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Abstract. Biometric authentication over public networks leads to a variety of
privacy issues that needs to be addressed before it can become popular. The pri-
mary concerns are that the biometrics might reveal more information than the
identity itself, as well as provide the ability to track users over an extended pe-
riod of time. In this paper, we propose an authentication protocol that alleviates
these concerns. The protocol takes care of user privacy, template protection and
trust issues in biometric authentication systems. The protocol uses asymmetric
encryption, and captures the advantages of biometric authentication. The protocol
provides non-repudiable identity verification, while not revealing any additional
information about the user to the server or vice versa. We show that the proto-
col is secure under various attacks. Experimental results indicate that the overall
method is efficient to be used in practical scenarios.

1 Introduction

The primary advantages of biometrics over other authentication mechanisms are its con-
venience, security, and non-repudiable nature [1]. However, the assertions on security
and non-repudiation are valid only if the integrity of the overall system is maintained [2]
A hacker who gains physical or remote access to an authentication server can steal the
stored templates, which are non-replaceable in case of plain templates. Concerns are
also on the privacy as many biometrics reveal personal information beyond just identity.
Widespread use of biometric authentication also provides the ability to track a person
through every activity in his life, which introduces another significant privacy concern.

The primary concerns in widespread use of biometrics for remote and onsite authen-
tication are in i) template protection, ii) privacy of the user, iii) trust between user and
server, and iv) network security. For civilian applications, these concerns are often more
serious than the accuracy of the biometric itself.

The ideal solution to overcoming all the privacy and security concerns would be to
apply a strong encryption (say RSA) on the biometric samples as well as the classi-
fier parameters, and carry out all the computations in the encrypted domain. However,
the primary goal of a strong encryption algorithm is to destroy any pattern that would
be present in the data. We now need to carry out a pattern classification task (iden-
tity verification) in the encrypted domain. These two goals are contradictory. In other
words, security/privacy and accuracy seems to be opposing objectives. Different secure
authentication solutions achieve their goal through a compromise between privacy and
accuracy or by making restrictive assumptions on the biometric data.
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The primary difference in our approach is that we are able to design the classifier
in the plain feature space, which allows us to maintain the performance of the biomet-
ric itself, while carrying out the authentication on data with strong encryption, which
provides high security/privacy. However, such an approach would require an algebraic
homomorphic encryption scheme [3], which is not known to exist till date. We show that
a specific distribution of work between the client (sensor) and the server (authenticator),
coupled with a novel randomization scheme can achieve the goal.

Over the years a number of attempts have been made to address the problem of
template protection and privacy concerns and despite all efforts, a template protection
scheme with provable security and acceptable recognition performance has thus far re-
mained elusive [4]. Jain et al. [4] classifies the existing approaches into two groups: fea-
ture transformation-based and biometric cryptosystems. We will look at the two groups,
in light of this security-accuracy dilemma. Detailed reviews of the work on template
protection can be found in Jain et al. [4], Uludag et al. [5], and Ratha et al. [6].

The first class of approaches that use feature transformation, such as Salting and
Non-invertible Transform [4] offers security using a transformation seeded by a user
specific key. A classifier is designed in the encrypted feature space. Hence, one cannot
employ strong encryption here, which necessarily leads a compromise made between
security and the performance. Moreover salting based solutions are usually specific to a
biometric trait [7,6]. Kong et al. do a detailed analysis of the current biohashing based
approaches [8], and concludes that the zero EER reported is obtained in carefully set
experimental conditions and unrealistic under assumptions from a practical view point.

Biometric cryptosystems use the biometric as a protection for a secret key (Key Bind-
ing approach [9]) or to directly generate a secret key (Key Generation approach [10]).
The authentication is done using the key, which is unlocked/generated by the biomet-
ric. We note that to provide template protection, key is to be unlocked/generated at the
client’s end. However, this would become a key based authentication scheme, thus los-
ing the non-repudiable nature of biometric authentication. According to Jain et al. [4],
biometric cryptosystems such as Fuzzy Vault and Fuzzy extractor, in their true form,
lack diversity and revocability, and results in performance degradation as the matching
is done using error correction schemes. Biometric cryptosystems, along with salting
based approaches introduce diversity and revocability in them. However, one can re-
cover the plain biometric from multiple secrets secured using the same key [11].

