
More Generality in Efficient Multiple Kernel Learning

Manik Varma manik@microsoft.com

Microsoft Research India, Second Main Road, Sadashiv Nagar, Bangalore 560 080, India

Bodla Rakesh Babu rakeshbabu@research.iiit.net

CVIT, International Institute of Information Technology Hyderabad, Gachibowli, Hyderabad 500 032, India

Abstract

Recent advances in Multiple Kernel Learn-
ing (MKL) have positioned it as an attrac-
tive tool for tackling many supervised learn-
ing tasks. The development of efficient gra-
dient descent based optimization schemes
has made it possible to tackle large scale
problems. Simultaneously, MKL based al-
gorithms have achieved very good results on
challenging real world applications. Yet, de-
spite their successes, MKL approaches are
limited in that they focus on learning a linear
combination of given base kernels.

In this paper, we observe that existing MKL
formulations can be extended to learn gen-
eral kernel combinations subject to general
regularization. This can be achieved while
retaining all the efficiency of existing large
scale optimization algorithms. To highlight
the advantages of generalized kernel learn-
ing, we tackle feature selection problems on
benchmark vision and UCI databases. It is
demonstrated that the proposed formulation
can lead to better results not only as com-
pared to traditional MKL but also as com-
pared to state-of-the-art wrapper and filter
methods for feature selection.

1. Introduction

Support Vector Machines are basic tools in machine
learning that are used for tasks such as classification,
regression, etc. They find application in diverse ar-
eas ranging from vision to bioinformatics to natural-
language processing. The success of SVMs in these
fields is often dependent on the choice of a good kernel
and features – ones that are typically hand-crafted and

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

fixed in advance. However, hand-tuning kernel para-
meters can be difficult as can selecting and combining
appropriate sets of features.

Multiple Kernel Learning (MKL) seeks to address this
issue by learning the kernel from training data. In
particular, it focuses on how the kernel can be learnt
as a linear combination of given base kernels. Many
MKL formulations have been proposed in the liter-
ature. In (Sonnenburg et al., 2006), it was shown
that the MKL Block l1 formulation of (Bach et al.,
2004) could be expressed as a Semi-infinite Linear Pro-
gram. Column generation methods and existing SVM
solvers could then be used for efficient optimization
and to tackle large scale problems involving as many
as a million data points. Gradient descent can be
more efficient than solving a series of linear programs
and (Rakotomamonjy et al., 2008) demonstrated that
training time could be further reduced by nearly an
order of magnitude on some standard UCI datasets
when the number of kernels was large. Simultane-
ously, MKL based algorithms have achieved very good
results on bioinformatics and computer vision applica-
tions. These methods established the viability of MKL
as a tool for tackling challenging real world problems.

Nevertheless, MKL approaches are limited in that they
focus on learning linear combinations of base kernels –
corresponding to the concatenation of individual ker-
nel feature spaces. Far richer representations can be
achieved by combining kernels in other fashions. For
example, taking products of kernels corresponds to
taking a tensor product of their feature spaces. This
leads to a much higher dimensional feature represen-
tation as compared to feature concatenation. Fur-
thermore, by focusing mainly on feature concatena-
tion, MKL approaches do not consider the fundamen-
tal question of what are appropriate feature represen-
tations for a given task.

Some attempts have been made at addressing this is-
sue. Most recently, (Bach, 2008) develop an innovative
way of learning linear combinations of an exponential
number of kernels of a certain type. The method can

More Generality in Efficient Multiple Kernel Learning

therefore be leveraged in situations where the desired
kernel combination can be approximated as a linear
combination of appropriately chosen base kernels.

In this paper, we observe that it is fairly straight
forward to extend traditional MKL formulations to
handle generic kernel combinations. Furthermore,
the gradient descent optimization developed and used
in (Bach, 2008; Chapelle et al., 2002; Rakotomamonjy
et al., 2008; Varma & Ray, 2007) can still be applied
out of the box. It is therefore possible to learn rich
feature representations without having to sacrifice any
of the advantages of a well developed, large scale op-
timization toolkit. In addition to the kernel function,
it is also possible to generalize the regularization on
the kernel parameters. This can be used to incorpo-
rate prior knowledge about the kernel parameters if
available. However, the price that one has to pay for
such generality, is that the new MKL formulation is no
longer convex. Nevertheless, we feel that the ability to
explore appropriate feature representation is probably
more important than being able to converge to the
global optimum (of an inappropriate representation).
This is borne out by our experimental results.

