
Private Content Based Image Retrieval

Shashank J, Kowshik P, Kannan Srinathan and C.V. Jawahar
International Institute of Information Technology - Hyderabad

Hyderabad, India
{shashank j,kowshik}@students.iiit.net, {srinathan,jawahar}@iiit.net

Abstract

For content level access, very often database needs the
query as a sample image. However, the image may contain
private information and hence the user does not wish to re-
veal the image to the database. Private Content Based Im-
age Retrieval (PCBIR) deals with retrieving similar images
from an image database without revealing the content of
the query image – not even to the database server. We pro-
pose algorithms for PCBIR, when the database is indexed
using hierarchical index structure or hash based indexing
scheme. Experiments are conducted on real datasets with
popular features and state of the art data structures. It is
observed that specialty and subjectivity of image retrieval
(unlike SQL queries to a relational database) enables in
computationally efficient yet private solutions.

1. Introduction

With the emergence of a number of practical vision sys-
tems, security of visual information is becoming important.
For instance, if an organization has developed a novel and
practical algorithm for face detection, it may not want to
reveal the algorithm publicly but still may wish the algo-
rithm to be widely used for maximizing the organization’s
profit. At the same time the user may also demand that the
organization learns nothing about her input images. How
can the organization and the user achieve their objectives?
This question was raised and answered adequately by [1]
and subsequently by [2]. In this paper, we ask an equally
important but markedly different question. Is it possible for
an image database to respond correctly without knowing
the query image?

Recent years have seen a rapid increase in image collec-
tions. However, in order to make use of it, the data should
be organized for efficient searching and retrieval. The ear-
liest effort in organizing image collections was done by an-
notating each image with its description and forming a text
based retrieval system. Due to diversity in content and in-
crease in the size of the image collections, annotation be-
came both ambiguous and laborious. With this, the focus

shifted to Content Based Image Retrieval(CBIR) [11, 14],
in which images are indexed according to their visual con-
tent. A query for such a system can either be a sample image
or a part of it. Query by example aids the user in express-
ing his query more accurately. This decreases the semantic
gap between the user and the system, thereby circumvent-
ing the cardinal limitation of the conventional annotation
based systems.

Nowadays, the users are increasingly concerned about
the privacy of their query. Some users may not want to re-
veal the content in their query image during retrieval, not
even to the database. An example application is the logo
patent search. All the logos that have been registered are
stored in a public database. An organization would like to
see if its new logo is very similar to any of the existing
logos to avoid copyright infringements. Evidently for the
fear of leakage of ingenuity in their newly proposed logo,
the organization would not like to reveal it to the database.
Another important application is in the medical field. A
central database stores different types of CT images which
have been annotated with the diagnosis and other important
information. A patient would like to query the database us-
ing his CT image to obtain the relevant information. Since
medical reports tend to be very private, they should not be
revealed to the database.

Private Content Based Image Retrieval (PCBIR) deals
with the retrieval of similar content without revealing the
content of the query image to the database. PCBIR is
achieved by exchange of messages between the user and
the database. These messages collectively help the user
in inferring the required information from the database but
prohibit the database from knowing the user’s interest. In
this sense, PCBIR is similar to private information retrieval
(PIR) schemes that allow a user to obtain the data stored at
a specific address in a database whilst keeping the database
oblivious of the address. PIR originated from the work of
Chor, Goldreich, Kushilevitz and Sudan [6]. They pro-
posed an algorithm which needed replication of databases
while Chor and Gilbao [5] achieved the same using only
two databases. Kushilevitz and Ostrovsky [10] and Cachin
et. al [4] independently showed that PIR can be achieved
without the replication of the database. However, all these

1

works are limited to linear databases. Contrastingly, in re-
cent years, most image datasets are indexed hierarchically.
In practice, the address corresponding to the correct an-
swer (of a query) is typically unknown a priori to the user.
PIR is concerned about point queries, that is the value at
a particular position, while PCBIR deals with a similarity
search.

