
Hierarchical Local Maps for Robust Approximate Nearest Neighbor
Computation

Pratyush Bhatt and Anoop Namboodiri
Center for Visual Information Technology, IIIT, Hyderabad, 500032, India

{bhatt@research., anoop@}iiit.ac.in

Abstract

In this paper, we propose a novel method for fast near-
est neighbors retrieval in non-Euclidean and non-metric
spaces. We organize the data into a hierarchical fashion
that preserves the local similarity structure. A method to
find the approximate nearest neighbor of a query is pro-
posed, that drastically reduces the total number of explicit
distance measures that need to be computed. The represen-
tation overcomes the restrictive assumptions in traditional
manifold mappings, while enabling fast nearest neighbor’s
search. Experimental results on the Unipen and CASIA
Iris datasets clearly demonstrates the advantages of the ap-
proach and improvements over state of the art algorithms.
The algorithm can work in batch mode as well as in sequen-
tial mode and is highly scalable.

1. Introduction

In various applications like multimedia search, biomet-
ric authentication, in order to retrieve the top K matches or
nearest neighbors, the similarity of input sample with every
sample in database should be found. This is a bottleneck
in any online retrieval algorithm. As the similarity measure
itself is not an absolute distance metric, a trade-off of accu-
racy of the nearest neighbor with speed or complexity of the
algorithm can be done.

In biometric identification, a particular person’s biomet-
ric sample is compared against all the registered samples
in a database to identify the person. This process can be
extremely time consuming in large databases even if the
matching algorithm is extremely fast. For example, to do
background check of a person who is crossing the border us-
ing the complete IAFIS system, one needs to do around 55
million comparisons. Even with the state of the art match-
ing algorithms, this would take close to 10 minutes, which
is not practical considering the millions of people who cross
the border every month. Even for criminal investigations, it
is desirable to get a quick and approximate search done im-
mediately rather than the typical turn-around time of a few

Figure 1. Hierarchical Local Maps.

days for a search.
To this end, various indexing methods such as hashing

and tree structures are proposed [8, 7]. However, these ap-
proaches are applicable only in a metric space. Moreover,
as the dimensions of input space increases, the performance
degrades owing to curse of dimensionality. In this paper, we
use manifold learning to approximate the computationally
expensive distance measures such as Dynamic Time Warp-
ing (DTW). The mapping algorithm learns a lower dimen-
sional embedding that best preserves the pairwise similarity
between every point in input space [5, 15].

To compute the embedding of a new point into an exist-
ing manifold, one needs to recompute the entire manifold,
with distances to all the existing points. This defeats the
very purpose of our using manifolds to reduce the distance
computations. To address this issue of scalability, scalable
dimensionality reduction algorithms[5, 14, 12] were pro-
posed. However, the goal here is to learn the nature of em-
bedding and not to be able to add a new point quickly.

Online queries are handled well by Fast Map [6], Ran-
dom Reference Objects [10], Random Line Projections
[11], and VP-Tree[16]. These algorithms find the embed-
ding of the query by computing only a few exact distances.
Although these methods assume that triangular inequality
holds, they work for non-metric distances as well with cer-
tain amount of distortion in embedding. Athitsos [3] framed

embedding construction as a machine learning task, where
AdaBoost is used to combine many simple, 1D embeddings
into a multidimensional embedding that preserves a signif-
icant amount of the proximity structure in original space.
These five techniques are most related to our approach as
their main target is to learn embeddings for fast retrieval of
nearest neighbors. However, the existence of an embedding
that is globally optimal is questionable. Moreover, the in-
herent local similarity in neighborhood is not exploited in
these algorithms.

In this paper we propose the use of local manifold map-
pings for finding robust and approximate k-nearest neigh-
bors for a given sample. The method, referred to as Hier-
archical Local Maps (HLM) (see figure 1), arranges a set
of simple local manifolds in a hierarchical fashion. As we
move up in the hierarchy, the complexity of manifold in-
creases as the data does not belong to a neighbourhood.
At the top most level, no lower dimensional space can be
found, where the pairwise similarity is preserved. Near-
est neighbor retrieval is now framed as selecting correct
path to traverse down the hierarchy that would give approx-
imate nearest neighbors. We present experiments on two
real world complex dataset: the UNIPEN dataset [9], and
the CASIA Iris dataset [1]. The results show a considerable
amount of computationally expensive measurements can be
reduced without affecting the accuracy of nearest neighbors
found. We also present comparison to state of the art algo-
rithms.