The approach that is closest to our proposed one is termed ZeroBio authentication,
proposed by Nagai et al [12]. It makes use of client side computation and communi-
cation between the client and the server to classify a biometric feature vector using a
3-layer neural network. The client computes the outputs of the hidden layer and trans-
fers it to the server, which completes the authentication by computing the output values
of the neural network. The mechanism of zero-knowledge proof using communication
is used to ensure honesty. The method is both efficient and generic, however, the server
can estimate the weights at the hidden layer from multiple observations over authen-
tications. Once the weights are known, the server can also compute the feature vector
of the biometric, thus compromising both security and privacy. The system could also
be compromised if an attacker gains access to the client computer, where the weight
information is available in plain.
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This paper proposes an approach that is generic in the sense that we can implement a
generic and powerful classifier such as support vector machines(SVM). Moreover, we
achieve complete privacy, as the biometric that is passed to the server is encrypted using
strong asymmetric encryption. We also achieve efficiency in computation using inter-
action with the client along with a novel randomization scheme, while maintaining the
security of the server templates. In short, we addresses all the concerns mentioned in the
introduction. Specifically, 1) the use of strong encryption addresses privacy concerns,
2) a third party based enrollment scheme takes care of the trust issues. 3) provable pro-
tection is provided against replay and client-side attacks, 4) user tracking is avoided by
using different templates for different servers.

The framework provides the ability to classify any feature vector, and hence is ap-
plicable to multiple biometrics. Moreover, as the authentication is directly based on the
biometric, non-repudiable nature of biometrics is fully utilized. Note that the proposed
approach does not fall into any of the categories discussed before, and opens a new
direction of research to look at privacy preserving biometric authentication.

2 Authentication in Encrypted Domain

To explain the protocol in a simple setting, we consider the problem of verification as
that of classifying genuine and imposter samples using a perceptron. The protocol can
be extended to more generic and powerful classifiers, such as Support Vector Machines
(SVMs). The only restriction to the approach is that the feature vector is assumed to
be of fixed length n. Note that even for biometrics such as fingerprints, one can define
fixed length feature representations [13].

2.1 Authentication

Let ω be the parameters of the linear classifier, such that the user is accepted if ω ·x < τ ,
where τ is a threshold. As we do not want to reveal the parameter vector (ω) or the
test sample (x) to the server, we need to carry out the computations in the encrypted
domain. To achieve this, we use a class of encryptions that are multiplicative homomor-
phic [14]. An encryption scheme, E(x) is said to be multiplicative homomorphic, if
E(x)E(y) = E(xy) for any two numbers x and y. We use the popular RSA encryption
scheme, which satisfies this property. Note that if we have an encryption scheme that
is homomorphic to both addition and multiplication (algebraic homomorphic), we can
carry out the computation, directly at the server side. However, such an encryption has
not been discovered till date.

During enrollment, the server receives the client’s public key, E, as well as the
classifier parameters vector ω in the encrypted form, i.e., E(ω). The authentication
happens over two rounds of communication between the client and the server. To per-
form authentication, the client locks the biometric test sample using her public key and
sends the locked ID (E(xi)) and the username to the server. We note that the computa-
tion of: ω · x requires a set of scalar multiplications, followed by a set of additions.
As the encryption used (RSA) is homomorphic to multiplication, we can compute,
E(ωixi) = E(ωi)E(xi), at the server side. However, we cannot add the results to
compute the authentication function. Unfortunately, sending the products to the client
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Fig. 1. The proposed authentication process using linear classifier

for addition will reveal the classifier parameters to the user, which is not desirable. We
use a clever randomization mechanism that achieves this computation without reveal-
ing any information to the user. The randomization makes sure that the client can do
the summation, while not being able to decipher any information from the products.
The randomization is done in such a way that the server can compute the final sum to
be compared with the threshold. The overall algorithm of the authentication process is
given in Algorithm 1. Note that all the arithmetic operations that we mention in the
encrypted domain will be modulo− operations.