Since image retrieval is fundamentally a similarity
search, PCBIR can be more efficiently solved (than PIR) as
shown in Section 4. The lower bound on server side com-
putation for private retrieval of arbitrary information is ob-
viously Ω(n). This is because if the server does not read the
entire database, something about the query is guaranteed to
be revealed! However, in the case of images, concepts ap-
pear in the form of clusters. Consequently, it is enough for
the server to just touch all the clusters for the query’s pri-
vacy. Note that for optimizing the privacy, server should
have the identical access patterns in all the clusters.

The Blind Vision proposed by Shai Avidan and But-
man [1] applies secure multi-party techniques to vision al-
gorithms. The setting in [1] is completely different from
what it is in this work. Specifically in [1], there are two
parties, A with a private program π (face recognition code)
and B with an input I to that program; the joint goal is
to let B know the output π(I) whilst maintaining the pri-
vacy of π with respect to B and privacy of I with respect to
A. They solve the above problem using secure multi-party
techniques. Note that using secure multi-party computa-
tion, it is possible to solve even the PCBIR problem; how-
ever, we do not proceed in that direction because (1) Gen-
eral secure multi-party protocol based solution to PCBIR is
usually quite inefficient when compared to tailor-made so-
lution for the same (like the one proposed in this paper). (2)
PCBIR requires privacy in only one direction. The whole
database is often public while query is private.

This is probably the first attempt towards ensuring pri-
vacy in image retrieval. The traditional CBIR research fo-
cuses on feature selection, efficient indexing as well as high
performance in the form of recall and precision. PCBIR
is concerned with efficient retrieval under the privacy con-
straint without trading the recall and precision. The ap-
proach may also be viewed as a secure computation of a
similarity measure.

2. Design of the Basic Algorithm
In Content Based Image Retrieval [14, 11] indexing of

images is done based on the content in them. The content
can be described by features like color, texture, shape etc.
Each feature can have several representations. For exam-
ple color can be represented as color histogram or color
coherence vector. These feature representations are ex-
tracted from the images. Many of the laboratory image re-
trieval systems follow a flat-file storage with a linear search

for retrieval. However for large databases, the retrieval
speed with such a scheme becomes a concern. Moreover,
the dimensionality of the feature vectors is high in image
databases. To tackle the problem of high dimensionality,
large databases employ tree-like or hierarchical data struc-
tures. They offer fast and efficient retrieval.

These structures consist of nodes which in turn give rise
to child nodes. Usually the images are stored in leaf nodes
while each intermediate node contains information regard-
ing the data stored in the subtree under it. For example, in
the case of R-tree, the intermediate nodes contain the in-
formation of Minimum Bounding Rectangle of the subtree.
The information stored at a node is useful for traversal and
updating.

Given a query image by the user, its feature vector is
extracted to query the index structure. During querying, one
traverses the index structure by taking decision at each node
to decide which child node(s) we need to traverse next. This
decision is taken using the query’s feature vector and the
data at the node. This decision making function is usually
a threshold function or a distance metric, depending on the
index structure used. When a leaf is encountered, the data in
it is used to get the results. Finally the database returns the
results to the user. Backtracking might have to be employed
in certain structures to attain the results.

The above discussed scheme is for a general CBIR sys-
tem in which the user gives the query image to the database
thus losing the privacy of his query. We intend to develop a
method in which the database does not learn anything about
the query but the user gets the results for his query. To
achieve this, it is sufficient to keep the path of the traver-
sal unknown to the database. In order to keep the path un-
known, the user should not reveal node(s) being accessed.

The database takes the decision at each node using the
query’s feature vector and the information at the node.
Since the user does not want to reveal the query, the decision
at each node should be taken at the user’s end. For this, the
user needs the information at the node. Let us assume for
instance that the user can obtain the information at a node
without the knowledge of the database. With the query’s
feature vector already available with the user and with the
information received, the user can decide which child node
to access next. The user employs the same technique to get
the data at these child nodes without the knowledge of the
database. This is done recursively until a leaf is reached,
keeping the traversal path unknown to the database. We
shall explain the algorithm for a simple hierarchical struc-
ture – the binary search tree.

