
A System for Information Retrieval Applications on
Broadcast News Videos

Tarun Jain Sai Ram Kunala Ravi Kishore Kandala C.V. Jawahar
Center for Visual Information Technology,

International Institute of Information Technology
Hyderabad, India

Abstract—We present a system that is specifically designed for
the information retrieval applications on broadcast news videos.
The system is directly useful to an end user for easy access tothe
news stories of interest. It also act as a platform for convenient
deployment and experimentation of various video analysis and
indexing techniques on real data, and on a large scale. The system
is built upon four layer architecture with certain software design
choices that makes the system highly scalable, extensible and
modular. The system has been in use for 20 months and has
processed around 70Tb of broadcast news data till date. Extensive
performance analysis of the system was done by deploying 14
state of the art desktop systems. Results of the same are reported
here. This system holds immense potential for the emerging video
information retrieval applications.

I. I NTRODUCTION

The increasing number of news channels results in an
abundance of video data which makes it difficult for the
users to go through all the available information. In India,a
typical cable or satellite TV distribution network daily delivers
approximately 200 hours of news in English, Hindi and
regional languages. One can never afford to view this entire
news broadcast. This motivated us to explore a systematic
solution for information retrieval from news videos which can
enable the users to access only the relevant information of
their interest.

The last decade has witnessed a spurt in the production of
digital video content fueled primarily by the ubiquity of digital
video cameras and camera phones. Further, with the advent of
personal video recorders and media center PCs, the creation
of large video repositories is getting into the mainstream [1].
Technologies like IPTV as well as the commoditization of stor-
age hardware, catalyzes this emergence. The sheer enormity
of the video data along with the dearth of effective solutions
to provide content based access has taken the demand for
video information retrieval at an all time high. In this paper,
we describe the design and implementation of a broadcast
news video indexing system which is built to host an array
of emerging video information retrieval techniques.

Our system is based on a model similar to that of web search
engines like Google. These search engines index the content
and users are pointed to the source for browsing the original
content. Figure 1 depicts the system at a coarse level. The
content is captured, processed, analyzed and efficient indices
are then constructed from the extracted metadata. Various IR
techniques then make use of this information for providing

Primergy

Indices

Efficient

Video data

Acquisition
Video

News Broadcasts

from various Sources

Content Analysis

Delivery

& Metadata Extraction

Information
Retrieval

Mechanisms

Internet

Fig. 1. The system at a coarse level

content based access to broadcast news. Details of the video
processing are beyond the scope of this paper.

The general solution for multimedia search has traditionally
been to build some feature descriptions of the content and
then matching these representations [2]–[5]. A popular way
to describe video content is by using text annotations. These
are reasonably effective for the task of keyword based search.
Annotation is usually a manually intensive and a cumbersome
process. Content could also be represented using key frames
[2], [5]. This reduces the problem of video retrieval into that
of CBIR.

Video retrieval and analysis techniques have come a long
way in recent years [6]–[8]. There have been significant
advances in video indexing mechanisms which use various
information cues like faces [9], location [10], audio [7], activ-
ities, etc. Lack of a specialized platform for the deployment
and experimentation became a roadblock in the development
of robust and scalable algorithms. Our system works as an
end to end framework for the researchers wherein they can
plug in their specific algorithms and get to test them with real
data and other supporting mechanisms. From an end user’s
perspective, the system offers an intuitive mode of browsing
through the news stories of their interest in a limited amount of
time. They need not sequentially play all the videos to find the
useful content which otherwise is the only option in absence
of any such system.

The biggest challenge in designing and building such a

system is to be able to not only take into consideration the
present requirements but also to predict the requirements that
can come up in future while developing techniques which
might not even be imagined at the moment. This is the primary
factor that has motivated the architecture and design of the
system. Modularization has been given paramount importance
as it enables independent development of different parts ofthe
system. The system further needs to be scalable and reliable
which has been taken care of through various design decisions.