We highlight the advantages of generalized kernel
learning by tackling feature selection problems on
benchmark computer vision tasks, such as gender iden-
tification, as well as on some UCI datasets. We show
that for a fixed number of selected features, standard
MKL can lag behind our formulation by as much as
10% in some cases. Stated in another way, our for-
mulation is capable of reaching the same classification
accuracy as MKL with only a sixth of the features.
We also present comparative results with AdaBoost,
OWL-QN (Andrew & Gao, 2007), LP-SVM (Fung &
Mangasarian, 2002), Sparse SVM (Chan et al., 2007)
and BAHSIC (Song et al., 2007).

The rest of the paper is organized as follows: In Sec-
tion 2 we review the development of MKL from ini-
tial work to current state-of-the-art. We then present
our formulation in Section 3. The formulation is quite
general and can be used for kernel combination, ker-
nel parameter tuning, non-linear feature selection and
dimensionality reduction. Since our empirical focus is
on feature selection we review other feature selection
methods in Section 4 and present comparative results
to them in Section 5. We conclude in Section 6.

2. Related Work

Some of the earliest work on MKL was developed
in (Crammer et al., 2002; Cristianini et al., 2001).
Their focus was on optimizing loss functions such as

kernel target alignment rather than the specific clas-
sification or regression problem at hand. This was
addressed in the influential work of (Lanckriet et al.,
2004) which showed how MKL could be formulated ap-
propriately for a given task and optimized as an SDP
or QCQP (for non-negative kernel weights). Never-
theless, QCQPs do not scale well to large problems
and one of the first practical MKL algorithms was
presented in (Bach et al., 2004). The block l1 formu-
lation, in conjunction with M-Y regularization, was
developed so that efficient gradient descent could be
performed using the SMO algorithm while still gener-
ating a sparse solution.

As already mentioned in the introduction, (Sonnen-
burg et al., 2006) retained the block l1 regularization
but reformulated the problem as a SILP. This made
it applicable to large scale problems and the authors
were impressively able to train their algorithm on a
million splice data set. Further efficiency was obtained
in (Rakotomamonjy et al., 2008; Varma & Ray, 2007)
via gradient descent optimization and (Bach, 2008)
opened up the possibility of training on an exponen-
tially large number of kernels. Other interesting ap-
proaches have been proposed in (Argyriou et al., 2005;
Ong et al., 2005; Zien & Ong, 2007) and include Hy-
perkernels and multi-class MKL.

Note that these methods essentially learn linear com-
binations of base kernels subject to l1, or sometimes
l2 (Cristianini et al., 2001; Kloft et al., 2008), regular-
ization of the kernel parameters. Most formulations
are convex or can be made so by a change of variables.

3. Generalized MKL

Our objective is to learn a function of the form
f(x) = wtφd(x) + b with the kernel kd(xi,xj) =
φt

d
(xi)φd(xj) representing the dot product in feature

space φ parameterized by d. The function can be used
directly for regression or the sign of the function can
be used for classification. The goal in SVM learning is
to learn the globally optimal values of w and b from
training data {(xi, yi)}. In addition, MKL also esti-
mates the kernel parameters d. We extend the MKL
formulation of (Varma & Ray, 2007) to

min
w,b,d

1
2w

tw +
∑

i

l(yi, f(xi)) + r(d) (1)

subject to d ≥ 0 (2)

where both the regularizer r and the kernel can be any
general differentiable functions of d with continuous
derivative and l could be one of various loss functions
such as l = C max(0, 1 − yif(xi)) for classification or
l = C max(0, |yi − f(xi)| − ǫ) for regression.

More Generality in Efficient Multiple Kernel Learning

Three things are worth noting about the primal. First,
we choose to use a non-convex formulation, as opposed
to the convex

∑

k wt
kwk/dk (Rakotomamonjy et al.,

2008), since for general kernel combinations, wt
kwk

need not tend to zero when dk tends to zero. Second,
we place r(d) in the objective and incorporate a scale
parameter within it rather than having it as an equal-
ity constraint (typically

∑

k dk = 1 or
∑

k d2
k = 1).

Third, the constraint d ≥ 0 can often be relaxed to a
more general one which simply requires the learnt ker-
nel to be positive definite. Conversely, the constraints
can also be strengthened if prior knowledge is avail-
able. In either case, if ∇dr exists then the gradient
descent based optimization is still applicable. How-
ever, the projection back into the feasible set can get
more expensive.