2.1. Basic Algorithm

1. The user extracts the feature vector of the query image,
say fquery .

2. The user first asks the database to send the information
at the root node.

3. Using fquery and the information received, the user de-
cides whether to access the left subtree or the right sub-
tree.

4. In order to get the data at the node to be accessed, the
user frames a query Qi where i indicates the level in
which the node occurs.(Please note that the root is at
level 0)

5. The database returns a reply Ai for the query Qi.

6. The user performs a simple function f(Ai) to obtain the
information at the node. If the node is a leaf node, user
adds the information to the results else goto step 3.

From the steps 4–6 the user obtains the information pri-
vately from the database, while step 3 is the decision mak-
ing step. Since the decision is being taken at the user’s end
and the database does not know the nodes being accessed,
we ensure the privacy of the query. CBIR can be under-
stood as a special case of PCBIR wherein Q is the query
image and A is the set of similar images computed at the
server. On the other hand, if Q is NULL and A is the
whole database, it reduces to a trivial solution of PCBIR
where the user downloads the whole database and searches
at the client side. However, our solution is a substantial im-
provement over the trivial one so much that it is feasible in
practice as demonstrated in Section 4.

We shall now explain how the exchanged messages, Qi

and Ai, are framed. The formulations of Qi and Ai use the
concept of Quadratic Residuosity Assumption (QRA) [10].
The user selects a natural number N = p · q, where p,q are
large prime numbers and a set Z∗

N is defined as

Z∗
N = {x|1 ≤ x ≤ n, gcd(N,x) = 1} (1)

A natural number y is called a Quadratic Residue (QR), if
∃x | x2 = y mod N and x,y ∈ Z∗

N else y is called a Quadratic
Non-Residue (QNR).
Fact 1.[10] For any x,y in Z∗

N it follows that, if exactly one
of them is a QNR, x × y is a QNR. In other words QR ×
QNR is QNR while QR×QR as well as QNR×QNR
are QR

A sufficiently large set YN is constructed with equal
number of QRs and QNRs taken from Z∗

N . We now
formally state QRA.

Assumption 1 (QRA). Given a number y ∈ YN , it is
predictably hard to decide whether y is a QR or a QNR. By
hard, we mean no known efficient algorithm exists.

The query Qi is filled with numbers from the set YN .
Due to the properties of Z∗

N , YN and Assumption 1, Qi is

well defined for the user but not for the database. Since the p
and q are known only to the user, user can easily distinguish
QRs from QNRs, while the database cannot.

2.2. Indexing with Binary Search Tree

In [10], authors describe a PIR solution for linear
databases. We suitably adapt their solution to Binary Search
Tree (BST) here. In a BST, there are 2i nodes at level i. All
the nodes at a level can be viewed as an array. The node that
the user wants to access can be any one of the 2i nodes at a
level i.

Take the first bit in all the nodes and form a 2D array(say
D) of dimension m× n. Since only one bit is being consid-
ered from each node, m · n = 2i. If the user wants to access
the l th node in a level then he wants to access the bit at
(l/n, l mod n) in D. Let (l/n , l mod n) be (x, y).

1. The user selects a natural number N and constructs the
sets Z∗

N and YN .