This system is in existence for more than 20 months and has
consistently been evolving to come to its current form. Almost
50 hours of broadcast news video data in 3 different languages
(English, Hindi and Telugu) gets recorded and processed each
day by the system. Almost 70Tb of videos have been processed
in all by the system till date. There are 1000 valid users which
have password protected access to the processed content over
our university’s LAN. Performance studies conducted on a
cluster composing of 14 state of the art personal computers is
reported in Section IV. The results clearly depict the success
of the system in being robust and reliable against common
causes of failure.

II. A RCHITECTURE

The architecture of the system is primarily influenced from
our experiences with a preliminary version of the system.
The video data being bulky in nature, poses a number of
challenges for its capture, flow over the network and of course
processing. To get an idea of the scale, typically 100 GB
of data gets captured and processed by the system on any
given day. Moreover, video processing is computationally very
intensive. This is due to data size as well as the complex
nature of the typical video processing algorithms. Processing
often needs to be parallelized and it needs to be ensured that
it always keeps up with the data acquisition rates. The system
continuously records and stores the broadcast videos. It needs
to be ensured that failure of the storage machines does not
propagate to the recording machines. Similarly, any crashes in
the processing machines should not have any negative effect
on the recording or storage tasks. The system must be capable
of being extended frequently even though the algorithms and
the skills of the people interacting are quite diverse. These
issues result in the following set of goals for the system.

A. Goals and Challenges

1) Modularity: A clear demarcation of responsibility
among the different modules with minimal coupling
and standard interfaces between them was the primary
requirement for the system. As different people work
on different parts of the system, modularization is of
utmost importance for the smooth evolution of the
system. Moreover, there must be scope for modifying
the implementation of a module without affecting other
modules.

2) Scalability: The entire framework is targeted to keep
growing in scale over time. Over time, the system needs
to scale up in terms of the amount of video data being

stored and processed, number of parallel streams being
captured, number of IR applications deployed, number
of users, etc. The entire infrastructure should be able to
scale up incrementally. Also, the individual sub systems
should be capable of being scaled independent of other
parts. For example, the processing capabilities of the
system could be increased significantly without changing
anything with the other parts.

3) Extensibility: The system requires frequent addition and
alteration of software modules. The newly added mod-
ules must work seamlessly with the already existing
modules performing other tasks. This enables frequent
upgradation of the software. The process of substituting
alternate modules in place of existing ones to perform
the same task should be easy and repeatable. This allows
developers of the modules to test various alternates and
select the best possible combination of modules.

4) Reliability: The various components of the system run
round the clock and interact with each other. Multiple
machines interacting over network are part of the overall
process. It must be ensured that even if one or more
components fail, the rest of the system should continue
to function.

A Four-Layered architecture is chosen to achieve high
modularity and independence in design. The overall function
of the system is divided into 4 layers of independent modules
which interact via pre-decided interfaces. Figure 2 shows the
different layers with their constituents and the interactions
between them. To ensureLoose Coupling in the system, it
is ensured that each layer has well defined and independent
responsibilities. The organization of modules into separate
layers also ensures that any of them can be scaled independent
of the other layers.

Throughout the system, we have chosenHorizontal Scaling
over Vertical Scaling. This means that for the scaling up of
any of the Video Acquisition, Data Management or Processing
layers, we chose to add more servers to the layer rather than
increasing the capacity of the existing servers. It increases
the reliability and availability of the system as dependence
on single server decreases and failure at a single point is less
likely to lead to failure of the system as a whole. It also allows
increase in performance by introducingLoad Balancing. The
Peer-to-peer nature of the system also gets a boost because
of horizontal scaling. The recording and processing nodes
can establish individual connections with the relevant storage
nodes for data transfer. This distributes the load over the
system and allows higher reliability and availability of the
overall system. The users accessing processed content over
web also get automatically redirected to videos residing at
different locations which prevents clogging of the centralweb
server.

