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Abstract—Video completion algorithms have concentrated on
obtaining visually consistent solutions to Il-in the missing
portions, without any emphasison the physical correctnessof
the video. Resulting solutions thus usetexture or image structure
basedcuesand are limited in the situations they can handle. In
this paper we take a model basedsignal processingapproach to
video completion [1]. Completion of the video is then de ned as
satisfying the given model by detecting and removing the error
(selectedparts of the video to be replaced).Given a probabilistic
model, video completion then becomesan unsupervised learning
algorithm with the input video giving a “noisy” version. Dense
completion is the automatic inferencing of the “noise-less” or
“true” video from the input. This approach nds a solution that
satis es visual coherenceand is applicable to a wide variety of
scenarios.We demonstrate the ef cacy of our approach and its
wide applicability using two scenarios.

I. INTRODUCTION

The problemof video completionor inpainting dealswith
correctionor replacemenf selectedparts of a video from
contenttaken from the rest of the video. The recentneed
to automatizethe restorationof various degradedvideos has
generate@ lot of interestin this eld [2]. Thetwo fundamental
sub-partf the probleminvolve (i) identifying the partsof the
videoto be replacedand(ii) identifying the approproatearts
of the video to replacewith. Solutionsto both theseproblems
involve registration of the framesof the video with respect
to each other Setting this problem in a signal processing
framawork is straightforvard. The partsof the videothatneed
to be replacedmay be termedthe noisein the signal, which
is in turn representedby the contentof the video. This allows
us to borraw from the rich literature presentin model based
signal processind1]. Different models(registrationbetween
frames) may be usedto describethe original signal, which
give rise to differentsolutions.

Approachesto video completionmay be cateyorized into
two frameworks.

a) Non-pamametric approaces: When a video is mod-
eledasaspacdime collectionof textureandedgeinformation,
non-parametricmethodslike texture sampling [3] may be
appliedto remove noisein thevideo,assumingioiseis already
isolatedor detected[4], [5]. Probabilisticapproachesn this
directioninvolve [6], wherelarge numberof imagesare used
to learntexture patchescalled “epitomes” that are later used
in the synthesisof videos. Other solutionsbasedon optical
ow [7] or partial differential equationsdescribingthe edge

involve [9], where the authorsuse cyclic motions in the

foregroundor backgroundto correctthe noise presentin the

videos.Suchanapproachs usefuleitherwhenthereis alarge

amountof data (texture or edge patches)available, or when

the amountof noiseis small comparedto the overall signal
(high signalto noiseratio (SNR)). This correspondso scenes
that are primarily afne or whenthe motion in the sceneis

orthogonalto the cameraview.

b) Physical model-basedapproades: The other ap-
proachinvolves modeling the physical phenomenabccurring
in the video. Thus, it involvesmodelinga video asthe time-
sequencedprojections of a 3D event. Such an approach,
however, hasthe advantageof beingable to not only correct
the noisein avideo, but alsodetectit, makingthe whole com-
pletion processautonomous.[10] describesucha framewvork
wherethe static backgroundmay be extractedfrom the scene
in anaf ne setting.They assumehe dominantoptical ow in
the sceneto belongto the backgroundandextractforeground
by clusteringout o ws that do not matchthe dominantone.
The extractedoptical o w of the backgrounds then usedto
Il theremovedpixels.In [11], a PDE basedapproachis used
to detectandremove specularityfrom imagesandvideos.The
formulationof the PDE depend®n the type of imagesource,
texture information presentin the sceneetc. However, only
specularitiesare handledin this formulation.

Thusapproachesentioneduptil now lack in two respects.
Either they concentrateon producingvisually appealingre-
sults, negglecting the “correctness”of the results obtained,
which severely restricts their applicability For example, a
video with multiple moving objects occluding each other
is challenging becauseof the huge number of parameters
that needto be consideredOr the scenariosin which these
algorithms work are restricted (af ne, specularity). Ideally,
however, we would like our formulation to be independent
of suchconstraintsThusit is desirableto have an algorithm
thatwould a) automaticallyidentify whatpartsof avideoneed
to be replacedbasedon somecost function in a general3D
sceneb) beableto nd physically correctpatchego replace
missingpartsof a video,andc) inpaint objectsof variousand
varying sizesand shapes.

