is dynamically updated
as the user types the annotation.

Figure 9 shows two original samples of the Telugu word ’EdainA’ from two

20

different writers and the corresponding synthesized words. As can be seen,
the synthesized words for two different writers (Figure 9 (b) and (d)) are
very similar to their original forms (Figure 9 (a) and (c)). As noted from
the example, our model is able to generate natural and realistic words that
are very close to the original ones. Also shown in Figure 9 (e)-(j) the word
”manushya” in their synthesized and original forms in Malayalam, Bengali
and Tamil scripts respectively.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 9. Sample synthesized words and their original forms written by various writers
in Telugu, Malayalam, Bengali and Tamil.

Fig. 10. Sample words synthesized for three different writers.

Figure 10 shows the synthesis results of the same set of words written by three
different writers. Characteristics such as the inter-character spacing, relative
size of loops and other matras (diacritical marks) of the three writers vary
greatly. The mean trace model allows us to generate variations in handwriting
of a specific writer, while maintaining the characteristics traits of the individ-
ual.

During synthesis the user input is typically in the form of either Unicode or
ITRANS [30] encoded text, which are the two popular encodings for Indian
language scripts. The input encoder converts the ITRANS or Unicode text
string into a sequence of stroke classes. The specific stroke classes that are

21

generated depend on the character in the input as well as the writing style
of the writer under consideration. The stroke selector module generates a se-
quence of strokes using the stroke model that are needed to generate the input
text. Stroke alignment module is then used to compute the spatial positioning
of the generated strokes based on the information from the alignment model
and finally the word is rendered.

A quantitative evaluation of the synthesis algorithm is not feasible without a
similarity measure between the generated word and the writing style of the
writer under consideration. However, the writing style is a subjective quan-
tity, that has not yet been quantified in the literature. Hence we use the
effectiveness of the synthesis module in the retrieval experiments to measure
the correctness of our synthesis algorithm.

To run the retrieval experiments, we identify a set of query words that are
present in the documents in the database, and the corresponding online hand-
writing samples are synthesized. The features from the synthesized word are
extracted as described before and compared against the words in the doc-
ument. Those words with a matching (distance) score that is lower than a
pre-specified threshold were assumed to match the query. As the threshold
is relaxed, more documents are retrieved, which may contain documents that
are less relevant, and as the threshold is tightened, the relevance of the re-
trieved documents increase, although the number of documents retrieved will
decrease. Retrieved documents are then ranked based on the relevance to the
query using TF/IDF scores.

Figure 11 shows the retrieved documents with the matching words placed
inside the bounding box for the query in Figure 12. We note that all the docu-
ments that contained the word were retrieved and the top three matches were
all relevant documents. Figure 11(a) has three matches where the first two
matches are for the word “roojulaku” which is a variant of “roojulu”, while
the last match is a direct match with the word “roojulu”. The match with the
variant occurs due to the fact that the first sequence of strokes in all the three
matches are similar and constitute the root word “rooju” (meaning “day”).
Figure 11 (b) also has similar results for the word “roojulu” written by a differ-
ent writer. In general, as can be observed from the retrieval result the search
is able to retrieve words written by different writers based on the synthesized
words, which shows the effectiveness of the synthesis based retrieval scheme.

Figure 12 presents a closer look at the retrieved words, which contain both
writer differences and word form variations. The results clearly indicate that
the partial matching scheme can effectively handle word form variations.

We also quantified the overall performance of the system on the complete
database using measures such as precision and recall. The precision refers to

22

(a) (b)

Fig. 11. Search result for the input word “roojulaku” in Telugu written by (a) Writer
1, (b) Writer 2.

Input Text in ITRANS

(a) (d)(c)(b)

roojulu

Fig. 12. Synthesized Telugu word “roojulu” and retrieved words (a,b) “roojulaku”

by Writer 1, (c) “roojulu” by Writer 2, and (d) “roojulaku” by Writer 2.

the proportion of the retrieved entities that are relevant, while recall refers
to the proportion of relevant entities in the database that were retrieved.
For objective evaluation and computation of the precision-recall curve, we
look at word level precision, and define a document as relevant if the word is
matched correctly as per the ground truth. By varying the threshold used for
matching, one gets various values for precision and recall. Precision and recall
are basically inversely related such that as the threshold is made tighter, the
precision increases, while the recall decreases, and vice versa.