In order to leverage existing large scale optimizers, we
follow the standard procedure (Chapelle et al., 2002)
of reformulating the primal as a nested two step op-
timization. In the outer loop, the kernel is learnt by
optimizing over d while, in the inner loop, the kernel
is held fixed and the SVM parameters are learnt. This
can be achieved by rewriting the primal as follows

Min
d

T (d) subject to d ≥ 0 (3)

where T (d) = Min
w,b

1
2w

tw +
∑

i

l(yi, f(xi)) + r(d)

We now need to prove that ∇dT exists, and calculate
it efficiently, if we are to utilize gradient descent in the
outer loop. This can be achieved by moving to the
dual formulation of T given by (for classification and
regression respectively)

WC(d) = max
α

1tα− 1
2αtYKdYα + r(d) (4)

subject to 1tYα = 0, 0 ≤ α ≤ C (5)

and

WR(d) = max
α

1tYα− 1
2αtKdα

+r(d)− ǫ1t|α| (6)

subject to 1tα = 0, 0 ≤ |α| ≤ C (7)

where Kd is the kernel matrix for a given d and Y is
a diagonal matrix with the labels on the diagonal.

Note that we can write T = r+P and W = r+D with
strong duality holding between P and D. Therefore,
T (d) = W (d) for any given value of d, and it is suffi-
cient for us to show that W is differentiable and cal-
culate ∇dW . Proof of the differentiability of WC and
WR comes from Danskin’s Theorem (Danskin, 1967).
Since the feasible set is compact, the gradient can be

shown to exist if k, r, ∇dk and ∇dr are smoothly
varying functions of d and if α∗, the value of α that
optimizes W , is unique. Furthermore, a straight for-
ward extension of Lemma 2 in (Chapelle et al., 2002)
can be used to show that WC and WR (as well as oth-
ers obtained from loss functions for novelty detection,
ranking, etc.) have derivatives given by

∂T

∂dk

=
∂W

∂dk

=
∂r

∂dk

− 1
2α∗t ∂H

∂dk

α∗ (8)

where H = YKY for classification and H = K for re-
gression. Thus, in order to take a gradient step, all we
need to do is obtain α∗. Note that since WC or WR are
equivalent to their corresponding single kernel SVM
duals with kernel matrix Kd, α∗ can be obtained by
any SVM optimization package. The final algorithm is
given in Algorithm 1 and we refer to it as Generalized
MKL (GMKL). The step size sn is chosen based on
the Armijo rule to guarantee convergence and the pro-
jection step, for the constraints d ≥ 0, is as simple as
d ← max(0,d). Note that the algorithm is virtually
unchanged from (Varma & Ray, 2007) apart from the
more general form of the kernel k and regularizer r. If
a faster rate of convergence was required, our assump-
tions could be suitably modified so as to take second
order steps rather than perform gradient descent.

Only very mild restrictions have been placed on the
form of the learnt kernel k and regularizer r. As
regards k, the only constraints that have been im-
posed are that K be strictly positive definite for all
valid d and that ∇dk exists and be continuous. Many
kernels can be constructed that satisfy these proper-
ties. One can, of course, learn the standard sum of
base kernels. More generally, products of base ker-
nels, and other combinations which yield positive def-
inite kernels, can also be learnt now. In addition,
one can also tune kernel parameters in general ker-
nels such as kd(xi,xj) = (d0 +

∑

m dmxt
iAmxj)

n or

Algorithm 1 Generalized MKL.

1: n← 0
2: Initialize d0 randomly.
3: repeat
4: K← k(dn)
5: Use an SVM solver of choice to solve the single

kernel problem with kernel K and obtain α∗.

6: dn+1
k ← dn

k − sn
(

∂r
∂dk
− 1

2α∗t ∂H

∂dk
α∗

)

7: Project dn+1 onto the feasible set if any con-
straints are violated.

8: n← n + 1
9: until converged

More Generality in Efficient Multiple Kernel Learning

kd(xi,xj) = e−
∑

m
dmx

t
iAmxj . Combined with a spar-

sity promoting regularizer on d, this can be used for
non-linear dimensionality reduction and feature selec-
tion for appropriate choices of A. Note, however, that
such kernels do not lead to convex formulations.

As regards r, we only require that its derivative should
exist and be continuous. Since d can be restricted
to the non-negative orthant, various forms of p-norm
regularisers with p ≥ 1 fall in this category. In partic-
ular, l1 regularization with r(d) = σtd or variations
of (Chan et al., 2007) could be used for learning sparse
solutions. Alternatively, l2 regularization of the form
r(d) = (d − µ)tΣ−1(d − µ) can be used when only a
small number of relevant kernels are present or if prior
knowledge in the form of µ and Σ is available (for in-
stance, from transfer learning). Finally, for regression,
one could incorporate the term log |Kd| into r so as to
obtain a MAP estimate of a probabilistic formulation.
The näıve substitution α = K−1y would then render
our formulation near identical to a marginal likelihood
approach in Gaussian Processes.

