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Abstract
A kernel-based approach for nonlinear modeling of time
series data is proposed in this paper. Autoregressive mod-
eling is achieved in a feature space defined by a kernel
function using a linear algorithm. The method extends
the advantages of the conventional autoregressive mod-
els to characterization of nonlinear signals through the
intelligent use of kernel functions.Experiments with syn-
thetic signals demonstrate that this method seems to be a
promising alternative to nonlinear modeling schemes.

1. Introduction
Nonlinear modeling of time series data has been studied
extensively in the past [1]. A well-known statistical ap-
proach to the study of nonlinear relationships is first to
transform the variables such that the relationship is lin-
earized, and thereafter to use linear modeling techniques
on the transformed data for developing a compact repre-
sentation of the signal. This paradigm is similar to the one
adopted in machine learning to detect complex patterns
in data efficiently through the use of kernel functions [2]
that avoid the explicit transformation of the data. This
paper proposes a novel method for nonlinear modeling of
signals by the application of an autoregressive model on
the data mapped to a feature space defined by a kernel
function. This extends the advantages of the autoregres-
sive modeling techniques to the characterization of non-
linear signals. A shortcoming of the approach is that, in
all but a few cases, the signal can not be reconstructed in
the input space. However the model parameters thus esti-
mated can be used as features that characterize the signal
which in turn can be used for tasks like recognition and
classification.

Many nonlinear modeling techniques require iterative
optimization of objective functions. These iterative op-
timization procedures are computationally intensive and
often numerically unstable. They could also fail to con-
verge to the desired solution [3]. In contrast, linear mod-
els and algorithms are computationally efficient. They
could also have closed-form solutions. Moreover linear
algorithms [4] are numerically more stable and statistical
inferences made using them are more reliable [5]. Due to
the efficiency and reliability of linear methods they have

been used widely for the tasks of modeling and recogni-
tion, even in cases where there is no adequate justification
for the linearity assumption.

The motivation for the current work is to retain the
advantages of the linear modeling schemes to solve the
modeling problems, which need nonlinearity. The use of
kernel functions is a natural way to achieve this. They
have been widely used for detection of complex nonlin-
ear patterns in the data that are linear in a feature space
defined by the kernel function. We use autoregressive
model along with kernel functions to perform linear mod-
eling in a feature space defined by the kernel function.
The proposed algorithms requires only a kernel matrix
which is independent of the dimensionality of the as-
sociated feature space. The work of Chakrabartty et.al
[6] that uses the kernel trick to capture higher order cor-
relation between speech samples, in our knowledge, is
the closest to the current one. They use growth trans-
formation with kernel regression for extraction of robust
speech features with empirical evidence on robustness of
the kernel-based features.

We show that the parameters of an autoregressive
model applied to the data in a feature space defined by
the kernel function can be computed from the kernel ma-
trix alone by minimizing the prediction error.

2. AR Model and Kernel Methods
This section reviews the required fundamentals and intro-
duces the notations followed. Autoregressive (AR) model
is a popular linear model employed for the modeling time
series data in applications like speech processing, image
compression, redundancy removal, on-line handwriting
recognition etc. An AR model explains the univariate
time series data by expressing the signal at instant i as

xi =

p
∑

j=1

αp−j+1xi−j + ei

where the process mean is assumed to be zero and ei is
white noise. The value of p is known as the order of the
AR model. This is a linear regression of the sample at
instant i against previous p samples. The parameters of
the model can be estimated by minimizing the squared



prediction error

ξ =
l

∑

i=p+1

(xi − x̂i)
2

=
l

∑

i=p+1

(xi −
p

∑

j=1

αp−j+1xi−j)
2

where l is the total number of samples.The solution can
be obtained by setting ∂ξ