2. To get the bit at (x, y), the user frames a query Qi of
length m, where the xth value is a QNR and the rest
are QRs. The user sends Qi to the database.(see Figure
1(b))

3. The database receives Qi and computes Ai of length n
as Ai[k] =

∏n
j=1 w(j, k) where w(j, k) = (Qi[j])2 if

Dj,k = 1 and Qi[j] if Dj,k = 0.(see Figure 1(c))

4. The user receives Ai and checks if Ai[y] is a QR or
QNR. If it is a QR then the value is 1 else 0.(from Fact
1)

The above protocol is run p times at each level to retrieve
the p bits of information at the node. Figure 1(a) shows the
binary data framed as a m × n matrix. Figure 1(b) shows
how the user forms his query. The user is interested in the
black node , hence places a QNR at the position correspond-
ing to the row in which it appears as indicated in step 2 of
the algorithm. Figure 1(c) shows the calculation of w(i, j).
Figure 1(d) shows multiplication along the columns to ob-
tain Ai.

Since the database does not know the positions of the
QNRs in Qi , the database is unaware of the node that the
user is accessing. At each level the communication com-
plexity is O(max(m,n)), since Qi is of length m and Ai of
length n. If m=n=

√
2i the communication complexity is

O(
√

2i) at a level i. Hence the net communication com-
plexity is

∑logn
i=0

√
2i = O(

√
nlogn).

3. Private Retrieval with Popular Index Struc-
tures

For fast and efficient retrieval many index structures have
been proposed in both metric space and vector space. Struc-

Figure 1. An example of formulation of Qi and Ai

tures in Vector space [3] include R-tree, KD-tree and SS-
Tree while BK-Tree, VP-Tree have been proposed in metric
space. More recently, indexing algorithms based on visual
words have been proposed by [12] and [13]. Most of these
have a hierarchical structure. The images are indexed based
on their feature vectors. The feature vector is a representa-
tion of the visual content as a vector.

3.1. Hierarchical Structures

The algorithm explained in Section 2.2 can be easily ex-
tended to the other tree structures as it only needs minor
modifications in the computational logic at the user end.
The computational logic implies decision that needs to be
taken at each node as to which of child nodes need to be
considered next. The decision includes verification of a
constraint for the child nodes. This constraint may involve
comparison between feature vectors or calculation of a dis-
tance metric. The decision making policy and the constraint
for any index structure rely on the query feature vector and
the data at the node. With the query feature vector available
with the user and the data at a node that he privately ob-
tained from the server, user can easily simulate the decision
making process.

Since the number of nodes at a level vary from structure
to structure, the query length varies too. The user needs
to maintain information about the levels and the number of
nodes in them to frame a proper Qi at a level i. The format
of the information received varies with the type of informa-
tion present at the node. For example in case of KD tree, at
each node we store the split dimension and split value. In
Vocabulary Tree [12], the nodes store the cluster centers of
the child nodes. If the structure of the information is known

to the user, he can easily reconstruct it from the received
bits.

The algorithm also supports multiple branching from a
node which is quite common in image retrieval structures.
There is a possibility that we may have to access multiple
nodes at the same level. Since nodes to be accessed are
known to the user, he can query multiple times at a level.
The generic algorithm for private retrieval in hierarchical
data structures is provided below.

Algorithm 1 PCBIR in Hierarchical Structures
1: The user extracts the feature vector of the query sample,

say Fq.
2: User gets the data at the root element and decides which

child node(s) to move to next by using the constraint
and the decision policy.

3: If the node of interest is at level i, the user frames Qi of
length equal to number of nodes at level i, with a QNR
at the node of interest and sends it to the database.

4: Database receives Qi and forms the reply Ai as ex-
plained in Section 2.

5: The user receives the reply Ai from the database and
obtains the information at the node of interest.

6: If the node is a leaf node then the user
Considers the data at the node to compute results.

else
Applies the decision policy to find the child nodes

to move next.
7: For every child node identified in step 6, recurse from

step 3.

The recently proposed state of the art indexing structure,
Vocabulary Tree proposed by Nister [12] has a hierarchi-
cal structure. It employs SIFT features which are extracted
from the images. They are hierarchically clustered to yield
a vocabulary of visual words as well as a vocabulary tree.
The images are then indexed using this tree with each node
storing a list of images that visit it. Since the vocabulary
tree is hierarchical in nature, the above private retrieval al-
gorithm can be applied to it.