To the bestof our knowledge,the rst two characteristics
mentionedabove arenot handledby currentvideo completion
algorithmsexcept[10], [11], andthe third characteristiposes
problemsto texture basedapproachessince non-parametric

structure[8] have alsobeenproposedinterestingapproaches sampling techniquesare sensitve to scale changes.Thus,



scenariosare typically restrictedto sceneswhere objectsto
be removed do not changescalesigni cantly, or the camera
movementis restricted.

We presenta novel approachto the problem, by de ning
inpainting without manual interventaionas an unsupervised
learningproblem.A single cost function speci es what parts
of the video needto be replaced,and also identi es the ap-
propriatephysicallycorrectreplacemenpatchesin this paper
we considertwo typesof costfunctionsbasedon registration
betweerviews, andshav how onehelpsin removing dynamic
objectsand the otherin removing non-planarobjectsfrom a
given scene.

This approachs alongthelines of somerecentpaperg12],
[13] which take a learningapproachtowardsgeometricprob-
lems. In dynamic mosaicing[12], the basic problemis to
generatea mosaic of the static scenein the presenceof
dynamic objects,which are treatedas noise and needto be
removed. This requiresregistration acrossscenesas in our
case.Supefresolution[13], on the otherhandtriesto estimate
a high resolutionvideo from a low-resolutionone, and the
problemis posedin a supervisedearningframework.

In subsequensectionswe rst presentour approacho the
problem.We shav how video completioncanbe posedasan
unsupervisedearningproblemin the presenceof noisy data.
The de nition of noise determinesthe exact structureof the
algorithm, and two scenariosare presentedo illustrate our
approach.The rst one consistsof a planar object affected
by illumination artifacts, and the secondscenarioconsists
of peoplemoving in a 3D ervironment. Both situationsare
extremelychallengingrom the currentstandpoint of thevideo
completioncommunity Impressve resultsin both scenarios
illustrate the ef cacy of our approach.

Il. INPAINTING AS OUTLIER REPLACEMENT

A videois a sequencef imagesproducedby the projection
of a 3D world onto a camera.Our interestlies in identifying
and removing certain parts of this world from the images
makingup the input video. Thus, the input video andthe true
video may be representedsfollows.

Vi =1l hing (1)
Vr =1ty l1ing (2)
P=1Py::Png 3)
Vr = P() (4)
Vi=P() + (5)

whereVr representthevideoto beinferred,andV, represents
theinputto our algorithm.P representhe cameraviewpoints,
is afunctionof the 3D world, and representsioise,which
may be blacked out or degradedpixels, illumination artifacts,
effects of jerky cameramotion or occlusion, occluding or
dynamic 3D objectsetc. Notice how our approachdoesnot
needto know the compleity of the occlusion. The only
assumptiorwe malke is thatthe whole of  is visible without
noise, in parts, somavherein V,. Also, the de nition of
changeswith the problem under consideration.Finally, the

solution boils down to the estimationand replacemenbf this
noise,with datafrom the video. Thus, we posethe problem
of video completionasextrapolationof a functionafter tting
the sameto input data in the presenceof noise. Several
approachego this problem may be found in the machine
learning literature [14], and here we take the approachof
maximumlik elihood estimation.