∂α
= 0 and solving the result-

ing set of linear equations. Autocorrelation, Levinson-
Durbin recursion are some of the popular methods for
numerical computation. The modeling scheme can be
extended to vector valued sequence x1,x2, · · · ,xl in a
straightforward manner with the definitions

x̂i =

p
∑

j=1

αp−j+1xi−j

ξ =

l
∑

j=p+1

‖xj − x̂j‖2

Kernel methods [2] are a new class of algorithms used
for detection of complex nonlinear patterns in the data. A
Kernel Function κ : X ×X → R is a symmetric bilinear
real-valued function such that the Kernel Matrix K de-
fined by κ i.e Kij = κ(xi,xj) restricted to finite subset
of X is positive semi-definite where X is the input space.
It can be shown that there exists a map φ : X → F where
F is a Hilbert Space with the inner product satisfying the
condition

κ(x,y) = 〈φ(x), φ(y)〉. (1)

For instance the kernel function κ(x,y) = (xty)
2 de-

fines the inner product in a feature space corresponding
to the map φ :

[

x1 x2

]t 7→
[

x2
1 x2

2

√
2x1x2

]t
which

maps data in a 2-d space to a 3-d space. Thus algorithms
requiring only the pairwise inner product information can
be easily applied to the data in the feature space using a
kernel function. In this paper, we argue that autoregres-
sive modeling can be done in the feature space without
the explicitly mapping the samples into a new space. Sec-
tion 3 shows that the αi can be computed by minimizing
the error ξ in the feature space F defined by the kernel
function κ from the knowledge of the kernel matrix alone.

3. AR Model in the Feature Space
The map φ : X → F maps the elements of the sequence
x1,x2, · · · ,xl to the sequence φ(x1), φ(x2), · · ·φ(xl) in
the feature space. We use the notation

X =
[

φ(x1) φ(x2) · · · φ(xl)
]

for the data matrix and α =
[

α1 α2 · · · αp

]t
for

the vector of prediction coefficients. Thus the prediction
equation becomes

φ̂(xi) =

p
∑

j=1

αp−j+1φ(xi−j)

which can be rewritten as

φ̂(xi) =
[

φ(x1) φ(x2) · · · φ(xl)
]





0(i−p−1)×p

Ip

0(l−i+1)×p



α

where 0m×n is an m× n matrix with all entries equal
to 0 and Im is an m×m identity matrix. Using Ji for the
second matrix in the above equation we have

φ̂(xi) = XJiα

Note that the matrix X is of dimension N × l where N is
the dimension of the feature space which is typically very
high. It is infeasible to compute the map φ(.) and hence
this matrix is inaccessible. Fortunately, α can be esti-
mated without the knowledge of X as shown below. The
prediction error between the real and predicted samples
in the feature space can be written as

ξ(α ) =
l

∑

i=p+1

‖φ(xi)− φ̂(xi)‖
2

Noting that ‖x‖2 = 〈x,x〉 = xtx, substituting the ex-
pression for the predicted sample and using the bilinear-
ity of inner product we have

ξ(α ) =

l
∑

i=p+1

(

φt(xi)φ(xi)− 2φt(xi)XJiα (2)

+ α
tJi

tXtXJiα

)

Setting ∂ξ
∂α

= 0 and solving for α we have

α =





l
∑

i=p+1

Ji
tXtXJi





−1 



l
∑

i=p+1

Ji
tXtφ(xi)





Note that XtX is precisely the Kernel matrix K de-
fined by Kij = κ(xi,xj) which is of dimension l × l

independent of N . The vector Xtφ(xi) is the ith col-
umn Kiof the Kernel matrix. Substituting these in to the
equation

α =





l
∑

i=p+1

Ji
tKJi





−1 



l
∑

i=p+1

Ji
tKi





It can be easily seen that the final computation re-
quires only the Kernel Matrix K which can be com-
puted using the kernel function κ. Thus the model-
parameter estimation can be done efficiently irrespec-
tive of the dimensionality of the feature space. The
zero mean assumption can be handled by centering the
kernel matrix in the feature space : Kij = 〈φ(xi) −



1
l

∑l
k=1 φ(xk), φ(xj) − 1

l

∑l
k=1 φ(xk)〉. This can be

done by modifying the original kernel matrix as

K = K− 1

l
1K− 1

l
K1 +

1

l2
1K1

where 1 is an l × l matrix with all entries equal to one.
Note that the residual can also be measured by using the
kernel matrix alone.