4. Feature Selection Methods

We compare our formulation to traditional MKL as
well as the following feature selection methods

Boosting : The LPBoost formulation of (Bi et al.,
2004) is similar to that of standard MKL and boosting
generalizes standard MKL’s decision function. Boost-
ing can therefore be used to learn linear combinations
of base kernels. Individual “weak classifier” SVMs are
pre-learnt from each of the given base kernels and com-
bined using AdaBoost. This can be attractive when
there are a large number of kernels or when kernels
are made available incrementally. While the computa-
tional costs are low, the empirical results were found
to be poor as the learnt kernel weights could not influ-
ence the pre-learnt weak classifiers. Of course, in tra-
ditional boosting, the weak classifiers and the weights
are learnt together and we present comparative results
to (Baluja & Rowley, 2007) which represents a state-
of-the-art boosting method for gender identification.

OWL-QN (Andrew & Gao, 2007) : This is a large
scale implementation of l1 logistic regression. The
method learns a function of the form f(x) = wtx by
minimizing (1/C)||w||1 +

∑

i l(yi, f(xi)) where l is the
log loss. Despite being linear, the method can some-
times outperform boosting. Nevertheless, the overall
performance is poor as compared to the other linear
methods since OWL-QN does not have an explicit bias
term. One could simulate a bias by adding a constant
feature but the corresponding weight could be set to

zero due to the l1 regularization. When this doesn’t
happen, OWL-QN’s performance is comparable to LP-
SVM and Sparse-SVM.

LP-SVM (Fung & Mangasarian, 2002) : This is
the standard SVM formulation but with the l2 reg-
ularization on w replaced by l1 regularization. We
consider the linear formulation which learns a func-
tion of the form f(x) = wtx + b by minimizing
||w||1 +C

∑

i l(yi, f(xi)) where l is the hinge loss. See-
ing that the hinge loss is very similar to the log loss, the
formulation appears to be very similar to OWL-QN.
However, due to the explicit bias term b which is not
included in the l1 regularization, LP-SVM can some-
times perform much better than OWL-QN. Somewhat
surprisingly, the performance of the linear LP-SVM
could even be better than that of non-linear MKL
(though not GMKL).

Sparse-SVM (Chan et al., 2007) : This method
does not use explicit l1 regularization to enforce spar-
sity. Instead, it places a direct cardinality constraint
on the hyperplane normal. It learns a function of
the form f(x) = wtx + b by minimizing ||w||2 +
C

∑

i l(yi, f(xi)) subject to ||w||0 ≤ r, where l is
the hinge loss. We take the convex QCQP relaxation
(QCQP-SSVM) proposed by the authors. Empirically,
we found the performance of Sparse-SVM to be very
similar to that of LP-SVM though, being a QCQP, it
took much longer to optimize.

BAHSIC (Song et al., 2007) : This is a leading fil-
ter method which runs a backward selection algorithm
discarding features based on their label dependence as
measured by the Hilbert-Schmidt independence crite-
rion. We use an RBF kernel for the data (the same
as used by boosting, MKL and GMKL) and a linear
kernel for the labels. BAHSIC outputs a ranked list of
features from which a subset of the desired size can be
selected. An SVM with an RBF kernel is then trained
using the selected features. In our experiments, we
found backward selection to be computationally very
expensive without offering any advantages in terms of
classification accuracy. Given identical kernels, BAH-
SIC performed substantially worse than GMKL,

5. Experiments

In this section we evaluate generalized kernel learn-
ing on various feature selection problems. We inves-
tigate gender identification from frontal facial images
using as few pixels as possible. It is demonstrated that,
on the benchmark database of (Moghaddam & Yang,
2002), GMKL can outperform MKL by as much as
10% for a given number of features. Similarly, on the

More Generality in Efficient Multiple Kernel Learning

Table 1: Gender identification results. The final row summarizes the average number of features selected (in
brackets) by each wrapper method and the resultant classification accuracy. See text for details.

Nd AdaBoost B&R 2007 OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
10 76.3± 0.9 79.5± 1.9 71.6± 1.4 84.9± 1.9 79.5± 2.6 81.2± 3.2 80.8± 0.2 88.7± 0.8
20 − 82.6± 0.6 80.5± 3.3 87.6± 0.5 85.6± 0.7 86.5± 1.3 83.8± 0.7 93.2± 0.9
30 − 83.4± 0.3 84.8± 0.4 89.3± 1.1 88.6± 0.2 89.4± 2.4 86.3± 1.6 95.1± 0.5
50 − 86.9± 1.0 88.8± 0.4 90.6± 0.6 89.5± 0.2 91.0± 1.3 89.4± 0.9 95.5± 0.7
80 − 88.9± 0.6 90.4± 0.2 − 90.6± 1.1 92.4± 1.4 90.5± 0.2 −
100 − 89.5± 0.2 90.6± 0.3 − 90.5± 0.2 94.1± 1.3 91.3± 1.3 −
150 − 91.3± 0.5 90.3± 0.8 − 90.7± 0.2 94.5± 0.7 − −
252 − 93.1± 0.5 − − 90.8± 0.0 94.3± 0.1 − −

76.3 (12.6) − 91 (221.3) 91 (58.3) 90.8 (252) − 91.6 (146.3) 95.5 (69.6)

UCI datasets, there can be as much as a 6% to 10%
difference in performance between GMKL and MKL.
We also demonstrate that GMKL performs better than
the other methods considered.