3.2. Hash-based Retrieval

Hashing techniques like LSH [7] are widely used for im-
age retrieval. A hashing technique employs the use of a hash
function h which is used to divide the images in a database
into bins. All the images with the same output value for the
hash function are placed in a single bin. The number of bins
is affected by the hash function and its range of input and
output values. Given a query image, the hash function is
applied to it and is mapped to a bin depending on the output
value. Only the images in that bin are retrieved as the results
of the query and thereby increasing the performance.

The PCBIR algorithm can be applied to hashing tech-
niques also. We can treat the bins as an array of nodes
which is similar to the array of nodes in a level in a hier-
archical indexing scheme. The data in the bin to which the
query image is mapped by the hash function is to be re-
trieved. The algorithm for private retrieval using hashing
techniques is given below.

Algorithm 2 PCBIR in Hash Tables
1: The user applies the hash function on the query and de-

termines the bin in to which it falls.(lets say it is i)
2: The user frames and sends a query Q (as described in

Section 2) to obtain the information at node i.
3: The database replies to the query Q with an answer A.
4: The user obtains the information at node i from A.

The steps 2,3 and 4 are the steps of PCBIR algorithm.
Thus we treat the hash bins as nodes at a level and apply
the basic PCBIR algorithm to retrieve the data at a specific
node. In other words, we treat the hash bins as a tree with
one level hierarchy.

LSH is also similar to the general hashing technique ex-
cept that it uses multiple hash functions, so as to ensure
that for each function, the probability of collision is much
higher of objects which are close together. LSH has been
widely used in various applications in vision [8, 9]. Given
a query image, it is hashed using all the hash functions and
the k-nearest neighbors are computed from the images re-
trieved by each hash function. It is similar to performing
N simple hash retrievals. By applying the above algorithm
individually to each of the N hash functions, privacy can be
obtained in LSH.

3.3. Hash Tree Based Retrieval

As discussed earlier in Section 1, if the server does not
read the entire database, it knows that the query is not re-
lated to that part that it has not read. Thus a private retrieval
scheme has to be Ω(n) in server side computation. However
this theoretical limit can be surpassed with minimal trade
off in privacy by using hash tree based indexing techniques.
All images in a hash bin are similar. We can take advan-
tage of this property to lower the computational complex-
ity. For example consider a hash function that distributes
images into bins of flowers, mountains, buildings etc. We
again apply a hash function within each bin to construct a
hash tree. For example flowers can be further classified into
roses, sunflowers, lilies etc. The obtained hash bins can be
further hashed, thus forming a hash tree (hierarchical hash-
ing), as shown in Figure 2.

In non-private retrieval, the server maps the query image
to a hash tree and traces down a path to a leaf node using
a hash function at each level. Since all the hash functions
are public, the user can track the path himself(without any

Figure 2. The figure shows a hash tree based indexing scheme.
The query image is mapped to a hash bin (or the root node of a
hash tree) by the hash function. The path traced by the image in
this hash tree is followed in all the other hash trees, confuses the
database.

server intervention). Say there are n bins in the first level
and the query is mapped to the ith bin. We traverse the path
in the hash tree of the ith bin and reach a leaf node which
contains the image results for the query. To keep it private
we trace the same path in all the other hash sub trees. Each
sub tree leads to a leaf node thus giving us m leaf nodes.
We consider these m leaf nodes to be an array of nodes and
apply the private retrieval scheme to extract the information
at the ith node. In Figure 2 the query is mapped to dotted
bin. The path traversed in this bin is indicated by the dotted
bins. The same paths traversed in the other hash sub trees
are indicated by the dashed boxes. The database does not
know which node the user is accessing thus keeping the pri-
vacy intact. Recall that, in traditional PIR, we had to read
the complete data in each bin to obtain the result thus mak-
ing the computation O(n). In this case the server reads only
a small part of the data in each bin, thus reducing the com-
putation as well as keeping the database in oblivious of the
bin that the user’s query is mapped to.