In the algorithm, the server carries out all its computation in the encrypted domain,
and hence does not get any information about the biometric data (x) or the classifier
parameters (ω). A malicious client also cannot guess the classifier parameters from the
products returned as they are randomized by multiplication with rji. The reason why
the server is able to compute the final sum S in Step 8 of Algorithm 1 is because we
impose the following condition on rjis and λjs during its generation:

∀i,

k∑

j=1

λj rji = 1 (1)

Substituting equation 1 in the expansion of the final sum (S) in Algorithm 1, we get:

S =
k∑

j=1

λj Sj =
k∑

j=1

λj

n∑

i=1

ωi xi rji =
n∑

i=1

k∑

j=1

λj ωi xi rji (2)

=
n∑

i=1

ωi xi

k∑

j=1

λj rji =
n∑

i=1

ωi xi

We note that the server is unable to decipher any information about the original prod-
ucts in the whole process, and directly obtains the final sum-of-products expression.
This quantity measures the confidence that the test biometric belongs to the claimed
identity, and does not reveal any information about the actual biometric itself. The au-
thentication process thus maintains a clear separation of information between the client
and the server and hence provides complete privacy to the user, and security to the bio-
metric. Moreover, the clear biometric or parameters are never stored at any place, thus
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Algorithm 1. Authentication
1: Client computes feature vector, x1..n, from test data
2: Each feature xi is encrypted (E(xi)) and sent to server
3: Server computes kn + k random numbers, rji and λj , such that,∀i,

k∑

j=1

λj rji = 1

4: Server computes E(ωi xi rji) = E(ωi) E(xi) E(rji)
5: The kn products thus generated are sent to the client
6: The client decrypts the products, and returns their sum Sj =

n∑

i=1

ωi xi rji to the server

7: Server computes S =

k∑

j=1

λj Sj

8: if S > τ then
9: return Accepted to the client

10: else
11: return Rejected to the client
12: end if

avoiding serious losses if the server or the client computer is compromised. We will
take a detailed look at the related security aspects in section 4.

As noted before, the linear classification was used for illustration of the algorithm,
as it is instructive and easy to understand. The extension of this approach to compute
more complex functions such as the kernelized inner products are given in section 3.
One can also deal with variable length features and warping based matching techniques
using a similar approach. However, a complete treatment of such solutions are beyond
the scope of this paper.

Applicability: We have not made any assumptions on the specific biometric being used
in the framework. One could use any biometric as long as the feature vector embeds
the samples in a Euclidean space. The classifier itself was assumed to be a linear clas-
sifier. However, one can extend it to work with kernel based methods (as we show in
the next section) and hence any verification problem that can be carried out using a
generic SVM-based classifier can be modeled by this protocol. One could also extend
the protocol to work with the Neural Networks.

3 Extension to Kernels and Other Variations

Even though the linear classifier model can support some of the simple template match-
ing approaches, it does not generalize to other model based classifiers. We will now
extend the proposed approach to deal with the kernel form of the linear classifier, the
support vector machine (SVM).

Kernel-based classification: In the linear case, we described a procedure, secure−
Product, to compute the inner product of two encrypted vectors without revealing its
contents. However, in order to use a kernel based classifier at the server for verification,

one needs to compute a discriminating function of the form: S =
N∑

i=1

αidiκ(vi
T x) =
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α · κ(v, x) where the rows of v are the support vectors and κ() is referred to as the
kernel function.

We can extend the secureProduct procedure to deal with kernel based classification
as well. We note that the parameter of the kernel function is a set of inner products of
vectors. This could be calculated in a similar fashion as the secureProduct. Once we
obtain the individual inner products, we can compute the kernel functions, κ, at the
server side. The discriminant function to be computed is once again the dot product of
the vector of κ values and the α vector. This could again be computed, securely using
the secureProduct procedure. We note that this procedure allows us to compute any
kernel function at the server side.

The above approach is more generic and secure than any of the secure authentication
protocols in the literature. Moreover, it does not reveal any information about the clas-
sifier to the client. However, as the results of the intermediate inner products are known
to the server, this simple extension is not completely blind in the information theoretic
sense. One can solve this problem using another round of communication with the client
and define a completely blind kernel-based verification protocol.

Security Extensions: The client end contains the biometric acquisition device as well as
keys for encryption and decryption. Security at the client end is critical, especially when
using a public terminal to access any service. One could move the private key to a card
or carry out the decryption operation, completely in a smart card in case of insecure
environments. Another option would be to secure the private keys at the client end
using a fuzzy vault [9], which is unlocked only with the biometric that is provided for
authentication. This provides a double layer of security through the biometric provided
by the user.