To generate feature selection results, we can vary the
hyper-parameter C in the wrapper methods to select
a desired number of features. However, this strategy
does not yield good classification results even though
globally optimal solutions are obtained. Low values of
C encouraged greater sparsity but also permitted more
classification errors. We obtained much better results
by the theoretically suboptimal strategy of fixing C to
a large value (chosen via cross-validation so as to mini-
mize classification error), learning the classifier, taking
the top ranked components of w (or d) and relearning
the classifier using only the selected features.

This technique was used to generate the results in Ta-
bles 1 and 2. For each dataset, the very last row sum-
marizes the number of features selected (Ns) by each
wrapper method and the resultant classification accu-
racy. When the number of desired features (Nd) is
less than Ns, the classification accuracy is determined
using the Nd top ranked features. Otherwise, when
Nd > Ns, the table entry is left blank as the classifica-
tion accuracy either plateaus or decreases as subopti-
mal features are added. In such a situation, it is better
to choose only Ns features and maintain accuracy.

5.1. Gender Identification

We tackle the binary gender identification problem
on the benchmark database of (Moghaddam & Yang,
2002). The database has images of 1044 male and 711
female faces giving a total of 1755 images in all. We
follow the standard experimental setup and use 1053
images for training and 702 for testing. Results are
averaged over 3 random splits of the data.

Each image in the database has been pre-processed

by (Moghaddam & Yang, 2002) to be aligned and has
been scaled down to have dimensions 21 × 12. Thus,
each image has 252 pixels and we associate an RBF
kernel with each pixel based on its grey scale inten-
sity directly. For Generalized MKL, the 252 base
kernels are combined by taking their product to get
kd(xi,xj) =

∏252
m=1 e−dm(xim−xjm)2 where xim and

xjm represent the intensity of the mth pixel in im-
age i and j respectively. For standard MKL, the same
252 base kernels are combined using the sum represen-
tation to get kd(xi,xj) =

∑252
m=1 dme−γm(xim−xjm)2 .

Both methods are subject to l1 regularization on d so
that only a few kernels are selected. AdaBoost can
also be used to combine the 252 weak classifiers de-
rived from the individual base kernels. The method
of (Baluja & Rowley, 2007) can be considered as a
state-of-the-art boosting variant for this problem and
operates on pairs of pixels. We use RBF kernels for
BAHSIC as well while the other methods are linear.

Table 1 lists the feature selection results. AdaBoost
tended to perform the worst and selected only 12.6
features on average. The poor performance was due
to the fact that each of the 252 SVMs was learnt inde-
pendently. The weak classifier coefficients (i.e. kernel
weights) did not influence the individual SVM para-
meters. By contrast, there is a very tight coupling
between the two in MKL and GMKL and this ensures
better performance. Of course, other forms of boost-
ing do not have this limitation and the state-of-the-art
boosting method of (Baluja & Rowley, 2007) performs
better but is still significantly inferior to GMKL.

The performance of the linear feature selection meth-
ods is quite variable. Logistic regression performs
poorly as the implicit bias weight got set to zero due
to the l1 regularization. On the other hand, LP-
SVM and Sparse-SVM perform even better than stan-
dard MKL (though not better than GMKL). BAHSIC,
which is a non-linear filter method, follows the same

More Generality in Efficient Multiple Kernel Learning

Table 2: UCI results with datasets having N training points and M features. See text for details.

Ionosphere: N = 246, M = 34, Uniform MKL = 89.9± 2.5, Uniform GMKL = 94.6± 2.0

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
5 75.2± 6.9 84.0± 6.0 86.7± 3.1 87.0± 3.1 87.1± 3.6 85.1± 3.2 90.9± 1.9
10 − 87.6± 2.2 90.6± 3.4 90.2± 3.5 90.2± 2.6 87.8± 2.4 93.7± 2.1
15 − 89.1± 1.9 93.0± 2.1 91.9± 2.0 92.6± 3.0 87.7± 2.2 94.1± 2.1
20 − 89.2± 1.8 92.8± 3.0 92.4± 2.5 93.4± 2.6 87.8± 2.8 −
25 − 89.1± 1.9 92.6± 2.7 92.4± 2.7 94.0± 2.2 87.9± 2.7 −
30 − − 92.6± 2.6 92.9± 2.5 94.3± 1.9 − −
34 − − 92.6± 2.6 92.9± 2.5 94.6± 2.0 − −