Figure 13 shows performance results of word matching as a precision-recall
curve. It is clear that even in a multi-writer databases, our algorithm is able to
achieve very good retrieval performances. The only report in the literature that
do recognition-free retrieval of handwritten documents are those by Lopresti
and Tompkins [18] and Jain and Namboodiri [3]. The focus of both of them
is single-writer document collections. For cross-writer retrieval, Lopresti and
Tompkins [18] reports a precision of 2.8% at 50% recall and 1.6% at 100% recall
on a dataset of 6240 words and an equal error rate of around 45% for single-

23

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

Fig. 13. Precision-vs-Recall plot for the experiment.

writer datasets. Clearly the algorithm works poorly on cross-writer retrieval.
Jain and Namboodiri [3] achieves an equal error rate of around 10%, again
for singe-writer dataset of 3, 800 words. In contrast, our algorithm achieves en
equal error rate of 25.2% on a dataset of around 12, 000 words written by 20
different writers. A direct comparison of the error rates is not meaningful due
to differences in the dataset used. In addition, our approach is able to accept
textual queries instead of handwritten samples.

5.2 Multi-Script Synthesis and Retrieval

In addition to the multi-writer case, our algorithm is also able to handle multi-
script databases using a single query, especially in Indian scripts. For multi-
script synthesis, the input data is either translated or transliterated into the
target script. Transliteration is possible for proper nouns in Indian languages
since all the scripts share a common alphabets although the shape of scripts
themselves are very different (see Figure 14), which is used for cross-lingual
search as shown in Figure 14.

Once the query word is converted to the representation in the required script,
a synthesizer in the corresponding script is employed to generate the corre-
sponding handwritten data (see Figure 15).

Given an input word in ITRANS, one can generate the corresponding strokes
in any of the Indian scripts and use the corresponding language model to
generate the handwriting for a particular user. This capability is essential for
applications such as cross-lingual search, where one would like to search for a
word in different scripts, simultaneously.

Each of the generated query string is then compared with the key words to
retrieve the corresponding documents. The results are identical to providing

24

Fig. 14. Shared alphabets of multiple scripts.

haidaraabaad

Input Query in ITRANS

Synthesis

Hindi
Handwriting

Malayalam
Handwriting
Synthesis

Synthesis
Handwriting

Synthesis
Handwriting

Telugu

Tamil

Fig. 15. Multi-script query expansion.

separate queries for each script, and hence is very effective. The query results
on the multi-script database yields a precision of 94.3% at a recall of 89.1%.
The results are comparable to the single script case and hence shows the
effectiveness of the framework.

6 Conclusions

We have proposed a writer-independent recognition-free approach for retrieval
of handwritten data in Indian language scripts. The proposed approach uses

25

(a) in Hindi (b) in Tamil

(c) in Malayalam (d) in Telugu

Fig. 16. The word haidaraabaad synthesized in various Indian languages.

handwriting synthesis to do matching in the ink domain as opposed to the
use of a recognizer. The framework also incorporates information retrieval
measures such as TF/IDF to rank relevance of the retrieved documents. The
approach also supports multi-lingual queries, which is especially useful for
Indian languages. On the other hand, there is a need to further investigate on
writer independence, stroke ordering, a complex stroke model and a way to
quantify performance. We are currently working on modeling the handwritten
data as a mixture distribution, which will be able to incorporate more writing
variations within the data of a single user. Another interesting directions that
we are currently pursuing is the study of stroke shape variations when it is in
the proximity of other strokes or when the position of the stroke in the word
changes.

References

[1] G. Russell, M. P. Perrone, Y. M. Chee and A. Ziq, Handwritten document
retrieval, in: Proceedings of the International Workshop on Frontiers in
Handwriting Recognition, Korea, 2002, pp. 233–238.

[2] E. H. Ratzlaff, Methods, report and survey for the comparison of diverse isolated
character recognition results on the unipen database, in: Proceedings of the
International Conference on Document Analysis and Recognition, 2003, pp.
623–628.

[3] A. K. Jain and A. M. Namboodiri, Indexing and retrieval of on-line handwritten
documents, in: Proceedings of the International Conference on Document
Analysis and Recognition, Edinburgh, Scotland, 2003, pp. 655–659.

[4] T. Rath and R. Manmatha, Word image matching using dynamic time warping,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2003, pp. 521–527.

[5] S. N. Srihari and Z. Shi, Forensic handwritten document retrieval system, in:
Proceedings of the International Workshop on Document Image Analysis for
Digital Libraries, Palo Alto, CA, 2004, pp. 188–192.

26

[6] I. Kamel, Fast retrieval of cursive handwriting, in: Proceedings of the
5th International Conference on Information and Knowledge Management,
Rockville, MD, 1996, pp. 91–98.