RSA is just one of the public key encryption algorithms that is multiplicative ho-
momorphic. This can be replaced by other similar encryptors. One could analyze the
computation cost and security issues for each encryption method. A further speed up is
possible by reducing the number of support vectors [15].

4 Security, Privacy, and Trust Issues

Security of the system refers to the ability of the system to withstand attacks from
outside to gain illegal access or deny access to legitimate users. Security is hence a
function of the specific biometric used as well as the overall design of the system.

Privacy on the other hand is related to the amount of user information that is revealed
to the server. Ideally, one would like to reveal only the identity and no additional infor-
mation. Most of the current systems provides very little privacy, and hence demands
trust between the user and the server. We now take a closer look at the security and
privacy aspects of the proposed system.

4.1 System Security

Biometric systems are known to be more secure as compared to passwords or tokens, as
they are difficult to reproduce. As the authentication process in the proposed system is
directly based on biometrics we gain all the advantages of a generic biometric system.
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The security is further enhanced by the fact that an attacker needs to get access to both
the user’s biometric as well as her private key to be able to pose as an enrolled user.

Server Security: Let us assume that the hacker gains access to the template database.
In this case, all the templates (or classifier parameters) in the server are encrypted using
the public key of the respective clients. Hence gaining access to each template is as hard
as cracking the public key encryption algorithm. Moreover, if by any chance a template
is suspected to be broken, one could create another one from a new public-private key.

In case the hacker is in the server during the authentication, he can try to extract in-
formation from his entire “view“ of the protocol, i.e. the encrypted classifier parameters
E(ωi) , encrypted test vector E(xi) and other intermediate data such as random num-
bers rij ’s, λ’s etc. We ask what hacker can learn about the critical data, viz., ωi’s and
xi’s? The hacker only obtains k linear equations over the n variables y1, y2, . . . , yn,
namely, Sj =

∑n
i=1 rjiyi for all j ∈ [1, k], where yi = ωixi. Thus, if at all the

hacker obtains some information, it is only about the yi’s and not about the ωi’s or xi’s.
Notwithstanding, nothing additional is revealed even about the yi’s, by choosing k to
be such that |D| ≥ |Y| n

n−k , where Y is the domain of yi’s and D is the domain of rji’s.

Client-End Security: A hacker having access to the user’s computer, will not be able to
carry out the authentication, as the biometric is not stored on the client’s computer. The
private key itself is often hard wired into the decryption hardware and often cannot be
read out. However, in the worst case, the attacker may be able to decrypt messages in a
black-box fashion. Even in such a case, the ωi’s cannot be obtained by the attacker from
his entire view of the protocol, as long as |D| ≥ |Y| n

d(k−n)+n , where d is the number of
fake authentication requests made to the server. Reconciling this case with the previous
one, and taking the limit d → ∞, we get the optimal value of k = n.

Network Security: An attacker having control over the insecure network can watch the
traffic on the network, as well as modify it. However, all the traffic on the network are
encrypted either using the clients public key or using the random numbers generated
by the server. Hence the attacker will not be able to decipher any information. A re-
play attack is also not possible as the data communicated during the second round of
communication is dependent on the random numbers generated by the server.

4.2 Privacy

Privacy, as noted before deals with the amount of user information that is revealed to
the server, during the process of enrollment and authentication.

We noted that there are two aspects of privacy to be dealt with. i) Concern of revealing
personal information: As the template or test biometric sample is never revealed to the
server, the user need not worry that the use of biometrics might divulge any personal
information other than her identity. ii) Concern of being tracked: One can use different
keys for different applications (servers) and hence avoid being tracked across uses. In
fact, even the choice biometric or real identity of the user itself is known only to the
enrolling server. The authenticating server knows only the user ID communicated by the
enrollment server and the biometric is obtained in the form of an encrypted feature vector.

As the user and server need not trust each other, the framework is applicable to a
variety of remote and on-site identity verification tasks.
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5 Implementation and Analysis

An authentication protocol based on a client-server model was implemented that can
perform verification over an insecure channel such as the Internet. The following exper-
iments and analysis evaluates the accuracy and performance of the proposed approach
for verification.