75.1 (9.8) 89.2 (25.2) 92.6 (34.0) 92.9 (34.0) − 88.1 (29.3) 94.4 (16.9)

Parkinsons: N = 136, M = 22, Uniform MKL = 87.3± 3.9, Uniform GMKL = 91.0± 3.5

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
3 79.4± 6.5 81.7± 2.7 76.4± 4.5 76.1± 5.8 85.2± 3.8 83.7± 4.4 86.3± 4.1
7 − 82.6± 3.3 86.2± 2.7 86.1± 4.0 88.5± 3.6 84.7± 5.2 92.6± 2.9
11 − 83.5± 2.8 86.0± 3.5 86.1± 3.1 89.4± 3.6 86.3± 4.3 −
15 − − 87.0± 3.3 86.3± 3.1 89.9± 3.5 − −
22 − − 87.2± 3.2 87.2± 3.0 91.0± 3.5 − −

80.2 (5.2) 83.6 (11.1) 87.2 (22.0) 87.2 (22.0) − 88.3 (14.6) 92.7 (9.0)

Musk: N = 333, M = 166, Uniform MKL = 90.2± 3.2, Uniform GMKL = 93.8± 1.9

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
10 64.2± 4.0 72.8± 2.9 69.8± 5.1 72.6± 3.7 76.5± 3.5 80.0± 3.0 81.1± 3.8
20 65.5± 4.1 76.0± 4.4 73.8± 4.9 76.7± 4.1 83.6± 3.3 84.5± 3.4 89.9± 2.3
30 65.4± 4.1 80.8± 2.5 79.0± 2.8 79.4± 3.0 86.7± 2.8 86.2± 3.3 92.6± 1.7
40 − 81.6± 2.9 81.5± 3.2 81.8± 2.8 87.4± 2.8 87.0± 3.2 93.3± 2.0
60 − 83.0± 1.9 83.6± 2.8 83.5± 2.4 90.0± 2.6 87.8± 3.3 −
100 − − 83.4± 2.9 83.3± 2.5 93.6± 1.8 − −
166 − − 83.4± 2.9 83.3± 2.5 93.8± 1.9 − −

65.5 (31.1) 83.5 (86.7) 83.4 (166.0) 83.3 (166.0) − 88.2 (73.2) 93.6 (57.9)

Sonar: N = 145, M = 60, Uniform MKL = 82.9± 3.4, Uniform GMKL = 84.6± 4.1

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
5 64.6± 6.6 68.9± 5.6 68.0± 7.9 68.4± 6.2 61.1± 6.6 70.4± 4.5 74.4± 5.1
10 67.9± 6.4 68.7± 4.6 71.5± 5.4 70.9± 5.9 73.1± 6.1 74.6± 5.6 80.2± 4.9
15 67.3± 6.4 71.4± 3.6 71.4± 3.3 72.2± 4.5 74.7± 7.7 76.5± 7.0 80.7± 5.5
20 − 73.1± 2.6 73.7± 2.8 74.0± 3.1 77.9± 5.7 79.5± 4.6 82.0± 5.3
25 − 73.5± 2.8 74.1± 3.5 73.6± 3.6 78.6± 5.2 81.1± 4.2 −
30 − 73.9± 3.2 73.4± 3.4 73.8± 3.9 80.8± 4.7 81.4± 4.2 −
40 − − 73.6± 3.8 73.7± 3.8 81.4± 3.9 − −
60 − − 73.6± 3.6 73.5± 4.0 84.6± 4.1 − −

67.38 (18.7) 74.7 (39.3) 73.6 (60.0) 73.5 (60.0) − 81.4 (38.6) 82.3 (20.4)

Wpbc: N = 135, M = 34, Uniform MKL = 72.1± 5.4, Uniform GMKL = 77.0± 6.4

Nd AdaBoost OWL-QN LP-SVM S-SVM BAHSIC MKL GMKL
5 76.7± 2.2 74.2± 4.1 75.4± 2.7 75.5± 2.7 76.6± 2.1 67.8± 6.0 76.1± 3.8
10 − 77.2± 5.2 75.9± 4.6 76.5± 3.8 77.3± 2.3 68.7± 3.3 77.8± 3.3
15 − 77.8± 5.5 76.2± 5.1 77.2± 5.0 76.2± 0.0 69.4± 5.1 78.3± 3.6
20 − 78.1± 5.3 78.2± 5.2 77.7± 5.2 77.3± 6.3 70.1± 5.1 −
25 − − 79.1± 6.2 77.8± 5.8 77.4± 6.4 − −
34 − − 79.0± 6.2 78.9± 5.6 77.0± 6.4 − −

76.7 (5.1) 78.3 (20.8) 79.0 (34.0) 78.9 (34.0) − 69.3 (24.8) 80.0 (16.8)

More Generality in Efficient Multiple Kernel Learning

trend and its performance is significantly worse than
GMKL with identical kernels. This would suggest that
wrapper methods based on the right feature represen-
tation should be preferable to filter methods which do
not directly optimize for classification accuracy.

