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Abstract—Video completion algorithms have concentrated on
obtaining visually consistent solutions to �ll-in the missing
portions, without any emphasis on the physical correctnessof
the video. Resulting solutions thus usetexture or imagestructur e
basedcuesand are limited in the situations they can handle. In
this paper we take a model basedsignal processingapproach to
video completion [1]. Completion of the video is then de�ned as
satisfying the given model by detecting and removing the error
(selectedparts of the video to be replaced).Given a probabilistic
model, video completion then becomesan unsupervised learning
algorithm with the input video giving a “noisy” version. Dense
completion is the automatic inferencing of the “noise-less” or
“true” video fr om the input. This approach �nds a solution that
satis�es visual coherenceand is applicable to a wide variety of
scenarios.We demonstrate the ef�cacy of our approach and its
wide applicability using two scenarios.

I . INTRODUCTION

The problemof video completionor inpainting dealswith
correctionor replacementof selectedparts of a video from
content taken from the rest of the video. The recent need
to automatizethe restorationof variousdegradedvideoshas
generateda lot of interestin this �eld [2]. Thetwo fundamental
sub-partsof theprobleminvolve (i) identifying thepartsof the
video to be replacedand(ii) identifying the approproateparts
of thevideo to replacewith. Solutionsto both theseproblems
involve registration of the framesof the video with respect
to each other. Setting this problem in a signal processing
framework is straightforward.Thepartsof thevideo thatneed
to be replacedmay be termedthe noisein the signal,which
is in turn representedby thecontentof the video.This allows
us to borrow from the rich literaturepresentin model based
signal processing[1]. Different models(registrationbetween
frames)may be usedto describethe original signal, which
give rise to differentsolutions.

Approachesto video completionmay be categorized into
two frameworks.

a) Non-parametric approaches: When a video is mod-
eledasaspacetimecollectionof textureandedgeinformation,
non-parametricmethodslike texture sampling [3] may be
appliedto removenoisein thevideo,assumingnoiseis already
isolatedor detected[4], [5]. Probabilisticapproachesin this
direction involve [6], wherelarge numberof imagesareused
to learn texture patchescalled “epitomes” that are later used
in the synthesisof videos.Other solutionsbasedon optical
�o w [7] or partial differential equationsdescribingthe edge
structure[8] have alsobeenproposed.Interestingapproaches

involve [9], where the authors use cyclic motions in the
foregroundor backgroundto correctthe noisepresentin the
videos.Suchanapproachis usefuleitherwhenthereis a large
amountof data (texture or edgepatches)available, or when
the amountof noise is small comparedto the overall signal
(high signalto noiseratio (SNR)).This correspondsto scenes
that are primarily af�ne or when the motion in the sceneis
orthogonalto the cameraview.

b) Physical model-basedapproaches: The other ap-
proachinvolves modeling the physicalphenomenaoccurring
in the video. Thus, it involvesmodelinga video as the time-
sequencedprojections of a 3D event. Such an approach,
however, hasthe advantageof beingable to not only correct
thenoisein a video,but alsodetectit, makingthewholecom-
pletion processautonomous.[10] describesucha framework
wherethe staticbackgroundmay be extractedfrom the scene
in an af�ne setting.They assumethedominantoptical �o w in
thesceneto belongto thebackground,andextract foreground
by clusteringout �o ws that do not matchthe dominantone.
The extractedoptical �o w of the backgroundis then usedto
�ll theremovedpixels.In [11], a PDEbasedapproachis used
to detectandremove specularityfrom imagesandvideos.The
formulationof the PDE dependson the type of imagesource,
texture information presentin the sceneetc. However, only
specularitiesarehandledin this formulation.

Thusapproachesmentioneduptil now lack in two respects.
Either they concentrateon producingvisually appealingre-
sults, neglecting the “correctness”of the results obtained,
which severely restricts their applicability. For example, a
video with multiple moving objects occluding each other
is challenging becauseof the huge number of parameters
that needto be considered.Or the scenariosin which these
algorithms work are restricted(af�ne, specularity). Ideally,
however, we would like our formulation to be independent
of suchconstraints.Thus it is desirableto have an algorithm
thatwould a) automaticallyidentify whatpartsof a videoneed
to be replacedbasedon somecost function in a general3D
scene,b) be able to �nd physicallycorrectpatchesto replace
missingpartsof a video,andc) inpaintobjectsof variousand
varying sizesandshapes.