5.1 Implementation

For the evaluation purpose a generic SVM based verifier based on a client-server archi-
tecture was implemented in GNU/C and the XySSL RSA library. All experiments are
conducted on AMD X2 Dual Core 4000+ processor, 750MB DDR2 RAM and over the
network.

Both exponentiation operations in encryption and decryption assumes that the data
consists of positive integers. The feature vectors and the SVM parameters are mapped
to integers in the twos complement form after scaling to retain the precision. Thus all
our computations are now done in two’s complement arithmetic. If xi is a parameter
to be encrypted, the forward mapping is defined as: x′

i = compl(�s.xi + 0.5�), where
s is a scale factor, depending on the range of values for xis, and compl() maps the
integral numbers to its twos complement. The corresponding reverse mapping is done
by the server, once the results are obtained. Figure 2(a) shows a hand-geometry based
authentication tool that we have implemented based on the proposed method.

(a) Hand geometry based authentication tool
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Fig. 2.

As the protocol implements a generic classifier, without making any simplification
assumptions, the accuracy of the classifier should be identical to that of the original clas-
sifier. One could expect small variations in accuracy due to the round off errors used
in the mapping function described above. To verify the effectiveness of using SVMs as
a classification model for biometric verification problems, we tested it on two differ-
ent modalities. The verification accuracies after 3-fold cross validation on each of the
datasets is presented in Table 1.

The first set of experiments was done on the CASIA IRIS database. The Version
1 of the dataset consists of 108 users with 7 images per user (the seven images are
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Table 1. Verification accuracy on biometric datasets

Dataset # of Features Avg num of Accuracy
Support Vectors

Hand Geometry 20 310 98.38%

CASIA Iris 9600 127 98.24%

collected over two separate imaging sessions). The iris code consists of 9600 binary
features. 3 samples per user were used for training and 4 sample per user were used
for testing purpose in each experiment. For the second set of experiments, we used a
hand-geometry dataset that was collected in-house. The dataset consisted of 149 users
with 10 hand images each. The features consists of the 14 finger length and width
features described by Jain et al. [16]. For each experiment 4 images per user were
used for training purpose and the remaining 6 were used for testing. Figure 2(b) shows
the receiver operating characteristic (ROC) plots for the biometrics using fixed length
feature vector representation1. The accuracies are similar to those obtained by running
SVM in the plain domain, and hence shows the effectiveness of the proposed scheme
for biometric based verification problems.

5.2 Computation and Communication Overheads

The additional computation that needs to be carried out can be divided into two parts:
i) Modulo multiplications to be done for encryption/decryption and inner product, and
ii) the additional time spent in the computation of random numbers, products and sums.
As the modulo multiplications and encryption decryption operations can be done effi-
ciently using dedicated hardware available [18], we analyze the time required for both,
separately. Consider a biometric with feature vector of length n. In the protocol, the
client needs to do n encryptions for the test vector x.

For the linear classifier, the server needs to do kn encryptions of the random numbers
and 2kn multiplications, so as to compute E(ωixirji), where k≤n, each of which is an
integer. The client needs to do kn decryptions. Additional computations at the server
includes n + kn modulo multiplications of encrypted numbers at the server end, and
kn non-encrypted additions at the client end. In addition, the server needs to generate
kn random numbers. For most practical biometrics, the total run time required for all
these (non-encrypted) computations together on current desktop machines is less than
10 milliseconds. The communication overhead, in addition to regular authentication,
includes sending kn numbers from the server to the client and sending k numbers from
the client back to the server for evaluation of the final result.

Extending the analysis to a kernel based classifier with nv support vectors, one would
need to repeat the secure product nv times, once for each support vector. In addition,
there is one round of secure product to compute the final result. Hence the time required
will be nv +1 times that required for the linear classifier. In practice the total time taken
(other than those implemented in hardware) is less than one second.

1 Wang et al. [17].
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6 Conclusions

The proposed method for biometric authentication is extremely secure under a variety
of attacks and can be used with a wide variety of biometric traits. As the verification can
be done in real-time with the help of available hardware, the approach is also practical
in many applications. The use of smart cards to hold encryption keys enables applica-
tions such as biometric ATMs and access of services from public terminals. Possible
extensions to this work includes secure enrollment protocols and encryption methods
to reduce computations. Efficient methods to do dynamic warping based matching of
variable length feature vectors can also enhance the utility of the approach.
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