2. Hierarchical Local Maps

Goal: Given a set S of N points and an arbitrary distance
measure (F) between them, construct a data structure that
helps us to compute an approximate list of nearest neighbors
of a query point q.

In most of the real-world datasets, there is no low-
dimensional single manifold that spans the whole dataset.
However, parts of the dataset may lie on a manifold. For
example, each handwritten digit lies on a single manifold,
but a smooth manifold covering all the digits does not exist.
Since distance metric is non-metric, even cluster based ap-
proaches cannot guarantee that points similar to each other
will fall in the same cluster.

We propose a way to split the data into a multi-level hi-
erarchy, so that, local similarity property of dataset can be
exploited to direct the search to correct branch of the tree
while traversing it in top-down fashion. We call this repre-
sentation as Hierarchical Local Maps(HLM). Using a tree
structure for representation, helps in reducing the search
space at each level and makes the algorithm scalable and in-
cremental. New samples can be added in the hierarchy with-
out modifying the existing tree structure. Such a tree repre-
sentation, combined with a way to exploit local similarity,

Input : S, F, T
Output: Tree, Num Levels

l = 1 ; N1 = n(S) ; New Set = { }1

while Nl > T do2

bf++l = bP log10(Nl)c3

while ∃x ∈ S s.t. seen(x) == FALSE do4

Add an unseen point, Seed, to New Set5

nn← bf-NN of Seed in S according to F6

Mark Seed and nn as seen7

Make Seed parent of nn8

end9

S = New Set ; New Set = { } ; Nl = n(S)10

end11

Num Levels = l12

Algorithm 1: Construction of HLM.

drastically reduces the explicit distance computations.

2.1 Construction of the Hierarchy

In a non-metric space, the computation of an optimal hi-
erarchy for a given set of points, that minimizes the number
of comparison needed for finding nearest neighbors is ex-
tremely difficult. Thus we use a greedy method to construct
the hierarchy such that local neighborhood information gets
embedded in a tree, which could be used later to direct the
search to correct local maps. Let N denote the number of
samples in training set S. The similarity function is denoted
by F ; Nl and bfl are the number of points and branching
factor for each level, respectively. T denotes the minimum
number of samples need to be present at top most level. Al-
gorithm 12 describes the way to build the Hierarchical Lo-
cal Maps.

In such a representation, a single point may lie on mul-
tiple nodes at a level in the hierarchy. Thus, if a point is
overlooked at any level during a serach, it could still be
included in the levels to follow. This is one of the ma-
jor advantages this representation holds over the traditional
tree-based search, where a misdirected search cannot be
corrected. If the input space is metric, then this operation
would preserve topology with zero distortion. However, in
a non-metric space one might be able to find metric approx-
imations of data points lying in a small neighbourhood.

2.2 Nearest Neighbors Retrieval

To carry out a search, we need to describe a way to
traverse down in the hierarchy. At the topmost level, we
explicitly find the P1 nearest neighbors of a query sam-
ple q using the similarity function F . The search process
as described in algorithm 12, requires only P1 × P2 ex-

plicit distance computations at any level. The ISOMAP al-
gorithm [13] is used to learn the manifolds formed by the
nearest neighbors at each level. The embedding of a point
is given by [5].

y = L#
k

(
~δa − ~δµ

)
(1)

L#
k =

[
vt
1√
λ1

vt
2√
λ2

vt
k√
λk

]t

, (2)

where ~δa is squared distance between q and P1 points, ~δa

is the mean of columns of the P1 × P1 squared distance
matrix. At every stage, the nearest P1×P2 points are deter-
mined in the low dimension, which are further reduced to
P1 using explicit computation of F . One can also include
the similarity measures computed in the previous level for
further refinement. If the search finds only K1 points at the
last level of the hierarchy, where K1 < K, we expand the
list by backtracking and finding more points at the previous
level.