Confusion metric η is defined as the ratio of nodes ac-
cessed to the total number of nodes. Hence confusion met-
ric

η =
m

mk`
= 1/k`

where k is the number of child nodes a node can give rise
to in the hash tree and ` is the depth of the hash tree. The
confusion metric defines how much the server has been con-
fused regarding the query. The confusion metric attains
highest confusion when its value is 1 i.e Hash tree of depth
0 (as in Section 3.2). The hash tree technique helps us in
trading privacy(or confusion) for the computation complex-
ity.

Algorithm 3 Hash Tree based Private Retrieval
1: The user applies the hash function on the query and de-

termines the bin in to which it falls.(lets say it is i)
2: The user uses the publicly available hash functions to

traverse to a leaf of the hash tree of the ith bin.
3: The user traces the same path in all the hash trees. He

finally has m leaf nodes/bins.
4: Considering these leaf nodes to be an array of nodes,

the user applies the private retrieval scheme explained
previously, to obtain the information at the ith node.

Analysis Given an initial hash function which divides the
data in to m hash bins, hash tree is constructed where each
hash bin has k` leaf nodes i.e., each node gives rise to k
nodes and the height of the tree `. Assuming data is uni-
formly distributed among the leaf nodes, the amount of data
in each node is O(I/(m ∗ k`)) (I is the total number of im-
ages). Since we are accessing only m leaf nodes the server
needs to access only m ·O(I/(m ∗ k`)) = O(I/k`) images.
In case of a hashing technique or a hierarchical indexing
scheme, the computational complexity was O(I) which has
been significantly reduced in this case.

However note that while using a hash tree, we are incur-
ring an additional preprocessing cost of O(k`). Counting
this, there exists a break even point where the overall gain in
time (online -offline) is maximized. The online computation
complexity is O(I

k`) and offline is O(k`). Therefore overall
time is O(I

k` + k`). Maximizing the gain by differentiating
with respect to k` and equating to zero, we obtain the op-
timal value of k` as O(

√
I) and the optimum time as 2

√
I .

One can therefore conclude that as long as k` ≥
√

I , there is
a guaranteed enhancement (using our hash-tree technique)
in the overall performance that include both online and of-
fline run times. Evidently for all practical purposes, this is
true.

4. Experiments and Discussions
In this section, we validate the algorithm and demon-

strate the utility in real-life situations. Experiments were
conducted to test the performance of the algorithm under
different indexing structures and feature descriptors. Ex-
periments were also conducted to validate the accuracy and
study the scalability of the algorithm. The results are at-
tained using GNU C compiler on a 2GHz Intel Pentium M
processor with 4 Gigabytes of main memory.

Corel Database and K-D Tree The first experiment val-
idates the feasibility of the algorithm when the database is
indexed using color features and K-D tree. Both colour fea-
tures and K-D trees are popular in CBIR literature [15]. The
Corel database with 9907 images, scaled to 256 × 128 res-

Figure 3. Results of private retrieval over Corel Database indexed
by K-D Tree. The first image marked by a black bounding box is
the query image, followed by the top four retrieved images.

olution, were used to test the algorithm. The images were
indexed by K-D tree using color histogram [15] as the fea-
ture. Three color channels (R,G,B), each with 256 color
values were used to build the feature vector of dimension
768. The private content based image retrieval algorithm
was applied over the K-D Tree. Each intermediate node
contained the split dimension and the split value. The in-
formation at each node was represented in 64 bits (32 bits
for each value). The four nearest neighbors were retrieved
for a query image. Results for sample queries are shown in
Figure 3. The image marked by a black bounding box is
the query and the others are the top four retrieved results.
The non-private retrieval algorithm on the K-D tree also re-
trieved the same set of results proving the algorithm to be
correct and accurate. With traditional features and indexing
schemes, we were able to achieve real-time retrieval with
approximately 10K images.