B. Video Acquisition

This layer includes all the elements of the system that
are employed for capturing the broadcast video signal and
encoding. The videos thus recorded are cached locally and

Sub System
IR

Log
Activity
User

Controller
Storage
Master

External Videos
Source URLs for

Cache

Capturing
Nodes

Data Screening

DATA MANAGEMENTVIDEO ACQUISITION IR & DELIVERY

Frontend

Local Video
Storage

Registry

Cache

PROCESSING & INDEXING

Indexing
Efficient

Video Processing &
Content Extraction Nodes

Metadata

Indices

Fig. 2. A four-layered architecture is chosen to achieve high modularity and independence of design. The overall function of the system is divided into 4
layers of independent modules which interact via pre-decided interfaces.

then transferred to the central storage in the data management
layer from where they are accessed for processing.

An interface needs to be provided between the Video Ac-
quisition layer and the Data Management layer for transfer of
chached videos. We evaluated and experimented with several
options to establish a reliable method for this data transfer.
Writing over shared storages suffers from low reliability as
problems like one of the machines going down can propagate
to other parts of the system and cause unrecoverable errors.
Also, dynamically providing direct access of storage locations
to recording systems over network file systems is cumbersome.
This motivated us to put aCaching mechanism in place. The
video when first captured is cached and then transferred to
the storage in the Data Management layer. There is aData
Screening component in this layer. It acts as a filter to discard
low quality videos.

C. Data Management

The task of this layer is to manage all the video data,
thus becoming a central point for any data access. It consists
of a local storage for maintaining the unprocessed videos.
Typically, the storage is distributed over multiple storage nodes
in order to achieve high capacity of storage incrementally.As
the storage location is not static, any data access request to
the Data Management layer has to be controlled centrally.
Moreover, space management must also be done centrally.
These requirements give rise to theMaster Storage Controller.
The master controller interfaces with the other layers through a
web service. Aregistry of all the videos in the storage is also
maintained in this layer. Each entry of the registry contains
basic information like record time, source, etc. required to
uniquely identify the video along with its storage location. The
timely deletion of old videos and their corresponding entries
is also handled by the controller.

When a write request is made to the master controller from
a capturing node in the Video Acquisition layer, it selects a
storage location with enough free space and minimal load. A
peer to peer connection is established for the data transfer.
Once the file transfer is done, the master controller is notified.
The master controller then adds this as an entry into the
registry. In case, the storage location gets down due to any

reason anytime before the completion of the data transfer, the
capturing node requests for a new location for storing the video
and starts the transfer again. A log of all such incomplete
transfers is maintained by the master storage controller. These
incomplete files are cleaned up by the master controller at
regular intervals. Similarly, for a read request from the pro-
cessing layer, master controller looks up the registry based on
identifying information and finds out the storage location for
the requested broadcast. The download URL is then returned
back as response. This layer also contains a database of the
access URLs of the processed videos.

D. Processing and Indexing

The task of this layer is to perform the entire processing
and indexing operations. There are 3 major components of
this layer.

1) Video Processing: The standard pre-processing and
video processing operations are performed by this com-
ponent. These include noise removal, shot detection and
advertisement removal.

2) Content Extraction: Various feature extraction and con-
tent analysis algorithms form a part of this component.
These include key frames, color histograms, motion
vectors and face videos.

3) Indexing: Efficient indexing schemes are employed to
build index structures of all the metadata extracted.
There can be multiple indices for different metadata in-
formation. These indices are used by the IR & Delivery
layer for providing quick content based access to the
users looking for some specific information.

The system supports various types of metadata for the videos:
1) Source information about the videos like channel, broad-

cast date and time, resolution, frame rate and language.
2) Low level features like color, motion, compressed do-

main features and audio stream information.
3) Object level annotation information like locations, faces,

activities and events.
4) Direct and indirect user feedback for the videos.
There are multiple processing tasks running simultaneously

in the processing. Each processing task maintains an indepen-
dent schedule of videos to be processed according to which

it accesses the raw data from the data management layer. The
processing layer interacts with the IR and Delivery layer for
providing access to the metadata index. There is support for
indexing the metadata into an XML database. This ensures
flexibility to the processing modules for modular processing
of videos and the metadata can be used partially. Moreover,
this XML based structuring enables sharing of the metadata
across different processing tasks in a standardized manner.
The access to this XML metadata and output content of pre-
processing such as keyframes, is also enabled through network
APIs. This ensures higher reliability and decoupled storage of
the metadata. This also ensures reliable sharing of metadata
across various processing tasks.