Input : Query q,Num Levels, P1, P2

Output: NN : Nearest Neighbors List

level = Num Levels1

Put points of topmost level in S2

NN ← P1-NN of q in S3

while level > 1 do4

Store children of NN in Schild5

Run Landmark Isomap to embed Schild with6

NN as landmarks
Let Embnewpt be embedding of q7

K1 = P1 ∗ P28

Find K1-NN of Embnewpt in low dimensional9

embedding
Filter P1 from K1 and update NN set10

Decrement level11

end12

Algorithm 2: Nearest Neighbor Retrieval.

2.3 Parameter Selection

While constructing a hierarchy, T and bfl needs to be
tuned for any dataset. The T is a constant that is set em-
perically, based on the overall similarity of the points in the
dataset (set at 50 in our experiments). As the total number
of points in a level increases, the number of points similar
to any given point also increases. Thus the branching factor
at a level, is determined by the number of points in the level
below. For our experiments, we set bfl as:

bfl+1 = Plog10Nl; (3)

The NN retrieval algorithm has two parameters, P1 and
P2. The application for which retrieval is being used de-
termines their values. If for any application we need lesser
percentage of nearest neighbors to be correct, then a lower
value of P1 can be chosen. However, if aim is at higher ac-
curacy then a bigger value for P1 and P2 should be chosen.
P2 determines the weight given to distance computed in low
dimensions.

2.4 Computational Complexity

In most applications, the non-metric distance computa-
tion is the most expensive operation to be performed. In
the proposed search, the number of distance computations
to be performed at the top-most level is around T . Further,
at each lower level, we need to perform P1 × P2 distance
computations. Hence the overall computational complexity
is O(Num Levels× P1 × P2).

In addition to the above, we also need to compute P!×P2

nearest neighbors from P1 × bfl samples in fixed dimen-
sions at each level. The complexity of this process is
O(Num Levels×P1×bf), assuming the branching factor
to be bf at all levels. The computation of the low dimen-
sional space manifold requires the singular value decompo-
sition of a P1x(P1 × bf) matrix, which is O(P 2

1 × bf) op-
erations. The embedding process requires O(P1 × d) mul-
tiplications, where d is the dimensionality of the manifold
space. Note that our aim is to reduce the number of non-
metric distances computed.

3. Experimental Results and Discussion

3.1 Unipen Handwriting Database

Experiments are conducted on the Unipen train-
R01/V07 online handwriting database [9]. It contains
15953 digit examples of which randomly selected 10630
are treated as training data and rest 5323 as testing data. To
compare our results with BoostMap, we downloaded two
distance matrices, one with DTW score between each pair
of database object and other with DTW score between each
test object and database object along with class labels for
training and testing set from [2].

During the construction of HLM, the value of P is set
emperically as 2.5. We conduct several experiments for dif-
ferent values of accuracy one aims to achieve for different
set of values for P1 and P2. The optimal value is obtained
for P1 = 15 and P2 = 1. This means that the nearest
neighbors computed in lower dimension are good enough
and thus no refinement process is required.

The results of our algorithm is shown in figure 2. As
there is no external conditions or parameters of the dataset
used, we directly used the values reported in the BoostMap

5 10 15 20 25 30 35 40 45 50
32

64

128

256

512

1024

2048

4096

k

#
 d

is
ta

n
ce

s
fo

r
9

0
%

 a
cc

u
ra

cy

FastMap
RRO
RLP
VP−trees
BoostMap
HLM

(a) For 90% of the 5323 test samples

5 10 15 20 25 30 35 40 45 50
32

64

128

256

512

1024

2048

4096

k

#
 d

is
ta

n
ce

s
fo

r
9

5
%

 a
cc

u
ra

cy

FastMap
RRO
RLP
VP−trees
BoostMap
HLM

(b) For 95% of the 5323 test samples

5 10 15 20 25 30 35 40 45 50
64

128

256

512

1024

2048

4096

8192

k

#
 d

is
ta

n
ce

s
fo

r
9

9
%

 a
cc

u
ra

cy

FastMap
RRO
RLP
VP−trees
BoostMap
HLM

(c) For 99% of the 5323 test samples

Figure 2. Number of DTW computations for K nearest neighbor retrieval.