To the bestof our knowledge,the �rst two characteristics
mentionedabove arenot handledby currentvideocompletion
algorithmsexcept[10], [11], andthe third characteristicposes
problemsto texture basedapproachessince non-parametric
sampling techniquesare sensitive to scale changes.Thus,



scenariosare typically restrictedto sceneswhere objects to
be removed do not changescalesigni�cantly, or the camera
movementis restricted.

We presenta novel approachto the problem,by de�ning
inpainting without manual interventaionas an unsupervised
learningproblem.A single cost function speci�es what parts
of the video needto be replaced,and also identi�es the ap-
propriatephysicallycorrectreplacementpatches.In this paper,
we considertwo typesof cost functionsbasedon registration
betweenviews,andshow how onehelpsin removing dynamic
objectsand the other in removing non-planarobjectsfrom a
given scene.

This approachis alongthe linesof somerecentpapers[12],
[13] which take a learningapproachtowardsgeometricprob-
lems. In dynamic mosaicing [12], the basic problem is to
generatea mosaic of the static scene in the presenceof
dynamic objects,which are treatedas noise and needto be
removed. This requiresregistration acrossscenes,as in our
case.Super-resolution[13], on theotherhandtries to estimate
a high resolutionvideo from a low-resolutionone, and the
problemis posedin a supervisedlearningframework.

In subsequentsections,we �rst presentour approachto the
problem.We show how video completioncanbe posedasan
unsupervisedlearningproblemin the presenceof noisy data.
The de�nition of noisedeterminesthe exact structureof the
algorithm, and two scenariosare presentedto illustrate our
approach.The �rst one consistsof a planar object affected
by illumination artifacts, and the secondscenarioconsists
of peoplemoving in a 3D environment.Both situationsare
extremelychallengingfrom thecurrentstandpointof thevideo
completioncommunity. Impressive results in both scenarios
illustrate the ef�cacy of our approach.

I I . INPAINTING AS OUTLIER REPLACEMENT

A videois a sequenceof imagesproducedby theprojection
of a 3D world onto a camera.Our interestlies in identifying
and removing certain parts of this world from the images
makingup the input video.Thus,the input video andthe true
video may be representedas follows.

VI = fI I 1; : : : ; I I N g (1)

VT = fI T 1; : : : ; I T N g (2)

P = fP 1; : : : ; PN g (3)

VT = P(	) (4)

VI = P(	) + � (5)

whereVT representsthevideoto beinferred,andVI represents
the input to our algorithm.P representthecameraviewpoints,
	 is a functionof the3D world, and� representsnoise,which
may be blacked out or degradedpixels, illumination artifacts,
effects of jerky cameramotion or occlusion, occluding or
dynamic3D objectsetc. Notice how our approachdoesnot
need to know the complexity of the occlusion. The only
assumptionwe make is that thewhole of 	 is visible without
noise, in parts, somewhere in VI . Also, the de�nition of 	
changeswith the problem under consideration.Finally, the

solutionboils down to the estimationandreplacementof this
noise,with datafrom the video. Thus,we posethe problem
of videocompletionasextrapolationof a functionafter �tting
the same to input data in the presenceof noise. Several
approachesto this problem may be found in the machine
learning literature [14], and here we take the approachof
maximumlikelihoodestimation.

The solution proceedsin three steps.Since we follow a
maximum likelihood formulation, we �rst need to evaluate
the probability that a candidatehypothesis(	̂ ; P̂ ) produces
the given video VI . Maximizing this likelihood over the
spaceof (	 ; P), gives us the besthypothesis.Noise is then
representedas outliers of the model (	 ; P), and is removed
by extrapolatingthe modelat appropriatepoints.

c) Estimating 	 ; P:: Given a candidate hypothesis
(	̂ ; P̂ ), the total probabilityof theobservedvideoVI is given
as

p(VI j 	̂ ; P̂ ) =
Y

i

p(I I i j 	̂ ; P̂ ) (6)

=
Y

i

p(I I i jP i (	̂)) (7)

wherePi representsthe cameramatrix correspondingto the
i th view. Thus,theprobabilitythat Î T i = Pi (	̂) representsthe
“true” i th view can be determinedby maximizing the above
equation.We assumeP(I I i j Î T i ) to be a Gaussianover pixel
differences,with eachpixel's contribution being independent
of the others.

p(I I i jI T i ) =
Y
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I I i (x; y) � Î T i (x; y)
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!