The XML schema for the metadata consists of primarily
two parts. First is the basic information about the video
that is captured at the time of recording such as source
name, language, recording timestamp, resolution and duration.
Second part contains support for storing the metadata extracted
by various feature extraction and processing modules. Data
types of some of the elements are custom defined to impose
certain restrictions on values they can assume. For example,
minimum and maximum possible values, enumerated types,
etc. Following is an example fragment from the schema.

<xs:element name="shotsInfo">
<!--List of Shots-->
<xs:list>
<xs:complexType>
<xs:sequence>

<xs:element name="startFrame"
type="xs:integer"/>
<xs:element name="endFrame"
type="xs:integer"/>
<xs:element name="keyframe"
type="xs:integer"/>

</xs:sequence>
</xs:complexType>
<xs:minLength value="1"/>

</xs:list>
</xs:element>

<xs:element name="featureVector">
<xs:complexType>
<xs:sequence>

<xs:element name="featureName"
type="xs:string"/>
<!--Feature extracted over this time
interval-->
<xs:element name="timeInterval"
type="timeIntervalType"/>
<!--Low Level Feature Vectors like Color
and Motion-->
<xs:list name="vector"
itemType="xs:decimal"/>
<!--Support for Semantic Level Text

Decoder
Processing

Pre
Processing

VIDEO

Pre−processing Sub Stages

Read/Write
Metadata

METADATA

Prospective Plugins
for a Sub Stage

Fig. 3. Various stages of the processing pipeline. Each stage or a sub-stage
might have several implementations which can be selected and sequenced at
run time due to the plugin architecture.

Annotations-->
<xs:element name="annotation"
type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

E. IR Support and Delivery

Users are generally interested in looking for the most
important news of the day, tracking a particular news story,
avoiding watching irrelevant videos like commercials, watch-
ing related news across different channels, etc. Some of the
successfully employed techniques in text domain can directly
be mapped to the video domain. In a broadcast news delivery
system, the users are interested to watch the videos sorted
according to their importance. The user feedback can be used
for providing personalized access to the news stories and
also for collaborative filtering and categorization of the news
content. Another responsibility of this layer is to deliverthe
output of these IR modules to the clients through a front end.
A user activity log is also maintained which is a useful input
for any kind of personalization. This layer is designed to vary
the content presented and the user interface according to the
client capabilities and requirements.

III. SOFTWARE DESIGN

The software has been designed based on the goals and
requirements we started with. The primary design decision is
to model the different stages of the software as a pipeline.
Modeling as a pipeline requires the standardization of data
structures throughout the different stages. Moreover, each
stage in the pipeline needs to be independent of the internals
of the other. This requires standardization of the interfaces
among the different stages. To fulfill this, we chose aPlugin
architecture. Any stage or a sub-stage can be manipulated
within itself as long as the interfaces are conformed with. The
plugin architecture allows us to have multiple implementations
for a module. This enables run time selection of the best suited

on starting the slide show
Thumbnails move from right to left

Fig. 4. Screen Shot of the UI element designed for presentinga news story

algorithm depending on configuration setting and user input.
The design is pictorially shown in Figure 3.

For each stage of the pipeline, a factory class is implemented
which encapsulates the logic of selecting the appropriate algo-
rithm implementation. Based on our experience with the initial
versions of the system, we noticed that the memory allocation
and deallocation appeared to be a significant overhead in
the performance of the system since typical video processing
tasks generally require huge chunks of memory. This issue
was rectified with a simple design modification wherein we
implementedObject Pooling and Reuse. Memory is allocated
at the system initiation itself and the objects are reused over
all subsequent requests.