Visual Words and Vocabulary Tree In the next exper-
iment, we validate the applicability of the algorithm to a
state of the art indexing scheme. Vocabulary Tree [12] has
been proved to be efficient in handling large datasets offer-
ing a much better performance than traditional tree based
indexing schemes. The dataset consists of 10,200 images
which were used by Nister [12] for vocabulary tree. The
database consists of images of several objects taken from
different positions and under varying illumination condi-
tions. The database is indexed using SIFT features. Each
image yielded an average of 700 features with each feature
represented in 128 dimensions.

Vocabulary Tree was constructed using a training set,
which consisted of 2000 images from the database. Query
images were also selected from the same database, ran-
domly. Sample queries and the obtained results are shown
shown in Figure 4. The image with a black bounding box
is the query and the other images are the top three retrieved
results.

The advantage of using vocabulary tree is that the size
of the vocabulary decides the size of the tree. The number

Figure 4. Results of private retrieval over Vocabulary Tree. The
first image marked by a black bounding box is the query im-
age,followed by the top three retrieved images.

Figure 5. Plot of Vocabulary Size vs Query Time. The graph in-
dicates that the query time increases with the increase in the size
of the vocabulary. As the number of visual words increases, the
sift features are distributed over a larger vocabulary. Hence each
image is indexed under more number of visual words increasing
the data in the leaf nodes.

of leaf nodes in the tree determines the number of visual
words. The retrieval speeds for various sizes of vocabulary
are plotted in the graph in the Figure 5. Even for a vocab-
ulary size of 10,000, the retrieval time is in milliseconds.
The query time has been averaged over 50 queries, which
were processed at a single time using amortization. With
the increase in the vocabulary size, the size of the vocabu-
lary tree increases which causes an increase in the retrieval
time. Results are presented in Figure 5.

LSH and Image Retrieval Another popular indexing
structure for image retrieval is Locality Sensitive Hash-
ing [7]. LSH has been used to index the Corel database con-
sisting of 9907 images. Ninety hash functions, each with
450 bins on an average, were used to index the database.

Figure 6. Plot of Confusion Metric vs Query Time. As the con-
fusion metric decreases, lesser number of nodes or lesser amount
of data needs to be accessed by the database server thus reducing
the computational load on the server side during retrieval. Since
lesser number of nodes are being accessed communication is also
reduced.

Indexing Algorithm Database Query Time(secs)
K-D Tree Corel Database 0.596

Vocabulary Tree Nister Dataset 0.320
LSH Corel Database 0.221

Table 1. Query times for various hierarchical indexing structures.
Private retrieval in all the three index structures is practical.

The images in each bin of every hash table were again sub-
divided using LSH. Effectively a hash tree with two level
hierarchy was constructed. LSH-based retrieval is found to
be more efficient than hierarchical trees, since it accesses
only a sub set of the database (see shaded regions in Figure
2)

We also studied the efficiency of the retrieval with the
confusion metric η. Results are graphically presented in
Figure 6. It may be seen that there exists a near-linear re-
gion where the trade-off between privacy and efficiency can
be controlled directly. With some level of compromise in
confusion, efficient retrieval can be achieved.

The query time for each of the three indexing structures
have been reported in Table 1. (The average query time
for Vocabulary tree was measured on a vocabulary of size
10,000.) All the databases are approximately of 10,000 im-
ages. From the query time, we can see that the algorithm
works in real time and private retrieval is practical in large
image databases. Corel database indexed with LSH reports
the least query time since the server accesses only a part of
the data in each bin as explained previously. A non private
retrieval on a flat file based indexing scheme, employing a
large database, takes significantly more time than those re-
ported in Table 1.

Dataset Size Query Time(in secs)
210 0.005832
212 0.008856
214 0.012004
216 0.037602
218 0.129509
220 0.261255

Table 2. Query times for varying database size. Table compares
the retrieval times when PCBIR is applied on synthetic datasets of
various sizes.