The solution proceedsin three steps.Since we follow a
maximum likelihood formulation, we rst needto evaluate
the probability that a candidatehypothesis(”; P) produces
the given video V, . Maximizing this likelihood over the
spaceof ( ;P), givesus the besthypothesisNoise is then
representeds outliers of the model ( ;P), andis removed
by extrapolatingthe model at appropriatepoints.

c) Estimating ;P:: Given a candidate hypothesis
(" B), thetotal probability of the obsenedvideoV; is given
as

Y
p(Vij”™;P) p(hij"; P)

(6)
Y
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where P; representghe cameramatrix correspondingo the
i" view. Thus,theprobabilitythat(T; = P;(9 representthe
“true” i™ view canbe determinedoy maximizing the above
equation.We assumeP (1,;jlr) to be a Gaussiarover pixel
differenceswith eachpixel's contrikution beingindependent
of the others.
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In otherwords, every individual frame of the besthypothesis
shouldexplain the currentimageto the bestpossibleextent.
We proceedto minimize the correspondinglog-likelihood
function

L(lii) = (hiy)  frixy) 9)
&Y x

L(vi) = (hisy) fri(cy)  (20)
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d) Noise estimation:: Once( ;P) are estimatedfrom
the data,the problem of estimatingnoise reducesto nding
outliers that do not t the model. Thus, for every framei,
we may classify pixels as noisy if they lie more than two
standarddeviationsaway from the predictedpixel color using
the estimatedvaluesof ( ;P).

e) Outlier replacement:: Giventhe model( ;P), out-
liers can be replacedby projecting the model onto parts of
the image labeled as outliers. This may be thought of as
extrapolatingthe learntmodelto predictmissingdata.

f) Registration:: The problemof estimating( ;P) in-
troducesregistrationinto our framewvork. Registrationof two
frames of the input video V|; and V,; involves nding a
correspondencéetweenthe frames, that best explains the



visual datapresentin them.Thus,it may be representedby a

function , thattakesV,; to V;j. The function is de ned
over( ;P).
Vii = aiHVg) (11)
Vij Giy (Vi) (12)

The implicit assumptionin this case,is that V|; andV;
have sufcient overlap of visual data, which is true for
consecutre framesof a video. The main insightto note here,
is that is actually adequatdo estimateand remove all the
noise presentin the input video. This is becauseve assume
that (1) every partof the “true” videois presentsomeavherein
the input and (2) that noise,unlike the restof the visual data,
is independentlyintroducedin every frame of the video. In
caseof occlusion,noisein framesarerelated,but not by the
samefunction asthe restof the visual data.Thus, hypotheses
of ( ;P) maybereplacedn equation(6) by " . Additionally,
since we do not know which frame of the input sequence
containsthe “true” imageor its parts,Eqn 7 hasto be de ned
over all the images,for every imageof V, .

Y
p(Liiify)
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In otherwords,every individual frameof the besthypothesis
shouldnot only explain the currentimagecorrectly but should
alsobe ableto explain all the otherimages,whentransferred
through the registration function . Thus, the overall log-
likehoodto be minimized becomes

pVj"P) = (13)
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I1l. RESULTS

In this section,we apply the theorydevelopedearlierto two
scenarioswhich differ in their de nitions of . This in turn
de nes noise,and hencedeterminesvhat can be removed in
eachsituation.The rst scenariode nes asa planarobject
andthe secondscenariode nes asabundleof rays.In each

of a planar scene,we de ne the registration function as a
homography[16].

(i) = H(; ) (16)
Xj = H (i j)xi (7)
(i) =HGEGD= H i) (18)

A homographybetweentwo framesmay be computedfrom 4
accuratepoint correspondencesiowever, in the presenceof
noise,robust algorithmsto estimatehomographiesxist [17].
Equation17 describeshe registration betweenpoints of the
framesV,; andV,;. Given pairwise homographiesputliers
are computedas points on the image whose colours are not
consistentwith otherframes.

In practice,we do not evaluateover 255 grey levels, while
computing to accountfor changein lighting conditions,and
normalizeeachimagebefore processing.

1) Experimentl:: Figurel shows resultsof noiseestima-
tion and removal over a video sequenceof a planar object.
Thecameranovesarbitrarily overaboard,while alight source
produces specularityonits surface.In this case gventhelight
sourceis in motion, thoughthe boardis stationary However,
our methodequally appliesto caseswhere ary of the three
objectsare in motion. As can be seen,illumination artifacts
arecorrectlyidenti ed (row 2 of gure), andreplacedrow 3)
to producea video without the specularhigh light. The only
input hasbeenthe natureof . Everything else cameout of
the video automaticallyasthe “noise”.