(8)

In otherwords,every individual frameof the besthypothesis
shouldexplain the current imageto the bestpossibleextent.
We proceed to minimize the correspondinglog-likelihood
function

L (I I i ) = �
X

8x;y

(I I i (x; y) � Î T i (x; y)) (9)

L (VI ) = �
X

i

X

8x;y

(I I i (x; y) � Î T i (x; y)) (10)

d) Noise estimation:: Once(	 ; P) are estimatedfrom
the data,the problemof estimatingnoise reducesto �nding
outliers that do not �t the model. Thus, for every frame i ,
we may classify pixels as noisy if they lie more than two
standarddeviationsaway from thepredictedpixel color using
the estimatedvaluesof (	 ; P).

e) Outlier replacement:: Given the model(	 ; P), out-
liers can be replacedby projecting the model onto parts of
the image labeled as outliers. This may be thought of as
extrapolatingthe learntmodel to predictmissingdata.

f) Registration:: The problemof estimating(	 ; P) in-
troducesregistrationinto our framework. Registrationof two
frames of the input video VI i and VI j involves �nding a
correspondencebetweenthe frames, that best explains the



visual datapresentin them.Thus,it may be representedby a
function � , that takes VI i to VI j . The function � is de�ned
over (	 ; P).

VI i = � ( i;j ) (VI j ) (11)

VI j = � ( j;i ) (VI i ) (12)

The implicit assumptionin this case,is that VI i and VI j

have suf�cient overlap of visual data, which is true for
consecutive framesof a video.The main insight to notehere,
is that � is actually adequateto estimateand remove all the
noisepresentin the input video. This is becausewe assume
that (1) every partof the “true” video is presentsomewherein
the input and(2) that noise,unlike the restof the visual data,
is independentlyintroducedin every frame of the video. In
casesof occlusion,noisein framesarerelated,but not by the
samefunction asthe restof the visual data.Thus,hypotheses
of (	 ; P) maybereplacedin equation(6) by �̂ . Additionally,
since we do not know which frame of the input sequence
containsthe “true” imageor its parts,Eqn7 hasto be de�ned
over all the images,for every imageof VI .

p(VI j 	̂ ; P̂ ) =
Y

j

Y

i

p(I I i j Î I j ) (13)

In otherwords,every individual frameof thebesthypothesis
shouldnot only explain thecurrentimagecorrectly, but should
alsobe ableto explain all the other images,whentransferred
through the registration function �̂ . Thus, the overall log-
likehoodto be minimizedbecomes

L(I I i ) = �
X

j

X
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(I I i (x; y) � �̂ ( i;j ) I I j (x; y)) (14)

L (VI ) = �
X
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(I I i (x; y) � �̂ ( j;i ) I I i (x; y))(15)

I I I . RESULTS

In this section,we apply thetheorydevelopedearlierto two
scenarios,which differ in their de�nitions of 	 . This in turn
de�nes noise,and hencedetermineswhat can be removed in
eachsituation.The �rst scenariode�nes 	 asa planarobject
andthesecondscenariode�nes 	 asa bundleof rays.In each
of thesecases,we �rst computeSIFT [15] correspondences
acrossframes, followed by a homographyestimationbased
on the Gold StandardAlgorithm [16]. Oncepairwisehomo-
graphiesare computed,classi�cation of eachpixel of every
imageis doneusing homographybasedregistrationbetween
frames.Computationally, the largestbottleneckis the feature
extractionpart which takesaround10 minutesfor 500 frames
of a video with resolution640� 480.

A. Scenario1: Planar object

Figure 1 shows different framesof a planar object being
observed from different views. Illumination artifacts are ob-
served due to the specularnatureof its texture. For the case

of a planar scene,we de�ne the registration function as a
homography[16].

�( i; j ) = H (i; j ) (16)

xj = H (i; j )xi (17)

�( j; i ) = H (j; i ) = H � 1(i; j ) (18)

A homographybetweentwo framesmay be computedfrom 4
accuratepoint correspondences.However, in the presenceof
noise,robust algorithmsto estimatehomographiesexist [17].
Equation17 describesthe registrationbetweenpoints of the
framesVI i and VI j . Given pair-wise homographies,outliers
are computedas points on the imagewhosecoloursare not
consistentwith other frames.