Scalability and Applicability Now we demonstrate the
feasibility of the private retrieval for very large datasets.
The algorithm was tested on data sets of various sizes and
the corresponding query time is reported in Table 2. The
information at each node was taken to be 64 bits. The com-
munication complexity being an incremental function of the
size of database, increases as the number of samples in-
crease. The retrieval time for a data set of size one million is
still in milliseconds showing that the algorithm is scalable
to hierarchical structures handling large databases.

The proposed algorithm has been shown to work on ma-
jor indexing schemes such as Hierarchical Trees, Vocabu-
lary Trees and Hashing. The numerical figures show that
the algorithm is scalable and efficient. Hence it can be used
in any large scale applications that ask for the privacy of the
user’s query.

5. Conclusion

In this paper we have addressed the problem of pri-
vate retrieval in image databases. The algorithm is shown
to be customizable for hierarchical data structures as well
as hash-based indexing schemes. Experimental study has
proved that the algorithm is accurate, efficient and scalable.
We proposed algorithms that are fully private and feasible
on reasonably large databases using a variety of state of the
art indexing schemes. We have also demonstrated that im-
age databases are amenable to significantly faster private
retrieval by exploiting the property of image data. Specif-
ically we demonstrated a near-linear operating region for
image databases, where the trade off between privacy and
speed is feasible.

References
[1] S. Avidan and M. Butman. Blind vision. In European Con-

ference on Computer Vision (ECCV), pages 1–13, May 2006.
[2] S. Avidan and M. Butman. Efficient methods for privacy

preserving classification. In Neural Information Processing
Systems (NIPS), June 2006.

[3] C. Bohm, S. Berchtold, and D. A. Keim. Searching in high-
dimensional spaces:index structures for improving the per-

formance of multimedia databases. In ACM Computing Sur-
veys, pages 322–373, September 2001.

[4] Cachin, Micali, and Stadler. Computationally private infor-
mation retrieval with polylogarithmic communication. In
18th Annual International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT),
pages 402–414, 1999.

[5] B. Chor and N. Gilboa. Computationally private information
retrieval. In Proc. 29th Annual ACM Symposium on Theory
of computing (STOC), pages 304–313, 1997.

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Pri-
vate information retrieval. In Proc. 36th IEEE symposium
on Foundation of Computer Science (FOCS), pages 41–50,
1995.

[7] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In
Proceedings of the Symposium on Computational Geometry,
2004.

[8] J. J. Foo, J. Zobel, R. Sinha, and S. M. M. Tahaghoghi. De-
tection of near-duplicate images for web search. In Proceed-
ings of the 6th ACM international conference on Image and
video retrieval, pages 557–564, 2007.

[9] T. D. G. Shakhnarovich, P. Viola. Fast pose estimation with
parameter sensitive hashing. In International Conference on
Computer Vision, pages 750–757, 2003.

[10] E. Kushilevitz and R. Ostrovsky. Replication is not needed:
Single database, computationally-private information re-
trieval. In Proc. 38th IEEE symposium on Foundation of
Computer Science (FOCS), pages 364–373, 1997.

[11] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based
multimedia information retrieval:state of the art and chal-
lenges. In ACM Transactions on Multimedia Computing,
Communications, and Applications, pages 1–19, February
2006.

[12] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pages 2161–
2168, 2006.

[13] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisser-
man. Object retrieval with large vocabularies and fast spa-
tial matching. In IEEE Conference on Computer Vision and
Pattern Recognition, 2007.

[14] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.
Content-based image retrieval at the end of the early years.
In IEEE transactions on Pattern Analysis and Machine Intel-
ligence, vol. 22, no. 12, pages 1349–1380, December 2000.

[15] M. Swain and D. Ballard. Indexing via color histograms. In
IEEE International Conference on Computer Vision, pages
390–393. IEEE CS Press, 1990.