paper [3] for other algorithms namely RRO, RLP, FastMap,
VP-Trees1. Each subplot shows the exact number of DTW
distances that needs to be computed against different values
of nearest neighbors to be retrieved, for different accuracies
on input dataset.

For lower values of K, the difference in the number of
distance computations is not significant but as K increases,
HLM starts out-performing the other algorithms. Note that
the values in Y-axis is in logarithm scale, so even small dif-
ference along Y-axis for higher K, signifies much more sav-
ings in terms of actual distances to be computed. To be
precise, for 99% accuracy, BoostMap required 3302 exact
distance computations, whereas HLM required only 1704
explicit distance measurements.

To study the nature of graph for K > 50, we find the
number of nearest neighbors that can be retrieved with re-
spective accuracy for the same number of distance compu-
tations required for K = 50 in BoostMap. For 90% and
95% accuracy, HLM can find 127-NN which is 2.5 times
the nearest neighbors found by BoostMap using same num-
ber of distance computations. For 99% accuracy, HLM can
find 110-NN. Thus we can say that the nature of the graph
would be the same for higher values of K.

Another measure of the approximate nearest neighbors
computed is their similarity to the query point. To evaluate
this, we perform k-NN classification using the approximate
NNs and compared with accuracy achieved using exact NN
from direct DTW measurements. For the chosen parameter,
we are left with around 30 points in last level after calcu-
lating around 130 DTW distances. Hence, the total num-
ber of DTW distances to be computed in order to find the
first nearest neighbor (approximate) is around 160. Table 1,
shows the classification accuracies for different values of k,
when we use HLM instead of computing DTW distances to

1We would like to thank Dr. Vassilis Athitsos, University of Texas, for
providing the BoostMap Code and results for comparison.

all points. As indicated by the first column, our approach
can classify a sample within 0.5% accuracy of the ideal
case, while achieving a 98.5% savings on DTW distance
computations (160 instead of 10, 630).

k 1 5 10 15 20
DTW 98.1 97.73 97.41 96.99 96.83
HLM 97.65 97.27 97.08 96.69 96.44

Table 1. Classification Accuracy on UNIPEN
Dataset using exact and approximate k-NN.

3.2 CASIA Iris Database

However, the nature of matching score using for bio-
metric identification or verification is highly discriminative,
with small intra-class distances and larger inter-class dis-
tances. Hence the matching score cannot be used for com-
puting approximate nearest neighbor. For strong biometric
traits such as the iris pattern, the similarity score between
any two samples belonging to different classes will be close
to each other, making the hierarchical search almost ran-
dom. To solve this problem, one should use a smoother dis-
tance function in the HLM construction and retrieval. Note
that the problem in the case of iris based identification is not
that of high computational cost of the distance metric, but
the sheer size of the database, which makes explicit com-
parison with every sample, impractical.

For iris based person identification, we segment the iris
pattern into a set of concentric circles, and each circle fur-
ther into sectors. We characterize each segment using the
average gray value, after normalization of the whole image,
resulting in a 160 dimensional feature vector. Euclidean
distance between two such vectors is used to find the ap-

proximate nearest neighbor. We use the term soft metric to
refer to this distance measure, as opposed to the matching
score used for the biometric. To compare the results, we
also perform the experiments with the matching score com-
puted using the 20x240 feature vector, proposed in [4].

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

80

90

100

Penentration (%)

F
al

se
 R

ej
ec

t R
at

e
(%

)

Soft Metric

Matching Score

Figure 3. FRR vs Penetration (CASIA Iris).