The comparison between MKL and GMKL is even
starker. GMKL achieves a classification accuracy of
93.2% using as few as 20 features and 95.1% using only
30 features. In comparison, standard MKL achieves
just 83.8% and 86.3% respectively. This reinforces
the observation that choosing the right kernel repre-
sentation is much more important than converging to
the globally optimal solution. Finally, the MKL and
GMKL results for fixed uniform weights chosen via
cross-validation are 92.6 ± 0.9 and 94.3 ± 0.1 respec-
tively. Note that these results are obtained using all
252 features. GMKL can obtain a similar classification
accuracy using as few as 25 features.

In summary, there can be a difference of almost 10%
between standard MKL and GMKL for a fixed small
number of features. GMKL also does significantly bet-
ter than BAHSIC and achieves nearly a 10x compres-
sion factor as compared to taking uniform weights.

5.2. UCI Datasets

We also present comparative results on UCI datasets.
We follow the standard experimental methodol-
ogy (Rakotomamonjy et al., 2008) where 70% of the
points are used for training and the remaining 30% for
testing. Results are reported over 20 random splits of
the data. All datasets are preprocessed to have zero
mean and unit variance.

An RBF kernel is assigned to each of the M features
in a given dataset. The M RBF kernels are then
combined linearly for standard MKL and by taking
their product for GMKL. The learnt kernels are of
the form kd(xi,xj) =

∑M
m=1 dme−γm(xim−xjm)2 and

kd(xi,xj) =
∏M

m=1 e−dm(xim−xjm)2 respectively.

Table 2 lists the feature selection results. The analysis

Table 3: Comparison with the results in (Rakotoma-
monjy et al., 2008). GMKL achieves slightly better
results but takes far fewer kernels as input.

Database SimpleMKL GMKL
Sonar 80.6± 5.1 (793) 82.3± 4.8 (60)
Wpbc 76.7± 1.2 (442) 79.0± 3.5 (34)
Ionosphere 91.5± 2.5 (442) 93.0± 2.1 (34)
Liver 65.9± 2.3 (091) 72.7± 4.0 (06)
Pima 76.5± 2.6 (117) 77.2± 2.1 (08)

is similar to that of gender identification except that
OWL-QN performs better as the implicit bias is not al-
ways being set to zero. For a fixed number of features,
GMKL has the best classification results even as com-
pared to MKL or BAHSIC (though the variance can
be high for all the methods). Furthermore, a kernel
with fixed uniform weights yields ballpark classifica-
tion accuracies though GMKL can achieve the same
results using far fewer features.

5.3. Comparison to SimpleMKL and HMKL

The classification performance of standard MKL can
be improved by adding extra base kernels which are
either more informative or help better approximate a
desired kernel function. However, this can lead to a
more complex and costlier learning task. We there-
fore leave aside feature selection for the moment and
compare our results to those reported in (Rakotoma-
monjy et al., 2008). Table 3 lists classification per-
formance on the 5 datasets of (Rakotomamonjy et al.,
2008). The number of kernels input to each method
are reported in brackets. As can be seen, GMKL can
achieve slightly better performance than SimpleMKL
while training on far fewer kernels. Of course, one can
reduce the number of kernels input to SimpleMKL but
this will result in reduced accuracy. In the limit that
only a single kernel is used per feature, we will get
back the results of Table 2 where GMKL does much
better than standard MKL.

The results for Liver were obtained using l2 regulariza-
tion. This lead to a 7% improvement in performance
over SimpleMKL as a sparse representation is not suit-
able for this database (there are only 6 features). Pima
also has very few features but l1 and l2 regularization
give comparable results.

Finally, we also compare results to Hierarchical
MKL (Bach, 2008). We use a quadratic kernel of the
form kd(xi,xj) = (1 +

∑

m dmximxjm)2 as compared
to the more powerful kd(xi,xj) =

∏

m(1 + ximxjm)4

of (Bach, 2008) which decomposes to a linear combina-
tion of 5M kernels. Nevertheless, as shown in Table 4,
we achieve slightly better results with less computa-
tional cost.