In practice,we do not evaluateover 255 grey levels,while
computing	 to accountfor changein lighting conditions,and
normalizeeachimagebeforeprocessing.

1) Experiment1:: Figure1 shows resultsof noiseestima-
tion and removal over a video sequenceof a planar object.
Thecameramovesarbitrarilyoveraboard,while a light source
producesaspecularityon its surface.In thiscase,eventhelight
sourceis in motion, thoughthe boardis stationary. However,
our methodequally appliesto caseswhere any of the three
objectsare in motion. As can be seen,illumination artifacts
arecorrectlyidenti�ed (row 2 of �gure), andreplaced(row 3)
to producea video without the specularhigh light. The only
input hasbeenthe natureof � . Everythingelsecameout of
the video automaticallyas the “noise”.

Figure 3 shows resultson the samescene,when different
numberof views are usedto estimateand remove the noise
in one particular frame of the sequence.In order to collect
groundtruth for this experiment,a framewithout specularities
was taken and view transferredby estimatinghomography
using manually given correspondences.Intensity differences
betweenthis frameandthe frameswith noiseremoved,were
usedto derive the accuracy of our algorithm. As the graph
shows, the accuracy reachesa saturationpoint after some
thresholdnumberof views.

B. Scenario2: Rotatingcamera

When a camerapans, different views capture the same
bundle of rays correspondingto every 3D point observed
in more than one image. Different views taken with such
a cameraare thus relatedby the in�nite homography[16].
Unlike the previous scenario,however, the de�nition of noise
changesin caseof panningcameras,thoughregistrationbe-
tweenframesis still representedas a homography. Sincethe
in�nite homographyexplains objectspresentat any arbitrary
depth,dynamicobjectspresentin the sceneare estimatedas
outliers,andhencerepresentthe noise.

Figure 4 shows frames of a video with people walking.
Notice how in this de�nition the numberof peoplemake no
differenceto our algorithm.The secondand third rows show
theestimatedoutliersandthecorrespondingrecoveredimages.
Also shown is a mosaicgeneratedfrom the recoveredimages,
and the noise,which may have further applicationsalongthe
lines of [19].



Fig. 1: Framesfrom a videosequenceof a planarobjectwith a specularsurface.The�rst row shows frames40, 100,150,200,
250 and300 of a 306 framesequence.The secondrow shows the outlier detectionresult.The �nal row shows reconstructed
imagesafter outlier removal.

Fig. 2: Resultsfor a 3D objectobservedby a moving camerawith a planarbackground.In this case,the3D objectis estimated
asnoise,andremoved.Frames200, 250, 300, 350 of a 400 framesequenceareshown.

IV. CONCLUSION

In this paper, we presentedan approachto automatically
identify andremove“noise” from a video,basedona function.
We then showed how the video completionproblem can be
posed as the removal of outliers given a proper function
to be satis�ed by the completedvideo. The identi�cation,
removal, andcompletionareperformedautomaticallywith no
interactive inputs.We demonstartedits applicationon several
representative videos.

The main drawback of the approachis the need for a
function to be satis�ed by the “true” video. The constraint
function could be simple homographiesas in the examples
shown here.Complicatedvideoswith independentmotion of
the cameraand multiple objects may be hard to handleas

thetheunderlyingconstraintfunctionsarecomplex. Our algo-
rithm, beingunsupervised,alsorequiresthetruevideo'spixels
to appearmore frequentlythan the noisy ones.Artif actscan
beseenin Figure2, wheresuf�cient frameswerenot available
for identifying and replacing pixels. The best replacement
pixel might not be easyto determineas multiple candidates
obeying the model can exist. Figure 2 shows resultsfor one
suchreplacementstrategy.

However, we believe automatingthe completionprocessis
possibleand advantageousin many situations.In addition,
the machinelearningframework allows for further extension
to a variety of scenarios,involving dynamic3D sceneswith
occlusions.
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Fig. 3: Figureson the left show removal of lighting artifacts
when 20, 50, 80 and 100 views are consideredto estimate
outliers.The graphon the right shows decreasingerror when
comparedto ground truth. The x-axis representsnumberof
views, and the y-axis, per-pixel intensitydifferences.
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