Note that the matrix
∑l

i=p+1 Ji
tKJi is a sum of ker-

nel matrices and is positive semi-definite. It is not guar-
anteed to be invertible always. In such cases numeri-
cal techniques like adding an additional term λIp can be
used. This is equivalent to adding a penalty term control-
ling the norm of α . Algorithm 1 summarizes the en-
tire procedure. Since the order of the model is typically
much smaller compared to the number of samples, the
algorithm runs in time O(l2c) where c is the cost of eval-
uation the kernel function on a pair of data points. An
interesting observation is that the complete l × l kernel
matrix is accessed only during the centering operation.
For the remaining computation only a p× p kernel (sub-)
matrix moving along the diagonal of the full kernel ma-
trix is accessed. This can be exploited in improving the
computational complexity of the algorithm.

Algorithm 1 Kernel AR model
Input : X = {x1,x2, · · · ,xl}, p, κ(., .)
Output : α , ξ

Compute the Kernel Matrix , Kij ← κ(xi,xj)
K← K− 1

l
1K− 1

l
K1 + 1

l2
1K1

B← 0p×p

y← 0p×1

for i = p + 1 · · · l do
B← B + K(i− p : i− 1, i− p : i− 1)
y← y + K(i− p : i− 1, i)

end for
α ← (B + λIp)

−1
y

ξ ← 0
for i = p + 1 · · · l do

ξ ← ξ + Kii − 2 ∗K(i− p : i− 1, i)
t
α

+α
tK(i− p : i− 1, i− p : i− 1)α

end for
return α , ξ

We have shown that autoregressive modeling of data
in a transformed space can be done efficiently using the
kernel trick. A drawback of using the kernel trick is the
lack of explicit control of the transformed space and in-
accessibility to the samples in it. If the type of the non-
linearity is known apriori, an appropriate kernel can be
employed for obtaining the accurate model. When there
is no information about the type of nonlinearity, selection
of kernel becomes more of an empirical procedure. While
selection of kernel functions appropriate for a given task
is still an open problem, empirical methods are shown to

be effective for the selection kernels. The model parame-
ters estimated using the proposed method can be used as
a representation of the sequence for use with other algo-
rithms for classification and recognition.

The algorithm presented uses the efficiency of the lin-
ear model with the nonlinearity introduced by the kernel
trick to give an efficient nonlinear modeling scheme. In-
terpretation of AR modeling in the feature space is rather
difficult as the nonlinear map involved φ(.) can distort the
spatial ordering and continuity in which case application
of an AR model may not have justification. This problem
is more pronounced in the multidimensional case where
the geometry of signal in the feature space can be quite
complex. Despite this apparent lack of physical justifica-
tion the efficiency and simplicity of the method make it
very promising for nonlinear modeling.

4. Experiments, Results and Discussions
The kernel version of the AR modeling scheme proposed
in the previous section, models a signal in the feature
space. However, the predicted signal can not always be
mapped to the input space. This is because the points
φ(xi) are difficult to compute. Even if φ(.) is computa-
tionally feasible, an inverse mapping may not be defined
for all the points. Thus it is difficult to test the goodness
of the fit in the input space. However, when the input
space is one dimensional, and kernel function is polyno-
mial, i.e., κ(x,y) = (xty)

d, it is possible to compute and
invert the nonlinear map φ(x) = xd. For the experimen-
tation, we use 1-d signals synthesized using known and
unknown generative models. We then model the signal
with the proposed algorithm using polynomial kernels of
various degrees. Some of the results are described and
discussed in the rest of this section.