Table 4: Comparison between HKL and GMKL.

Database N M HKL GMKL
Magic04 1024 10 84.4± 0.8 86.2± 1.2
Spambase 1024 57 91.9± 0.7 93.2± 0.8
Mushroom 1024 22 99.9± 0.2 100± 0.0

More Generality in Efficient Multiple Kernel Learning

6. Conclusions

In this paper, we have shown how traditional MKL
formulations can be easily extended to learn general
kernel combinations subject to general regularization
on the kernel parameters. While our focus was on
binary classification our approach can be applied to
other loss functions and even other formulations such
as Local MKL, multi-class and multi-label MKL. Gen-
eralized kernel learning can be achieved very efficiently
based on gradient descent optimization and existing
large scale SVM solvers. As such, it is now possible to
learn much richer feature representations as compared
to standard MKL without sacrificing any efficiency in
terms of speed of optimization.

Our GMKL formulation based on products of kernels
was shown to give good results for various feature se-
lection problems – not only as compared to traditional
MKL but also as compared to leading wrapper and fil-
ter feature selection methods. Of course, taking prod-
ucts of kernels might not always be the right approach
to every problem. In such cases, our formulation can
be used to learn other appropriate representation in-
cluding sums of kernels. Finally, it should be noted
that the classification accuracy of GMKL with learnt
weights tends to be much the same as that obtained
using uniform weights chosen through cross-validation.
The advantage in learning would therefore seem to lie
in the fact that GMKL can learn to achieve the same
classification accuracy but using far fewer features.

Acknowledgements

We are grateful to P. Anandan, Andrew Zisserman and
our reviewers for providing helpful feedback.

References

Andrew, G., & Gao, J. (2007). Scalable training of L1-
regularized log-linear models. ICML (pp. 33–40).

Argyriou, A., Micchelli, C. A., & Pontil, M. (2005).
Learning convex combinations of continuously pa-
rameterized basic kernels. COLT (pp. 338–352).

Bach, F. R. (2008). Exploring large feature spaces
with hierarchical multiple kernel learning. NIPS (pp.
105–112).

Bach, F. R., Lanckriet, G. R. G., & Jordan, M. I.
(2004). Multiple kernel learning, conic duality, and
the SMO algorithm. ICML (pp. 6–13).

Baluja, S., & Rowley, H. (2007). Boosting sex identi-
fication performance. IJCV, 71, 111–119.

Bi, J., Zhang, T., & Bennet, K. P. (2004). Column-
generation boosting methods for mixture of kernels.
Proc. SIGKDD (pp. 521–526).

Chan, A. B., Vasconcelos, N., & Lanckriet, G. (2007).
Direct convex relaxations of sparse SVM. ICML (pp.
145–153).

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee,
S. (2002). Choosing multiple parameters for Support
Vector Machines. Machine Learning, 46, 131–159.

Crammer, K., Keshet, J., & Singer, Y. (2002). Kernel
design using boosting. NIPS (pp. 537–544).

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kan-
dola, J. (2001). On kernel-target alignment. NIPS

(pp. 367–373).

Danskin, J. M. (1967). The theorey of max-min and

its applications to weapons allocation problems.

Fung, G., & Mangasarian, O. L. (2002). A feature se-

lection newton method for support vector machine

classification (Technical Report 02-03). Univ. of
Wisconsin.

Kloft, M., Brefeld, U., Laskov, P., & Sonnenburg, S.
(2008). Non-sparse Multiple Kernel Learning. NIPS

Workshop on Kernel Learning.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P.,
El Ghaoui, L., & Jordan, M. I. (2004). Learning
the kernel matrix with semidefinite programming.
JMLR, 5, 27–72.

Moghaddam, B., & Yang, M. H. (2002). Learning gen-
der with support faces. IEEE PAMI, 24, 707–711.

Ong, C. S., Smola, A. J., & Williamson, R. C. (2005).
Learning the kernel with hyperkernels. JMLR, 6,
1043–1071.

Rakotomamonjy, A., Bach, F., Grandvalet, Y., &
Canu, S. (2008). Simplemkl. JMLR, 9, 2491–2521.

Song, L., Smola, A., Gretton, A., Borgwardt, K., &
Bedo, J. (2007). Supervised feature selection via
dependence estimation. ICML (pp. 823–830).

Sonnenburg, S., Raetsch, G., Schaefer, C., &
Schoelkopf, B. (2006). Large scale multiple kernel
learning. JMLR, 7, 1531–1565.

Varma, M., & Ray, D. (2007). Learning the discrimi-
native power-invariance trade-off. ICCV.

Zien, A., & Ong, C. S. (2007). Multiclass multiple
kernel learning. ICML (pp. 1191–1198).