Another major challenge was the design of the user in-
terface. Users access video segments via web browsers. An
effective and intuitive way of visualizing the videos is designed
such that the user gets a feel of the content without actually
needing to stream the videos and see them. Users are typi-
cally presented news broadcasts automatically segmented into
individual stories. These stories are of few minutes duration
each. Browsing this by playing the video requires significant
time. We extract the critical frames called key frames and
form a visual summary which is presented in an innovative
manner along with the metadata. It allows users to know
the relevant meta information (eg. language, channel, timeof
news, importance, etc.) associated with each story. The key
frames from the story are arranged left to right and move in a
slide show. Figure 4 shows a screentshot of this UI element.
Any keyframe zooms out on mouse hover by the user. This
enables the user to study the content in detail. Figure 5 shows
a screenshot of this feature in action.

IV. I MPLEMENTATION AND PERFORMANCEANALYSIS

In its current form, each day the system indexes 100 news
broadcasts from 8 different channels spanning 3 languages.
The video is encoded in MPEG-1 format which is kept as the
standard format throughout the system. Two processing servers
with an AMD Athlon 3200+ processor and 1G of RAM each
are in use. 1500GB of total storage spread over 5 storage
nodes is in use.LAMP (Linux, Apache, MySQL, PHP) set of
free software programs are employed to build the underlying
software infrastructure.

There is an administrative interface to the whole system
for configuring the system. The administrator can add or
remove recording, storage and processing nodes on the system.
The recording and processing schedules can be adjusted.

Fig. 5. The thumbnail zooms out on hovering the mouse pointer.

The system sends out daily reports to the administrators and
developers of the system which can be configured from here.
The system also sends out email alerts to the administrators
in case of failure of any node which can also be configured
from this interface. Table II depicts the evolution of the system
through last 20 months.

We performed extensive experiments and simulations for
observing the performance of the system. A network of 14
state of the art desktop systems was employed for conducting
the experiments. These systems acted as recording, storage
and processing nodes. Configuration was changed according
to each experiment and readings were automatically collected
and stored in a database.

The first simulation was performed to analyze the capability
of the system to handle large number of parallel video cap-
tures. The system was put under observation for a day and the
average load on the maximally loaded storage location was
plotted over every 10 minute interval. First three graphs in
figure 6 show the results of the simulation. The three cases
correspond to the central storage consisting of 6, 4 and 2
storage locations respectively. Each of these graphs contain
different plots showing the load corresponding to the varying
number of parallel video streams being captured. It can be
seen that the load always remains below the line indicating the
maximum possible load that can be handled by a single disk.
This means that all the storage disks were having load lower

 0
 2
 4
 6
 8

 10
 12
 14
 16

25201510 5

 M
a
x

 (
 l

o
a
d

 o
n

 a
n

y
 s

y
s
te

m
)

 i
n

 M
B

p
s

Time of the day

10 Streams
8 Streams
6 Streams

Maximum Load

 0
 2
 4
 6
 8

 10
 12
 14
 16

25201510 5

 M
a
x

 (
 l

o
a
d

 o
n

 a
n

y
 s

y
s
te

m
)

 i
n

 M
B

p
s

Time of the day

10 Streams
8 Streams
6 Streams

Maximum Load

 0
 2
 4
 6
 8

 10
 12
 14
 16

25201510 5

 M
a
x

 (
 l

o
a
d

 o
n

 a
n

y
 s

y
s
te

m
)

 i
n

 M
B

p
s

Time of the day

10 Streams
8 Streams
6 Streams

Maximum Load

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000 3500

 A
m

o
u

n
t

o
f

re
c
o

rd
e
d

d
a
ta

 l
e
ft

 t
o

 b
e
 s

to
re

d

Time of the day

83.3% Uptime
66.6% Uptime
50.0% Uptime

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000 3500

 A
m

o
u

n
t

o
f

re
c
o

rd
e
d

d
a
ta

 l
e
ft

 t
o

 b
e
 s

to
re

d

Time of the day

83.3% Uptime
66.6% Uptime
50.0% Uptime

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500 3000 3500

 A
m

o
u

n
t

o
f

re
c
o

rd
e
d

 d
a
ta

 l
e
ft

 t
o

 b
e
 s

to
re

d

Time of the day

83.3% Uptime
66.6% Uptime
50.0% Uptime

Fig. 6. Results for the Simulations.