Experiments are conducted on the CASIA Iris Im-
age Database V3.0 [1]. For experimental evaluation, the
CASIA-IrisV3-Interval was used as it contains the larger
number of images, captured in two different sessions.
Database consists of left and right eye images of 249 sub-
jects. Six images per eye of a subject are randomly chosen
and divided equally in training and testing set. We discard
those users for which less than six images per eye were
present. In total 855 images were present in training and
testing set, corresponding to 285 eyes, with three samples
per eye. We construct the HLM structure using the distance
measure mentioned above.

For the construction of HLM, as samples of most of the
class will not be present in the top most level, we set T to
be a constant: 50 (irrespective of number of classes). Fig-
ure 3 shows the variation of False Reject Rate(FRR) with
Penetration Rate for P1 = 15 and P2 = 1. We note that
one can find a matching pattern at the first nearest neighbor
in around 60% of the case, which requires around 40 soft
metric computations and 75 distances in a 15-dimensional
subspace. Note that this is very small compared to the
855 matching scores to be computed for the brute force ap-
proach. Moreover, finding of the following nearest neigh-
bors take only around 1 comparison on an average.

On the downside, a large number of similarity measures
need to be evaluated during offline stage of constructing the
HLM. The storage complexity is also linear in the number
of training samples. We note that the search works better
when used with smoother similarity measures, which are
also well correlated with the original distance metric, F .

4. Conclusions and Future Work

We presented a novel approach for robust approximate
nearest neighbor retrieval. A way to arrange the data in mul-
tiple levels of hierarchy is proposed so that local neighbor-
hood information can be utilized during search to guide it to
correct local map. Retrieval as well as classification results
on UNIPEN dataset shows the advantages of using HLM
over state-of-the-art approximate nearest neighbor retrieval
algorithms. One of the potential directions of improving the
algorithm would look into optimal construction of HLM.
One could also extend the applicability of the approach by
defining similarity measures that allow hierarchical repre-
sentation.

References

[1] http : //www.cbsr.ia.ac.cn/IrisDatabase.htm.
[2] csr.bu.edu/asl/data/bmdatasets/unipen/.
[3] V. Athitsos, J. Alon, S. Scarloff, and G. Kollis. Boost-

map: An embedding method for efficient nearest neighbor
retrieval. PAMI, January 2008.

[4] J. Daugman. How iris recognition works. IEEE Transactions
on Circuits and Systems for Video Technology, 14:21–30,
2004.

[5] V. de Silva and J. Tenenbaum. Sparse multidimensional scal-
ing using landmark points. Stanford Mathematics Technical
Report, 2004.

[6] C. Faloutsos and K. Lin. Fastmap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. In ACM SIGMOD International Con-
ference on Management of Data, pages 163–174, 1995.

[7] P. Franco, P. Shamos, and M. Ian. Computational Geometry:
An Introduction. Springer-Verlag, 1985.

[8] A. Gionis, P. Indyk, and R.Motwani. Similarity search in
high dimensions via hashing. In International Conference
on Very Large Databases, pages 518–529, 1999.

[9] I. Guyon, L. Schomaker, and R. Plamondon. Unipen project
of on-line data exchange and recognizer benchmarks. Proc.
of ICPR, pages 29–33, 1994.

[10] G. Hjaltason and H. Samet. Properties of embedding meth-
ods for similarity searching in metric spaces. IEEE Trans-
actions on PAMI, 25(5):530–549, 2003.

[11] G. Hristescu and M. Farach-Colton. Cluster-preserving em-
bedding of proteins. Technical Report 99-50, 1999.

[12] S. Ketpreechasawat. Hierarchical landmark charting. Mas-
ter’s. thesis, 2006.

[13] J. C. Langford, B. Tenenbaum, and V. de Silva. A global ge-
ometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319–2323, 2000.

[14] J. Li and P. Hao. Hierarchical structuring of data on mani-
folds. In CVPR07, pages 1–8, 2007.

[15] S. Roweis and L. Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science, 290:2323–2326,
2000.

[16] P. Yianilos. Data structures and algorithms for nearest neigh-
bor search in general metric spaces. ACM-SIAM Symposium
on Discrete Algorithms, pages 311–321, 1993.