Figure 3 shaws resultson the samescene,when different
numberof views are usedto estimateand remove the noise
in one particular frame of the sequenceln orderto collect
groundtruth for this experiment,a framewithout specularities
was taken and view transferredby estimatinghomography
using manually given correspondencedntensity differences
betweenthis frame and the frameswith noiseremoved, were
usedto derive the accurag of our algorithm. As the graph
shaws, the accurag reachesa saturationpoint after some
thresholdnumberof views.

B. Scenario2: Rotatingcamern

When a camerapans, different views capture the same
bundle of rays correspondingto every 3D point obsened
in more than one image. Different views taken with such
a cameraare thus related by the in nite homography[16].

of thesecaseswe rst computeSIFT [15] correspondences Unlike the previous scenario however, the de nition of noise

acrossframes, followed by a homographyestimationbased
on the Gold StandardAlgorithm [16]. Once pairwise homo-
graphiesare computed,classi cation of eachpixel of every
imageis done using homographybasedregistrationbetween
frames.Computationallythe largestbottleneckis the feature
extractionpart which takesaround10 minutesfor 500 frames
of a video with resolution640 480.

A. Scenariol: Planar object

Figure 1 shaws different framesof a planar object being
obsered from different views. lllumination artifacts are ob-
sened due to the speculamatureof its texture. For the case

changesn caseof panningcamerasthoughregistration be-
tweenframesis still representecs a homographySincethe
in nite homographyexplains objectspresentat ary arbitrary
depth,dynamicobjectspresentin the sceneare estimatedas
outliers,and hencerepresenthe noise.

Figure 4 shavs framesof a video with people walking.
Notice how in this de nition the numberof peoplemake no
differenceto our algorithm. The secondand third rows show
theestimatedutliersandthe correspondingecoveredimages.
Also shawn is a mosaicgeneratedrom the recoreredimages,
andthe noise,which may have further applicationsalong the
lines of [19].



Fig. 1: Framesrom a video sequencef a planarobjectwith a speculasurface.The rst row shavs frames40, 100, 150, 200,
250 and 300 of a 306 frame sequenceThe secondrow shaws the outlier detectionresult. The nal row shows reconstructed

imagesafter outlier removal.

Fig. 2: Resultsfor a 3D objectobsened by a moving camerawith a planarbackgroundln this casethe 3D objectis estimated
asnoise,and removed. Frames200, 250, 300, 350 of a 400 frame sequencere showvn.

IV. CONCLUSION

In this paper we presentedan approachto automatically
identify andremove “noise” from avideo,basedn a function.
We then shoved how the video completionproblem can be
posed as the removal of outliers given a proper function
to be satis ed by the completedvideo. The identi cation,
removal, and completionare performedautomaticallywith no
interactve inputs. We demonstartedts applicationon several
representatie videos.

The main drawvback of the approachis the needfor a
function to be satis ed by the “true” video. The constraint
function could be simple homographiesas in the examples
shavn here.Complicatedvideoswith independentnotion of
the cameraand multiple objects may be hard to handle as

the the underlyingconstraintfunctionsarecomple. Our algo-
rithm, beingunsupervisedalsorequiresthe true video's pixels
to appearmore frequentlythan the noisy ones.Artif actscan
be seenin Figure2, wheresufcient frameswerenot available
for identifying and replacing pixels. The best replacement
pixel might not be easyto determineas multiple candidates
obeying the model can exist. Figure 2 shows resultsfor one
suchreplacemenstrateyy.

However, we believe automatingthe completionprocessis
possible and advantageousn mary situations.In addition,
the machinelearning framework allows for further extension
to a variety of scenariosjnvolving dynamic3D sceneswith
occlusions.



Per pixel intensity errors

Fig.
when 20, 50, 80 and 100 views are consideredto estimate
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3: Figureson the left shav removal of lighting artifacts

outliers. The graphon the right shavs decreasingerror when
comparedto groundtruth. The x-axis representsaumber of
views, andthe y-axis, perpixel intensity differences.
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