TABLE I
SOME QUICK STATISTICS ABOUT THE SYSTEM

No. of different channels being captured 10
Number of news broadcasts recorded and processed each day100

Approximate amount of Video Data processed till date 70 Tb

TABLE II
THE TABLE TRACKS SYSTEM’ S CONTINUOUS EVOLUTION OVER LAST20

MONTHS

No. of System Total Storage Data Captured and
Failures per month Size (in GB) Processed per day

Jan ’06 20 200 10 hrs.
July ’06 5 500 25 hrs,
Jan ’07 0 1200 25 hrs.
July ’07 0 1500 50 hrs.

than the maximum that they can handle. The results clearly
show that the system is scalable and the system can handle
increasing number of parallel recordings with the growing
storage locations in the central storage.

The second simulation was performed to test the system’s
behavior in situations when the reliability of the central storage
is low. The system is designed to ensure no loss of captured
video data even when the central storage suffers from high
average downtimes. The caching mechanism ensures safety of
data even if storage is not immediately available at the time
of recording. Last three graphs in figure 6 shows results of
this simulation. Each graph shows the amount of recorded
video data pending to be transferred on to the central storage
over a day. The downtime of the storage systems has been
simulated in three different ways to imitate different possible
real life scenarios. In first case, a percentage of the storage
locations were forced to be down permanently for the day. In
second case, all the storage disks were forced to be down for
a percentage of the duration in a day. In the last case, storage
disks were randomly and alternately forced to be down for
small durations so as to end up with the mentioned overall
average uptime. Within each graph, there are multiple plots
corresponding to the different average uptimes of the storage
locations. The graphs clearly indicate that even in low uptime
situations for central storage, there is no loss in data. At the

end of the plot, the amount left to be transferred corresponding
to the day of observation eventually reaches zero. There is a
only a lag which is introduced in the data transfer from the
recording cache to the central storage because of unavailability
of enough free storage nodes. That is expected to happen as
the transfer rate is limited by the total bandwidth of the central
storage.

V. CONCLUSIONS

It is quite evident that the goals and requirements we started
with are satisfactorily met because of the layered architecture
and various design choices made. The system has been time
tested over 20 months. The extensive performance analysis
through stress simulations depict the robustness of the system.
The system holds great potential for the development of
innovative IR techniques. The system is shown to be capable
of evolving into a much bigger platform hosting a variety of
content based video access algorithms.

REFERENCES

[1] Youtube. [Online]. Available: http://www.youtube.com
[2] A. Jain, A. Vailaya, and W. Xiong, “Query by video clip,” in Proc. IEEE

International Conference on Pattern Recognition (ICPR’98), vol. 1.
Washington, DC, USA: IEEE Computer Society, 1998, pp. 909–911.

[3] A. Hampapur, A. Gupta, B. Horowitz, C.-F. Shu, C. Fuller,J. R. Bach,
M. Gorkani, and R. C. Jain, “Virage video engine,” January 1997, pp.
188–198.

[4] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang,B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker,
“Query by image and video content: The QBIC system,”Computer,
vol. 28, no. 9, pp. 23–32, September 1995.

[5] J. R. Smith and S.-F. Chang, “Visualseek: A fully automated content-
based image query system,” inACM Multimedia, 1996, pp. 87–98.

[6] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” inProc. IEEE International Conference on
Computer Vision (ICCV’03), 2003, pp. 1470–1477.

[7] Y. Zhai, J. Liu, and M. Shah, “Automatic Query Expansion for News
Video Retrieval,” inIEEE International Conference on Multimedia and
Expo, 2006, pp. 965–968.

[8] A. F. Smeaton, “The fı́schlár digital library: Networked access to a video
archive of TV news,” inTERENA Networking Conference, 2002.

[9] O. Arandjelovic and A. Zisserman, “Automatic Face Recognition for
Film Character Retrieval in Feature-Length Films,” inProceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2005,
pp. 860–867.

[10] J. Yang and A. G. Hauptmann, “Annotating News Video withLoca-
tions.” in Proceedings of the International Conference on Image and
Video Retrieval, 2006, pp. 153–162.