A signal is synthesized using the following generative
model x7

n = x7
n−1 − 3x7

n−2 + 3x7
n−3. It may be noted

that this signal will have a linear structure in the feature
space defined by the polynomial kernel of degree seven.
We model the signal with polynomial kernels of varying
degree. Performance of the modeling is analyzed with
the help of prediction error, which is defined as the sum
of squared errors between the predicted(modeled) and ac-
tual samples. This computation is done in the input space,
so that the performance of all the kernels can be com-
pared and analyzed in the same framework. Figure 1
shows the relative values of the average prediction error
in the input space plotted against the degree of the kernel.
Note that the computations are done only for the integer
values of the kernel degree. Prediction error is computed
as the mean value of the prediction error over 1000 trials
and for different of the order of prediction.

The minimum error was obtained for kernel with de-
gree seven. It may be noticed that the higher degree ker-
nels perform much better the linear kernels. However, the
error associated with various higher order kernels need
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Figure 1: Prediction error in the input space on a signal
generated by x7

n = x7
n−1 − 3x7

n−2 + 3x7
n−3. Note the

minima at d = 7.

not be monotonically decreasing. This observation high-
lights the fact that selection of appropriate kernel is pos-
sible for the accurate modeling. Also the experiment
proves that the method does not overfit the data as in the
case of many nonlinear modeling schemes. Similar re-
sults were obtained for many other generating models.
The model parameters obtained in each case were the
same as the parameters of the generating model . This
experiment demonstrates that the algorithm performs as
expected, and can model the signal with very high accu-
racy, provided the kernel can approximate the nonlinear-
ity in the signal.

SNR→
d↓

30dB 24dB 20dB 18dB 16dB
1 0.68 1.53 2.79 4.22 6.06
2 0.78 1.64 2.90 4.30 6.11
3 0.98 1.86 3.06 4.45 6.20
4 1.16 2.04 3.15 4.50 6.12

Table 1: Table showing the percentage change in error
as the noise percentage is varied for kernels of various
degrees

The second experiment is performed to study the sen-
sitivity of the algorithm to the presence of the noise in the
input data. When noise is present in the data, the mod-
eling scheme can perform inferior in the feature space.
The sensitivity of the algorithm may depend on the map
φ(.) and hence the kernel function. We conducted exper-
iments with various signal to noise ratios of a synthetic
signal and the percentage deterioration in the input space
is studied. Table 4 depicts the percentage increase in the
prediction error as the noise increases in the input space.

It can be seen that the sensitivity of the (higher degree)
kernel AR modeling scheme is very similar to the con-
ventional AR modeling (i.e., linear kernels) procedure.
As the noise increases, all kernels monotonically deteri-
orate in performance. As the noise increases, very often
the linear methods break faster compared to the proposed
kernel scheme, with higher order polynomial kernels.

The third experiment was done to test the effective-
ness of the algorithm on signals whose generative model
is unknown. Once again it was observed that the kernels
of higher degree model the signal better. The proposed
algorithm was also compared with nonlinear autoregres-
sive modeling methods like the Nadaraya-Watson esti-
mate and Local linear estimate. Preliminary results show
that the method proposed here performs comparatively
and is more stable since it does not require any iterative
optimization. We are exploring the applicability of this
method to handwritten character recognition and the pre-
liminary results are superior to those obtained using the
conventional AR modeling schemes.

5. Conclusions and Future Work
We presented a novel method for modeling nonlinear re-
lations in time series by application of a linear model in
a kernel-defined feature space. Preliminary experiments
on synthetic one dimensional signals show promising re-
sults and we believe the method can be used as a feature
extraction method for multidimensional sequence recog-
nition tasks like video-event recognition and handwriting
recognition to achieve better performance and robustness.
We are conducting further experiments in this direction.
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