[7] A. Balasubramanian, Million Meshesha and C. V. Jawahar, Retrieval from
document image collections, in: International Workshop on Document Analysis
Systems, Nelson, NewZealand, 2006, pp. 1–12.

[8] S. N. Srihari, Recognition of handwritten and machine-printed text for postal
address interpretation, Pattern Recognition Letters 14 (1993) 291–302.

[9] C. Cracknell and A. C. Downton, A handwritten form reader architecture,
in: Proceedings of the International Workshop on Frontiers in Handwriting
Recognition, Korea, 1998, pp. 67–76.

[10] Rafael Palacios, Amar Gupta, Patrick Shen-Pei Wang, Handwritten bank check
recognition of courtesy amounts, International Journal of Image and Graphics
4 (2) (2004) 203–222.

[11] J. Hu, M. K. Brown and W. Turin, HMM based online handwriting recognition,
IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (10) (1996)
1039–1045.

[12] S. D. Connell and A. K. Jain, Writer adaptation for online handwriting
recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence
24 (3) (2002) 329–346.

[13] S. N. Srihari, S. H. Cha, H. Arora and S. Lee, Individuality of handwriting,
Journal of Forensic Sciences 47 (4) (2002) 1–17.

[14] I. Guyon, Handwriting synthesis from handwritten glyphs, in: Proceedings
of the International Workshop on Frontiers in Handwriting Recognition,
Colchester, England, 1996, pp. 140–153.

[15] T. Varga and H. Bunke, Generation of synthetic training data for an HMM-
based handwriting recognition system, in: Proceedings of the International
Conference on Document Analysis and Recognition, Edinbugh, Scotland, 2003,
pp. 618–622.

[16] M. Helmers and H. Bunke, Generation and use of synthetic training data in
cursive handwriting recognition, in: Proc. 1st Iberian Conference on Pattern
Recognition and Image Analysis, 2003, pp. 336–345.

[17] Y. Zheng and D. Doermann, Handwriting matching and its application to
handwriting synthesis, in: Proceedings of the International Conference on
Document Analysis and Recognition, 2005, pp. 861–865.

[18] D. Lopresti and A. Tomkins, On the searchability of electronic ink, in:
Proceedings of the International Workshop on Frontiers in Handwriting
Recognition, Taipei, 1994, pp. 156–165.

[19] C. V. Jawahar and A. Balasubramanian, Synthesis of online handwriting in
indian languages, in: Proceedings of the International Workshop on Frontiers
in Handwriting Recognition, 2006.

27

[20] W. Guerfali and R. Plamondon, The Delta LogNormal theory for the generation
and modeling of cursive characters, in: Proceedings of the International
Conference on Document Analysis and Recognition, 1995, pp. 495–498.

[21] R. Plamondon, A Kinematic theory of rapid human movements, Part I.
Movement representation and generation, in: Biological Cybernetics, Vol. 72,
1995, pp. 295–307.

[22] Y. Singer and N. Tishby, Dynamical encoding of cursive handwriting, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 1993, pp. 341–346.

[23] S. Kondo, A model of handwriting process and stroke structure of character
figures, in: Computer Recognition and Human Production of Handwriting, 1989,
pp. 103–118.

[24] L. R. B. Schomaker, A. J. W. M. Thomassen and H. L. Teulings, A
computational model of cursive handwriting, in: Computer Recognition and
Human Production of Handwriting, 1989, pp. 119–130.

[25] D. H. Lee and H. G. Cho, A new synthesizing method for handwriting Korean
scripts., International Journal of Pattern Recognition and Artificial Intelligence
12 (1) (1998) 46–61.

[26] O. Velek, C.L. Liu and M. Nakagawa, Generating realistic kanji character
images from on-line patterns, in: Proceedings of the International Conference
on Document Analysis and Recognition, 2001, pp. 556–560.

[27] O. Vectomova and W. Ying, A study of the effect of term proximity on query
expansion, Journal of Information Science 32 (4) (2006) 324–333.

[28] J. Wang, C. Wu, Y. Q. Xu, H. Y. Shum and L. Ji, Learning-based cursive
handwriting synthesis, in: Proceedings of the International Workshop on
Frontiers in Handwriting Recognition, 2002, pp. 157–162.

[29] A. Bhaskarbhatla, S. Madhavanath, M. Pavan Kumar, A. Balasubramanian and
C. V. Jawahar, Representation and Annotation of Online Handwritten Data,
in: Proceedings of the International Workshop on Frontiers in Handwriting
Recognition, 2004, pp. 136–141.

[30] ITRANS, Indian language transliteration package, at:
http://www.aczoom.com/itrans/ (2001).

28

